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Beating the Sum-Rate Capacity of the Binary Adder Channel with Non-Signaling Correlations

We address the problem of coding for multiple-access channels (MACs) with the assistance of nonsignaling correlations between parties. It is well-known that non-signaling assistance does not change the capacity of point-to-point channels. However, it was recently observed that one can construct MACs from two-player non-local games while relating the winning probability of the game to the capacity of the MAC. By considering games for which entanglement (a special kind of non-signaling correlation) increases the winning probability (e.g., the Magic Square game), this shows that for some specic kinds of channels, entanglement between the senders can increase the capacity.

Here, we show that the increase in capacity from non-signaling assistance goes beyond such special channels and applies even to a simple deterministic MAC: the binary adder channel. In particular, we show that, with non-signaling assistance, a sum-rate of log 2 (72) 4 1.5425 can be reached with zero error, beating the maximum classical sum-rate capacity of 3 2 . Furthermore, we show that this capacity increase persists if a small amount of noise is added to the channel.

In order to achieve this, we show that ecient linear programs can be formulated to compute the success probability of the best non-signaling assisted code for a nite number of copies of a multipleaccess channel. In particular, this can be used to give lower bounds on the zero-error non-signaling assisted capacity of multiple-access channels.

Introduction

Multiple-access channels (MACs for short) are one of the simplest model of network communication settings, where two senders aim to transmit individual messages to one receiver. The capacity of such channels has been entirely characterized by the seminal works by Liao [START_REF] Herng | Multiple access channels[END_REF] and Ahlswede [START_REF] Ahlswede | Multi-way communication channels[END_REF] in terms of the following single-letter formula:

Theorem 1.1. The capacity region C(W ) of the MAC W is the closure of all rate pairs (R 1 , R 2 ) such that:

R 1 ≤ I(X 1 : Y |X 2 ) , R 2 ≤ I(X 2 : Y |X 1 ) , R 1 + R 2 ≤ I((X 1 , X 2 ) : Y ) ,
for (X 1 , X 2 ) ∈ X 1 × X 2 following a product law P X 1 × P X 2 , and Y ∈ Y the outcome of W on inputs X 1 , X 2 .

From the point of view of quantum information, it is natural to ask whether additional resources, such as quantum entanglement between the parties, changes the capacity region. A well-known result [START_REF] Charles | Entanglement-assisted classical capacity of noisy quantum channels[END_REF] states that for classical point-to-point channels, entanglement and even more generally non-signaling correlations do not help; see also [START_REF] Matthews | A linear program for the nite block length converse of Polyanskiy-Poor-Verdú via nonsignaling codes[END_REF][START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF]. However, in [START_REF] Leditzky | Playing games with multiple access channels[END_REF], it is shown that quantum entanglement shared between the two senders of a multiple access channel can strictly extend the capacity region. It occurs for some channels constructed from two-player non-local games, such as the Magic Square game [START_REF] David | Simple unied form for the major no-hidden-variables theorems[END_REF][START_REF] Peres | Incompatible results of quantum measurements[END_REF][START_REF] Pk Aravind | A simple demonstration of Bell's theorem involving two observers and no probabilities or inequalities[END_REF][START_REF] Brassard | Quantum pseudo-telepathy[END_REF], translating known gaps between classical and quantum values of games into MAC capacity gaps. The MACs constructed this way have very special form though and one may wonder whether non-signaling correlations can help for more natural MACs. Here we focus on the simplest textbook MAC: the binary adder channel which maps (x 1 , x 2 ) ∈ {0, 1} 2 to x 1 + x 2 ∈ {0, 1, 2}. It is worth noting that, unlike the channels of [START_REF] Leditzky | Playing games with multiple access channels[END_REF], the BAC is deterministic. The capacity region of this channel is known to be given by

C(W BAC ) = {(R 1 , R 2 ) : R 1 ≤ 1, R 2 ≤ 1, R 1 + R 2 ≤ 3 2 }.
In this work, we focus on the quantity S NS (W, k 1 , k 2 ), which denotes the success probability of the best non-signaling assisted (k 1 , k 2 )-code for the MAC W . Contrary to the unassisted value S(W, k 1 , k 2 ), S NS (W, k 1 , k 2 ) can be formulated as a linear program; see Proposition 3.1. Furthermore, using symmetries, we have developed a linear program computing S NS for a nite number of copies of a MAC W with a size growing polynomially in the number of copies; see Theorem 3.9 and Corollary 3.10. Applied to the binary adder channel, we have shown that the sum-rate log 2 (72) [START_REF] Pk Aravind | A simple demonstration of Bell's theorem involving two observers and no probabilities or inequalities[END_REF] 1.5425 can be reached with zero error, which beats the maximum classical sum-rate capacity of 3 2 ; see Theorem 4.1. Finally, for noisy channels, where the zero-error non-signaling assisted capacity region is trivial, we can use concatenated codes to obtain achievable points in the capacity region. Applied to a noisy version of the binary adder channel, we have shown that non-signaling assistance still improves the sum-rate capacity.

In Section 2, we dene precisely the dierent notions of MAC capacities: the classical capacity (i.e. without any assistance) as well as the non-signaling assisted capacity. In Section 3, we address computational complexity questions concerning the probability of success of the best classical coding strategy and the best non-signaling strategy for a MAC. In Section 4, we apply these results to the binary adder channel. Finally, in Section 5, we handle the case of noisy channels through concatenated codes, and apply it to a noisy version of the binary adder channel.

2

Multiple Access Channels Capacities

Classical Capacities

Formally, a MAC W is a conditional probability distribution depending on two inputs in X 1 and X 2 , and an output in Y, so W := (W (y|x 1 x 2 )) x 1 ∈X 1 ,x 2 ∈X 2 ,y∈Y such that W (y|x 1 x 2 ) ≥ 0 and y∈Y W (y|x 1 x 2 ) = 1.

We will denote such a MAC by W : X 1 × X 2 → Y. The tensor product of two MACs W :

X 1 × X 2 → Y and W : X 1 × X 2 → Y is denoted by W ⊗ W : (X 1 × X 1 ) × (X 2 × X 2 ) → Y × Y and dened by (W ⊗W )(yy |x 1 x 1 x 2 x 2 ) := W (y|x 1 x 2 )•W (y |x 1 x 2 ). We denote by W ⊗n (y n |x n 1 x n 2 ) := n i=1 W (y i |x 1,i x 2,i ), for y n := y 1 . . . y n ∈ Y n , x n 1 := x 1,1 . . . x 1,n ∈ X n 1 and x n 2 := x 2,1 . . . x 2,n ∈ X n 2 .
We will use the notation [k] := {1, . . . , k}.

For a MAC W :

X 1 × X 2 → Y, we write S(W, k 1 , k 2 )
for the maximal probability of successfully sending k 1 messages for sender 1 and k 2 messages for sender 2. This means that one can encode k 1 messages in 

X 1 through e 1 : [k 1 ] → X 1 , k 2 messages in X 2 through e 2 : [k 2 ] → X 2 ,
e 1 W e 2 d x 1 x 2 y i 1 i 2 (j 1 , j 2 ) Figure 1: Coding for a MAC W . S(W, k 1 , k 2 ) := maximize e 1 ,e 2 ,d 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ,i 2 W (y|x 1 x 2 )e 1 (x 1 |i 1 )e 2 (x 2 |i 2 )d(i 1 i 2 |y) subject to x 1 ∈X 1 e 1 (x 1 |i 1 ) = 1, ∀i 1 ∈ [k 1 ] x 2 ∈X 2 e 2 (x 2 |i 2 ) = 1, ∀i 2 ∈ [k 2 ] j 1 ∈[k 1 ],j 2 ∈[k 2 ] d(j 1 j 2 |y) = 1, ∀y ∈ Y e 1 (x 1 |i 1 ), e 2 (x 2 |i 2 ), d(j 1 j 2 |y) ≥ 0 (1) 
Since MACs are more general than point-to-point channels (by dening W (y|x 1 x 2 ) := Ŵ (y|x 1 ) for Ŵ a point-to-point channel and looking only at its rst input), computing a single value S(W, k 1 , k 2 ) is NP-hard, and it is even NP-hard to approximate S(W, k 1 , k 2 ) within a better ratio than 1 -e -1 , as a consequence of the hardness result on S(W, k) shown in [START_REF] Barman | Algorithmic aspects of optimal channel coding[END_REF].

The (classical) capacity of a MAC, as dened for example in [START_REF] Cover | Elements of Information Theory[END_REF], can be reformulated in the following way:

Denition 2.1 (Capacity Region C(W ) of a MAC W ). A rate pair (R 1 , R 2 ) is achievable if: lim n→+∞ S(W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the (classical) capacity region C(W ) as the closure of the set of all achievable rate pairs. For the zero-error (classical) capacity, this leads to the following denition:

Denition 2.2 (Zero-Error Capacity Region C 0 (W ) of a MAC W ). A rate pair (R 1 , R 2 ) is achievable with zero-error if: ∃n 0 ∈ N * , ∀n ≥ n 0 , S(W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the zero-error (classical) capacity region C 0 (W ) as the closure of the set of all achievable rate pairs with zero-error.

Non-Signaling Assisted Capacities

When non-signaling assistance is given to a MAC, both encoders e 1 , e 2 and the decoder d are replaced by a non-signaling box P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y), i.e., each party's output is conditionally independent from the inputs of the others, given this party's input. The way a non-signaling box can be used for coding is depicted in Figure 2. The maximal probability of successfully sending k 1 messages for sender 1 and k 2 messages for sender 2 with non-signaling assistance, which we call S NS (W, k 1 , k 2 ), is given by the following linear program, where the constraints translate the fact that P is a non-signaling box:

P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) i 1 i 2 (j 1 , j 2 ) W x 1 x 2 y Figure 2:
The use of a non-signaling box P as a coding strategy for the MAC W .

S NS (W, k 1 , k 2 ) := maximize P 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y)
subject to

x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) j 1 j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) x 1 ,x 2 ,j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) ≥ 0 (2) 
Since it is given as a linear program, the complexity of computing S NS (W, k 1 , k 2 ) is polynomial in the number of variables and constraints (see for instance Section 7.1 of [START_REF] Gärtner | Understanding and using linear programming[END_REF]), which is a polynomial in |X 1 |, |X 2 |, |Y|, k 1 and k 2 . Also, as it is easy to check that a classical strategy is a particular case of a non-signaling assisted strategy, we have that

S NS (W, k 1 , k 2 ) ≥ S(W, k 1 , k 2 ).
We have then the same denitions of capacity and zero-error capacity: 

lim n→+∞ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the non-signaling assisted capacity region C NS (W ) as the closure of the set of all achievable rate pairs with non-signaling assistance.

Denition 2.4 (Zero-Error Non-Signaling Assisted Capacity Region C NS 0 (W ) of a MAC W ). A rate pair (R 1 , R 2 ) is achievable with zero-error and non-signaling assistance if:

∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
We dene the zero-error non-signaling assisted capacity region C NS 0 (W ) as the closure of the set of all achievable rate pairs with zero-error and non-signaling assistance. 

S NS (W, k 1 , k 2 ) = maximize r,r 1 ,r 2 ,p 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y subject to x 1 ,x 2 r x 1 ,x 2 ,y = 1 x 1 r 1 x 1 ,x 2 ,y = k 1 x 1 r x 1 ,x 2 ,y x 2 r 2 x 1 ,x 2 ,y = k 2 x 2 r x 1 ,x 2 ,y x 1 p x 1 ,x 2 = k 1 x 1 r 2 x 1 ,x 2 ,y x 2 p x 1 ,x 2 = k 2 x 2 r 1 x 1 ,x 2 ,y 0 ≤ r x 1 ,x 2 ,y ≤ r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y ≤ p x 1 ,x 2 p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0 (3) 
Proof. One can check that given a solution of the original program, the following choice of variables is a valid solution of the second program achieving the same objective value:

r x 1 ,x 2 ,y := i 1 ,i 2 P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) , r 1 x 1 ,x 2 ,y := j 1 ,i 1 ,i 2 P (x 1 x 2 (j 1 i 2 )|i 1 i 2 y) , r 2 x 1 ,x 2 ,y := j 2 ,i 1 ,i 2 P (x 1 x 2 (i 1 j 2 )|i 1 i 2 y) , p x 1 ,x 2 := j 1 ,j 2 ,i 1 ,i 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (4) 
Note that p x 1 ,x 2 is well-dened since j 1 ,j 2 ,i 1 ,i 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) is independent from y by NS conditions. For the other direction, given those variables, a non-signaling probability distribution P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) achieving the same objective value is given by, for j 1 = i 1 and j 2 = i 2 :

P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) := r x 1 ,x 2 ,y k 1 k 2 , P (x 1 x 2 (j 1 i 2 )|i 1 i 2 y) := r 1 x 1 ,x 2 ,y -r x 1 ,x 2 ,y k 1 k 2 (k 1 -1) , P (x 1 x 2 (i 1 j 2 )|i 1 i 2 y) := r 2 x 1 ,x 2 ,y -r x 1 ,x 2 ,y k 1 k 2 (k 2 -1) , P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) := p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y k 1 k 2 (k 1 -1)(k 2 -1)
.

(5)

3.2

Properties of S NS (W, k 1 , k 2 ), C NS (W ) and C NS 0 (W ) Denition 3.2. We say that a conditional probability distribution

Q(a n |x n ) dened on (A 1 × . . . × A n )× (X 1 × . . . × X n ) and Q (a n |x n ) is non-signaling if for all a n , x n , xn , we have ∀i ∈ [n], a i Q(a 1 . . . a i . . . a n |x 1 . . . x i . . . x n ) = a i Q(a 1 . . . a i . . . a n |x 1 . . . xi . . . x n ) . Denition 3.3. Let Q(a n |x n ) be a conditional probability distribution dened on (A 1 × . . . × A n ) × (X 1 × . . . × X n ) and Q (a n |x n ) a conditional probability distribution dened on (A 1 × . . . × A n )×(X 1 × . . . × X n ).
We dene P := Q⊗Q the tensor product conditional probability distribution dened on

((A 1 × A 1 ) × . . . × (A n × A n )) ((X 1 × X 1 ) × . . . × (X n × X n )) by P (a 1 a 1 . . . a n a n |x 1 x 1 . . . x n x n ) := Q(a n |x n ) • Q (a n |x n ). Lemma 3.4. If both Q and Q are non-signaling, then P = Q ⊗ Q is non-signaling. Proof. Let a 1 , . . . , a i-1 , a i+1 , . . . , a n ∈ A 1 × . . . × A i-1 × A i+1 × . . . × A n , a 1 , . . . , a i-1 , a i+1 , . . . , a n ∈ A 1 × . . . × A i-1 × A i+1 × . . . × A n , x 1 , . . . , x n ∈ X 1 × . . . × X n and x 1 , . . . , x n ∈ X 1 × . . . × X n .
We have:

a i a i P (a 1 a 1 . . . a i a i . . . a n a n |x 1 x 1 . . . x i x i . . . x n x n ) = a i a i Q(a 1 . . . a i . . . a n |x 1 . . . x i . . . x n ) • Q (a 1 . . . a i . . . a n |x 1 . . . x i . . . x n ) = a i Q(a 1 . . . a i . . . a n |x 1 . . . x i . . . x n ) • a i Q (a 1 . . . a i . . . a n |x 1 . . . x i . . . x n ) = a i Q(a 1 . . . a i . . . a n |x 1 . . . xi . . . x n ) • a i Q (a 1 . . . a i . . . a n |x 1 . . . x i . . . x n )
since Q and Q are non-signaling

a i a i P (a 1 a 1 . . . a i a i . . . a n a n |x 1 x 1 . . . xi x i . . . x n x n ) , (6) 
so P is non-signaling.

Proposition 3.5. For a MAC W :

X 1 × X 2 → Y and k 1 , k 2 ∈ N * , we have: 1. 1 k 1 k 2 ≤ S NS (W, k 1 , k 2 ) ≤ 1. 2. S NS (W, k 1 , k 2 ) ≤ min |X 1 | k 1 , |X 2 | k 2 , |Y| k 1 k 2 . 3. If k 1 ≤ k 1 and k 2 ≤ k 2 , then S NS (W, k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ).

For any MAC

W : X 1 ×X 2 → Y and k 1 , k 2 ∈ N * , we have S NS (W ⊗W , k 1 k 1 , k 2 k 2 ) ≥ S NS (W, k 1 , k 2 )• S NS (W , k 1 , k 2 ).
In particular, for any positive integer n,

S NS (W ⊗n , k n 1 , k n 2 ) ≥ S NS (W, k 1 , k 2 ) n and S NS (W ⊗ W , k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ).
Proof.

1. Let us rst show that

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 . Take p x 1 ,x 2 := k 1 k 2 |X 1 ||X 2 | , r 1 x 1 ,x 2 ,y := px 1 ,x 2 k 2 , r 2 x 1 ,x 2 ,y := px 1 ,x 2 k 1 and r x 1 ,x 2 ,y := px 1 ,x 2 k 1 k 2 = 1 |X 1 ||X 2 |
. One can easily check that it is indeed a valid solution of the linear program computing S NS (W, k 1 , k 2 ). Thus we have:

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = 1 k 1 k 2 x 1 ,x 2 1 |X 1 ||X 2 | y W (y|x 1 x 2 ) = 1 k 1 k 2 x 1 ,x 2 1 |X 1 ||X 2 | = 1 k 1 k 2 . (7) 
Furthermore, in order to show that it is at most 1, let us consider an optimal solution of S NS (W, k 1 , k 2 ).

We have:

S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )p x 1 ,x 2 = 1 k 1 k 2 x 1 ,x 2 p x 1 ,x 2 y W (y|x 1 x 2 ) = 1 k 1 k 2 x 1 ,x 2 p x 1 ,x 2 = 1 , (8) 
since x 1 ,x 2 p x 1 ,x 2 = k 1 x 1 ,x 2 r 2 x 1 ,x 2 ,y = k 1 k 2 x 1 ,x 2 r x 1 ,x 2 ,y = k 1 k 2 .

First let us show that

S NS (W, k 1 , k 2 ) ≤ |X 1 | k 1 (the case S NS (W, k 1 , k 2 ) ≤ |X 2 | k 2 is symmetric): S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r 2 x 1 ,x 2 ,y ≤ 1 k 1 k 2 x 2 ,y   x 1 W (y|x 1 x 2 )   • x 1 r 2 x 1 ,x 2 ,y since nonnegative terms. = 1 k 1 k 2 x 2 ,y   x 1 W (y|x 1 x 2 )   • 1 k 1 x 1 p x 1 ,x 2 = 1 k 2 1 k 2 x 1 ,x 2 p x 1 ,x 2 x 1 y W (y|x 1 x 2 ) = |X 1 | k 2 1 k 2 x 1 ,x 2 p x 1 ,x 2 = |X 1 | k 1 . (9) 
Let us show now that

S NS (W, k 1 , k 2 ) ≤ |Y| k 1 k 2 : S NS (W, k 1 , k 2 ) = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y ≤ 1 k 1 k 2 y max x 1 ,x 2 W (y|x 1 x 2 ) x 1 ,x 2 r x 1 ,x 2 ,y ≤ 1 k 1 k 2 y x 1 ,x 2 r x 1 ,x 2 ,y = |Y| k 1 k 2 . ( 10 
)
3. Let us assume that k 1 ≤ k 1 and that k 2 = k 2 , since this latter case will follow by symmetry. Consider an optimal solution of S NS (W,

k 1 , k 2 ) = 1 k 1 i 1 ∈[k 1 ] f (i 1 ) with: f (i 1 ) := 1 k 2 x 1 ,x 2 ,y,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) ,
and P non-signaling. Let us consider S ∈ argmax

S ⊆[k 1 ]:|S |=k 1 i 1 ∈S f (i 1 )
. Then, by construction, we have that 1

k 1 i 1 ∈S f (i 1 ) ≥ 1 k 1 i 1 ∈[k 1 ] f (i 1 ) = S NS (W, k 1 , k 2 )
, since we have taken the average of the k 1 largest values of the sum.

Let us dene the strategy P on the smallest set

X 1 × X 2 × (S × [k 2 ]) × S × [k 2 ] × Y: P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) := P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + C(x 1 x 2 j 2 |i 1 i 2 y) , with C(x 1 x 2 j 2 |i 1 i 2 y) := 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (11) 
P is a correct conditional probability distribution. Indeed, it is nonnegative by construction, and we have that:

x 1 ,x 2 ,j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 1 ∈S,j 2 C(x 1 x 2 j 2 |i 1 i 2 y) = x 1 ,x 2 j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 2 j 1 ∈S 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 ,x 2 ,j 2 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 ,x 2 ,j 1 ,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = 1 . (12) 
Let us show that P is non-signaling:

(a) First with x 1 :

x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 1 C(x 1 x 2 j 2 |i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) since P is non-signaling. = x 1 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (13) 
(b) Then with x 2 :

x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + x 2 C(x 1 x 2 j 2 |i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + 1 k 1 j 1 ∈[k 1 ]-S x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) since P is non-signaling. = x 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) . (14) 
(c) Finally with (j 1 j 2 ):

j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈S C(x 1 x 2 j 2 |i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈S 1 k 1 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 2 j 1 ∈S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) + j 2 j 1 ∈[k 1 ]-S P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y) = j 1 j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) since P is non-signaling. = j 1 ∈S,j 2 P (x 1 x 2 (j 1 j 2 )|i 1 i 2 y ) .
(15) Thus P is a correct solution of the program computing S NS (W, k 1 , k 2 ), and it leads to the value:

S NS (W, k 1 , k 2 ) ≥ 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ∈S,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) ≥ 1 k 1 k 2 x 1 ,x 2 ,y,i 1 ∈S,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) = 1 k 1 i 1 ∈S f (i 1 ) ≥ 1 k 1 i 1 ∈[k 1 ] f (i 1 ) = S NS (W, k 1 , k 2 ) . (16) 
4. Consider optimal non-signaling probability distributions P and P reaching respectively the values S NS (W, k 1 , k 2 ) and S NS (W , k 1 , k 2 ). Then by Lemma 3.4, P ⊗ P is a non-signaling probability distribution on

(X 1 × X 1 ) × (X 2 × X 2 ) × (([k 1 ] × [k 1 ]) × ([k 2 ] × [k 2 ])) × ([k 1 ] × [k 1 ]) × ([k 2 ] × [k 2 ]) × (Y × Y ), which is trivially in bijection with (X 1 × X 1 ) × (X 2 × X 2 ) × ([k 1 k 1 ] × [k 2 k 2 ]) × [k 1 k 1 ] × [k 2 k 2 ] × (Y × Y ). This gives a valid solution of the program computing S NS (W ⊗ W , k 1 k 1 , k 2 k 2 ).
Thus, we get that S NS (W ⊗ W , k 1 k 1 , k 2 k 2 ) is larger than or equal to:

x 1 x 1 ,x 2 x 2 ,yy ,i 1 i 1 ,i 2 i 2 W ⊗ W (yy |x 1 x 1 x 2 x 2 ) P ⊗ P (x 1 x 1 x 2 x 2 (i 1 i 1 i 2 i 2 )|i 1 i 1 , i 2 i 2 yy ) = x 1 x 1 ,x 2 x 2 ,yy ,i 1 i 1 ,i 2 i 2 W (y|x 1 x 2 ) • W (y |x 1 x 2 ) P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y) • P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y ) =   x 1 ,x 2 ,y,i 1 ,i 2 W (y|x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y)   •   x 1 ,x 2 ,y ,i 1 ,i 2 W (y |x 1 x 2 )P (x 1 x 2 (i 1 i 2 )|i 1 i 2 y )   = S NS (W, k 1 , k 2 ) • S NS (W , k 1 , k 2 ) . (17) 
In particular, applying this n times on the same MAC W gives the rst corollary, and the second one comes from the fact that

S NS (W ⊗ W , k 1 , k 2 ) ≥ S NS (W, k 1 , k 2 ) • S NS (W , 1, 1) = S NS (W, k 1 , k 2 ),
since S NS (W , 1, 1) = 1 by the rst property of Proposition 3.5.

Corollary 3.6. 1.

C NS (W ) is convex. 2. If (R 1 , R 2 ) is achievable with non-signaling assistance, then R 1 ≤ log 2 |X 1 |, R 2 ≤ log 2 |X 2 | and R 1 + R 2 ≤ log 2 |Y|. 3. If (R 1 , R 2 ) is achievable with non-signaling assistance, then for all R i ≤ R i , (R 1 , R 2 )
is achievable with non-signaling assistance.

Proof.

1. Let (R 1 , R 2 ) and ( R1 , R2 ), two pairs of rational rates achievable with non-signaling assistance for W , ie:

S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) → n→+∞ 1 and S NS (W ⊗n , 2 R1 n , 2 R2 n ) → n→+∞ 1 . Let λ ∈ (0, 1) rational and dene R λ,i := λ•R i +(1-λ)• Ri , let us show that (R λ,1 , R λ,2
) is achievable with non-signaling assistance. Let us call respectively

k i := 2 R i , ki := 2 Ri , k λ,i := 2 R λ,i = k λ i • k (1-λ) i . We have R λ,i n = λ • R i n + (1 -λ) • Ri n = (λn) • R i + (1 -λ)n • Ri
. This is the idea of time-sharing : for λn copies of the MAC, we use the strategy with rate (R 1 , R 2 ) and for the (1 -λ)n other copies of the MAC, we use the strategy with rate ( R1 , R2 ). There exists some n such that λn, (1 -λ)n, λnR i , (1λ)n Ri are integers, since everything is rational. This implies that k λn i , k(1-λ)n i , k n λ,i are integers. Thus, thanks to the fourth property of Proposition 3.5, we have:

S NS (W ⊗n , k n λ,1 , k n λ,2 ) ≥ S NS (W ⊗(λn) , k λn 1 , k λn 2 ) • S NS (W ⊗((1-λ)n) , k(1-λ)n 1 , k(1-λ)n 2 ) → n→+∞ 1 • 1 = 1 . ( 18 
)
Thus in particular, since we have

S NS (W ⊗n , k n λ,1 , k n λ,2 ) ≤ 1, we get that S NS (W ⊗n , k n λ,1 , k n λ,2 ) → n→+∞ 1, so (R λ,1 , R λ,2
) is achievable with non-signaling assistance. Finally, since C NS (W ) is dened as the closure of achievable rates with non-signaling assistance, we get that C NS (W ) is convex.

2. By the second property of Proposition 3.5, we have that 

S NS (W ⊗n , k n 1 , k n 2 ) ≤ |X n 1 | k n 1 . In particular, if one takes R 1 > log 2 |X 1 |, then k 1 > |X 1 | and we get that S NS (W ⊗n , k n 1 , k n 2 ) ≤ |X 1 | k 1 n → n→+∞ 0, so R 1 > log 2 |X 1 |
, k n 1 , k n 2 ) ≤ |Y n | k n 1 k n 2 = |Y| k 1 k 2 n → n→+∞ 0. Thus, R 1 + R 2 >
∃n ∈ N * , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 . Proof. It is clear that if (R 1 , R 2 ) is such that ∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1, then in particular ∃n ∈ N * , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. So, C NS 0 (W )
, which is the closure of the former rate pairs, is in particular included in the closure of the latter rate pairs.

For the other inclusion, consider a rate pair (R 1 , R 2 ) and let us assume that there exists some positive integer n such that

S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. Let us show that for any (R 1 , R 2 ) such that R 1 < R 1 and R 2 < R 2 : ∃n 0 ∈ N * , ∀n ≥ n 0 , S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1 ,
which is enough to conclude, since we consider only closure of such sets.

First, for all positive integer m, we have that S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1. Indeed, by the fourth property of Proposition 3.5, we have that

S NS ((W ⊗n ) ⊗m , 2 R 1 n m , 2 R 2 n m ) ≥ S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) m = 1, so S NS ((W ⊗n ) ⊗m , 2 R 1 n m , 2 R 2 n m ) = 1 since S NS (W, k 1 , k 2 ) ≤ 1 by the rst property of Proposition 3.5. But (W ⊗n ) ⊗m = W ⊗nm , and 2 R 1 n m ≥ 2 R 1 nm , 2 R 2 n m ≥ 2 R 2 nm
, so by the third property of Proposition 3.5, we have

S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) ≥ 1, so S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1.
Then, consider some r ∈ {0, . . . , n -1}. By the fourth property of Proposition 3.5, we have that:

S NS (W ⊗(nm+r) , 2 R 1 nm , 2 R 2 nm ) = S NS (W ⊗nm ⊗ W ⊗r , 2 R 1 nm , 2 R 2 nm ) ≥ S NS (W ⊗nm , 2 R 1 nm , 2 R 2 nm ) = 1 , (19) 
so

S NS (W ⊗(nm+r) , 2 R 1 nm , 2 R 2 nm ) = 1. But 2 R 1 nm = 2 R 1 nm nm+r (nm+r) = 2 R 1 1+δ (nm+r) with δ = r nm ≤ 1 m , and symmetrically 2 R 1 nm = 2 R 1 1+δ (nm+r) . Thus in particular, for all R 1 ≤ R 1 1+ 1 m and R 2 ≤ R 2 1+ 1 m , we have that for all n ≥ nm, S NS (W ⊗n , 2 R 1 n , 2 R 2 n ) = 1. So for any (R 1 , R 2 ) such that R 1 < R 1 and R 2 < R 2 , there is large enough m such that R 1 ≤ R 1 1+ 1 m and R 2 ≤ R 2 1+ 1 m
, and thus we get the expected property on (R 1 , R 2 ) for n 0 := nm.

Symmetrization

Although S NS (W, k 1 , k 2 ) can be computed in polynomial time in W , k 1 and k 2 , a channel of the form W ⊗n has exponential size in n. Thus, the linear program for S NS (W ⊗n , k 1 , k 2 ) grows exponentially with n. However, using the invariance of W ⊗n under permutations, one can nd a much smaller linear program computing S NS (W ⊗n , k 1 , k 2 ).

Denition 3.8. Let G a group acting on X 1 , X 2 , Y. We say that a MAC W :

X 1 × X 2 → Y is invariant under the action of G if: ∀g ∈ G, W (g • y|g • x 1 g • x 2 ) = W (y|x 1 x 2 ) .
In particular, for W ⊗n : X n 1 × X n 2 → Y n , the symmetric group G := S n acts in a natural way in any set A raised to power n. So for σ ∈ S n , we have that:

W ⊗n (σ • y n |σ • x n 1 σ • x n 2 ) = n i=1 W (y σ(i) |x 1,σ(i) x 2,σ(i) ) = n i=1 W (y i |x 1,i x 2,i ) = W ⊗n (y n |x n 1 x n 2 ) ,
and so W ⊗n is invariant under the action of S n .

Let

Z := {X 1 , X 2 , Y, X 1 × Y, X 2 × Y, X 1 × X 2 , X 1 × X 2 × Y}. Let us call O G (A)
the set of orbits of A under the action of G. Then, one can nd an equivalent smaller linear program for S NS (W, k 1 , k 2 ):

Theorem 3.9. Let W : X 1 × X 2 → Y a MAC invariant under the action of G. Let us name systematically w ∈ O G (X 1 ×X 2 ×Y), u ∈ O G (X 1 ×X 2 ), u 1 ∈ O G (X 1 ), u 2 ∈ O G (X 2 ), v 1 ∈ O G (X 1 ×Y), v 2 ∈ O G (X 2 ×Y), v ∈ O G (Y).
We will also call z A the projection of z ∈ O G (B) on A, for A, B ∈ Z and A projection of B; note that z A ∈ O G (A), since by denition of the action, the projection of an orbit is an orbit. Let us nally call W (w) := W (y|x 1 x 2 ) for any (x 1 , x 2 , y) ∈ w, which is well-dened since W is invariant under G. We have that S NS (W, k 1 , k 2 ) is the solution of the following linear program:

S NS (W, k 1 , k 2 ) = maximize r,r 1 ,r 2 ,p 1 k 1 k 2 w∈O G (X 1 ×X 2 ×Y) W (w)r w subject to w:w Y =v r w = |v|, ∀v ∈ O G (Y) w:w X 2 Y =v 2 r 1 w = k 1 w:w X 2 Y =v 2 r w , ∀v 2 ∈ O G (X 2 × Y) w:w X 1 Y =v 1 r 2 w = k 2 w:w X 1 Y =v 1 r w , ∀v 1 ∈ O G (X 1 × Y) u:u X 2 =v 2 X 2 p u = |v 2 X 2 | |v 2 | k 1 w:w X 2 Y =v 2 r 2 w , ∀v 2 ∈ O G (X 2 × Y) u:u X 1 =v 1 X 1 p u = |v 1 X 1 | |v 1 | k 2 w:w X 1 Y =v 1 r 1 w , ∀v 1 ∈ O G (X 1 × Y) 0 ≤ r w ≤ r 1 w , r 2 w ≤ |w| |w X 1 X 2 | p w X 1 X 2 , ∀w ∈ O G (X 1 × X 2 × Y) |w| |w X 1 X 2 | p w X 1 X 2 -r 1 w -r 2 w + r w ≥ 0, ∀w ∈ O G (X 1 × X 2 × Y) . (20) 
Corollary 3.10. For a channel W :

X 1 × X 2 → Y, S NS (W ⊗n , k 1 , k 2 ) is the solution of a linear program of size bounded by O n |X 1 |•|X 2 |•|Y|-1
, thus it can be computed in polynomial time in n.

Proof. We use the linear program obtained in Theorem 3.9 with G := S n acting on W ⊗n as described before. The number of variables and constraints is linear in the number of orbits of the action of S n on the dierent sets A ∈ Z, where here

Z = {X n 1 , X n 2 , Y n , X n 1 × Y n , X n 2 × Y n , X n 1 × X n 2 , X n 1 × X n 2 × Y n }. For example, for A ∈ X n 1 × X n 2 × Y n , we have that: |O Sn (X n 1 × X n 2 × Y n )| = n + |X 1 ||X 2 ||Y| -1 |X 1 ||X 2 ||Y| -1 ≤ (n + |X 1 ||X 2 ||Y| -1) |X 1 ||X 2 ||Y|-1 .

So the number of variables and constraints is

O(n |X 1 |•|X 2 |•|Y|-1
). Note also that all the numbers occurring this linear program are integers or fractions of integers, with those integers ranging in

[(|X 1 ||X 2 ||Y|) n ], thus of size O(n log(|X 1 ||X 2 ||Y|)). So the size of this linear program is bounded by O(n |X 1 |•|X 2 |•|Y|-1
), and thus S NS (W ⊗n , k 1 , k 2 ) can be computed in polynomial time in n; see for instance Section 7.1 of [START_REF] Gärtner | Understanding and using linear programming[END_REF].

In order to prove Theorem 3.9, we will need several lemmas. For all of them, A and B will denote nite sets on which a group G is acting, and x G will denote the orbit of x under G: |(x,y) G | . We have: 

f : B x τ → B x τ y → g • y . First, f is well dened. Indeed, if y ∈ B x τ = {y : (x, y) ∈ τ }, then g • y ∈ {y : (g • x, y) ∈ τ } = B x τ , since τ ∈ O G (A × B). Let us show that f is injective. If g • y = g • y , then g -1 • (g • y) = (g -1 g) • y = y, g -1 • (g • y ) = y ,
x∈A v x,y = 1 |y G | τ ∈O G (A×B):τ B =y G v τ , ∀y ∈ B . Proof. x∈A v x,y = τ ∈O G (A×B):τ B =y G x∈A:(x,y)∈τ v x,y = τ ∈O G (A×B):τ B =y G x∈A:(x,y)∈τ v τ |τ | since (x, y) G = τ = τ ∈O G (A×B):τ B =y G c y G τ v τ |τ | by Lemma 3.11, since y ∈ τ B = τ ∈O G (A×B):τ B =y G |τ | |y G | v τ |τ | = 1 |y G | τ ∈O G (A×B):τ B =y G v τ .
τ ∈O G (A×B):τ B =µ v τ = y∈µ x∈A v x,y . Proof. τ ∈O G (A×B):τ B =µ v τ = τ ∈O G (A×B):τ B =µ (x,y)∈τ v x,y = y∈µ x∈A v x,y .
Proof of Theorem 3.9. Let r x 1 ,x 2 ,y , r 1

x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y , p x 1 ,x 2 a feasible solution of the program dened in Proposition 3.1, and call S := 1

k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,
y its value. Dene:

r w := (x 1 ,x 2 ,y)∈w r x 1 ,x 2 ,y , r 1 w := (x 1 ,x 2 ,y)∈w r 1 x 1 ,x 2 ,y , r 2 w := (x 1 ,x 2 ,y)∈w r 2 x 1 ,x 2 ,y , p u := (x 1 ,x 2 )∈u p x 1 ,x 2 . (22) 
Let us show that r w , r 1 w , r 2 w , p u is a feasible solution of the program dened in Theorem 3.9, and that its value

S * := 1 k 1 k 2 w W (w)r w = S.
First, we have S * = S. Indeed:

S * = 1 k 1 k 2 w W (w)r w = 1 k 1 k 2 w W (w) (x 1 ,x 2 ,y)∈w r x 1 ,x 2 ,y = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (y|x 1 x 2 )r x 1 ,x 2 ,y since W (w) = W (y|x 1 x 2 ) for all (x 1 , x 2 , y) ∈ w = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = S . (23) 
Then, all the constraints are satised. Indeed, thanks to Lemma 3.13, we have for the rst constraint:

w:w Y =v r w = y∈v x 1 ,x 2 r x 1 ,x 2 ,y = y∈v 1 = |v| . (24) 
For the second constraint (and symmetrically for the third constraint), we have:

w:w X 2 Y =v 2 r 1 w = (x 2 ,y)∈v 2 x 1 r 1 x 1 ,x 2 ,y = (x 2 ,y)∈v 2 k 1 x 1 r x 1 ,x 2 ,y = k 1 w:w X 2 Y =v 2 r w . (25) 
For the fourth (and symmetrically for the fth), we have:

w:w X 2 Y =v 2 r 2 w = (x 2 ,y)∈v 2 x 1 r 2 x 1 ,x 2 ,y = (x 2 ,y)∈v 2 1 k 1 x 1 p x 1 ,x 2 = 1 k 1 x 2 ∈v 2 X 2 y:(x 2 ,y)∈v 2 x 1 p x 1 ,x 2 = 1 k 1 x 2 ∈v 2 X 2 |v 2 | |v 2 X 2 | x 1 p x 1 ,x 2 thanks to Lemma 3.11 = 1 k 1 |v 2 | |v 2 X 2 | u:u X 2 =v 2 X 2 p u . (26) 
Finally for the last constraints, we only need to compute:

(x 1 ,x 2 ,y)∈w p x 1 ,x 2 = (x 1 ,x 2 )∈w X 1 X 2 y:(x 1 ,x 2 ,y)∈w p x 1 ,x 2 = (x 1 ,x 2 )∈w X 1 X 2 |w| |w X 1 X 2 | p x 1 ,x 2 = |w| |w X 1 X 2 | p w X 1 X 2 , (27) 
which implies that the linear inequalities on p x 1 ,x 2 , r x 1 ,x 2 ,y , r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y get transposed respectively to the values |w| |w X 1 X 2 | p w X 1 X 2 , r w , r 1 w , r 2 w . Indeed, for instance, one has for any x 1 , x 2 , y that p x 1 ,x 2 -r 1 x 1 ,x 2 ,yr 2

x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0. Thus for some orbit w:

(x 1 ,x 2 ,y)∈w p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y ≥ 0 , and then |w| |w X 1 X 2 | p w X 1 X 2 -r 1 w -r 2 w + r w ≥ 0,
which was what we wanted to show. Now let us consider a feasible solution r w , r 1 w , r 2 w , p u of the program dened in Theorem 3.9, with a value S * := 1 k 1 k 2 w W (w)r w . Dene:

r x 1 ,x 2 ,y := r (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , r 1 x 1 ,x 2 ,y := r 1 (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , r 2 x 1 ,x 2 ,y := r 2 (x 1 ,x 2 ,y) G |(x 1 , x 2 , y) G | , p x 1 ,x 2 := p (x 1 ,x 2 ) G |(x 1 , x 2 ) G | . (28) 
Let us show that r x 1 ,x 2 ,y , r 1 x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y , p x 1 ,x 2 is a feasible solution of the program dened in Propo- sition 3.1, and that its value S := 1

k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = S * .
First we have S = S * . Indeed:

S = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 )r x 1 ,x 2 ,y = 1 k 1 k 2 x 1 ,x 2 ,y W (y|x 1 x 2 ) r (x 1 ,x 2 ,y) G |r (x 1 ,x 2 ,y) G | = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (y|x 1 x 2 ) r w |w| = 1 k 1 k 2 w (x 1 ,x 2 ,y)∈w W (w) r w |w| = 1 k 1 k 2 w |w|W (w) r w |w| = 1 k 1 k 2 w W (w)r w = S * . (29) 
Then, all the constraints are satised. Indeed, thanks to Lemma 3.12, we have for the rst constraint:

x 1 ,x 2 r x 1 ,x 2 ,y = 1 |y G | w:w Y =y G r w = |y G | |y G | = 1 . (30) 
For the second constraint (and symmetrically for the third constraint), we have:

x 1 r 1 x 1 ,x 2 ,y = 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r 1 w = k 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r w = k 1 x 1 r x 1 ,x 2 ,y . (31) 
For the fourth (and symmetrically for the fth), we have:

x 1 r 2 x 1 ,x 2 ,y = 1 |(x 2 , y) G | w:w X 2 Y =(x 2 ,y) G r 2 w = 1 |(x 2 , y) G | 1 k 1 |(x 2 , y) G | |(x 2 , y) G X 2 | u:u X 2 =(x 2 ,y) G X 2 p u = 1 k 1 1 |(x 2 , y) G X 2 | u:u X 2 =(x 2 ,y) G X 2 p u = 1 k 1 1 |x G 2 | u:u X 2 =x G 2 p u since (x 2 , y) G X 2 = x G 2 = 1 k 1 x 1 p x 1 ,x 2 .
(32)

Finally, to conclude with the last constraints, one has only to see that for any x 1 , x 2 , y:

|(x 1 , x 2 , y) G | |(x 1 , x 2 , y) G X 1 X 2 | p (x 1 ,x 2 ,y) G X 1 X 2 = |(x 1 , x 2 , y) G | |(x 1 , x 2 ) G | p (x 1 ,x 2 ) G = |(x 1 , x 2 , y) G |p x 1 ,x 2 , (33) 
which implies that the linear inequalities on |w| |w X 1 X 2 | p w X 1 X 2 , r w , r 1 w , r 2 w get transposed respectively to the values p x 1 ,x 2 , r x 1 ,x 2 ,y , r 1

x 1 ,x 2 ,y , r 2 x 1 ,x 2 ,y . Indeed, for instance, one has for any w that

|w| |w X 1 X 2 | p w X 1 X 2 -r 1 w - r 2 w + r w ≥ 0. But for any (x 1 , x 2 , y) ∈ w, one has that r x 1 ,x 2 ,y = rw |w| , r 1 x 1 ,x 2 ,y = r 1 w |w| , r 2 x 1 ,x 2 ,y = r 2 w
|w| . Thanks to the previous inequality, we have that p

x 1 ,x 2 = pw X 1 X 2 |w X 1 X 2 |
, and thus:

p x 1 ,x 2 -r 1 x 1 ,x 2 ,y -r 2 x 1 ,x 2 ,y + r x 1 ,x 2 ,y = p w X 1 X 2 |w X 1 X 2 | - r 1 w |w| - r 2 w |w| + r w |w| ≥ 0 ,
which was what we wanted to show.

Application to the Binary Adder Channel

The binary adder channel W BAC is the following MAC:

∀x 1 , x 2 ∈ {0, 1}, ∀y ∈ {0, 1, 2}, W BAC (y|x 1 x 2 ) := δ y,x 1 +x 2 .
Its classical capacity region C(W BAC ) is well known and consists of all

(R 1 , R 2 ) such that R 1 ≤ 1, R 2 ≤ 1, R 1 + R 2 ≤ 3
2 , as a consequence of Theorem 1.1. Its zero-error classical capacity C 0 (W BAC )

is not yet characterized. A lot of work has been done in nding upper and lower bounds on this region [START_REF] Lindström | Determination of two vectors from the sum[END_REF][START_REF] Henk | An upper bound for codes in a two-access binary erasure channel (Corresp.)[END_REF][START_REF] Kasami | Bounds on the achievable rates of block coding for a memoryless multipleaccess channel[END_REF][START_REF] Weldon | Coding for a multiple-access channel[END_REF][START_REF] Kasami | Graph theoretic approaches to the code construction for the two-user multiple-access binary adder channel[END_REF][START_REF] Coebergh Van Den Braak | A family of good uniquely decodable code pairs for the two-access binary adder channel[END_REF][START_REF] Shraga | Upper bound for uniquely decodable codes in a binary input N-user adder channel[END_REF][START_REF] Urbanke | The zero-error capacity region of the 2-user synchronous BAC is strictly smaller than its Shannon capacity region[END_REF][START_REF] Ahlswede | Construction of uniquely decodable codes for the twouser binary adder channel[END_REF][START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF][START_REF] Ordentlich | A VC-dimension-based outer bound on the zero-error capacity of the binary adder channel[END_REF]. To date, the best lower bound on the sum-rate capacity is log 2 (240/6) 1.3178 [START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF]. Thanks to Corollary 3.10, we were able to compute all the values of S NS (W n BAC , k 1 , k 2 ) up to n = 6. In particular, taking the largest k 1 , k 2 where S NS (W n BAC , k 1 , k 2 ) = 1 gave us lower bounds on the zero-error non-signaling assisted capacity region C NS 0 (W BAC ). Finally, for n = 7, we were able to compute directly the border of the zero-error non-signaling assisted capacity region, which led to Figure 3. The code can be found on GitHub. It uses Mosek linear programming solver [START_REF] Erling | The Mosek interior point optimizer for linear programming: an implementation of the homogeneous algorithm[END_REF].

Note that the linear program from Theorem 3.9 has still a large number of variables and constraints although polynomial in n. Specically, for n = 2, it has 244 variables and 480 constraints; for n = 3, it has 1112 variables and 2054 constraints; for n = 7, it has 95592 variables and 162324 constraints; nally, for n = 8, it has 226911 variables and 383103 constraints.

The rst noticeable result coming from these curves is that the zero-error non-signaling assisted sumrate capacity beats with only 7 copies the classical sum-rate capacity of 

Classical Capacity Region

Best ZE Lower Bounds [START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF][START_REF] Coebergh Van Den Braak | A family of good uniquely decodable code pairs for the two-access binary adder channel[END_REF][START_REF] Kasami | Graph theoretic approaches to the code construction for the two-user multiple-access binary adder channel[END_REF] NS ZE Capacity Region for 2 copies NS ZE Capacity Region for 3 copies NS ZE Capacity Region for 7 copies Figure 3: Capacity regions of the binary adder channel W BAC . The black dashed curve depicts the classical capacity region C(W BAC ), whereas the grey dashed curve shows the best known lower bound border on the zero-error classical capacity region C 0 (W BAC ), made from results by [17, 23, 13]; see [17] for a description of this border. On the other hand, the continuous curves depict the best zero-error non-signaling assisted achievable rate pairs for respectively 2, 3 and 7 copies of the binary adder channel. constraint, with a value of 2 log 2 (42) 7

1.5406, coming from the fact that S NS (W ⊗7 BAC , 42, 42) = 1 and Proposition 3.7. This implies that C NS 0 (W BAC ) has larger sum-rate pairs than C(W BAC ), and that C NS (W BAC ) is strictly larger than C(W BAC ). This sum-rate can even be increased up to log 2 (72) 4 1.5425, since we have computed S NS (W ⊗8 BAC , 72, 72) = 1, which is the largest number of copies we have been able to manage with our ecient version of the linear program from Theorem 3.9. This should be compared with the only upper bound known on the non-signaling assisted sum-rate coming from Corollary 3.6 and given by log 2 (|Y|) = log 2 (3) 1.5850.

Another astonishing result is the speed at which one obtains ecient zero-error non-signaling assisted codes compared to classical zero-error codes. Indeed, with only three copies of the binary adder channel, one gets that S NS (W ⊗3 BAC , 4, 5) = 1, which corresponds to a sum-rate of 2+log 2 (5) 3 1.4406, which already largely beats the best known zero-error achieved sum-rate of log 2 (240/6) 1.3178 [START_REF] Mattas | A new bound for the zero-error capacity region of the twouser binary adder channel[END_REF]. These results are summarized in the following theorem: Theorem 4.1. We have that log 

Handling Errors with Concatenated Codes

In Section 4, we have analyzed the non-signaling assisted capacity region through zero-error strategies in the case of the BAC, which is in particular deterministic. However, if some noise is added to that channel, its zero-error non-signaling assisted capacity region becomes trivial (see Proposition 5.3). Thus, the previous method fails to nd signicant lower bounds on the non-signaling assisted capacity region of noisy MACs.

In this section, we will present a new technique to overcome this diculty using concatenated codes, and apply it to a noisy version of the BAC.

Concatenated Codes

Given a MAC W and a non-signaling code P , dene

W [P ] : [k 1 ] × [k 2 ] → [ ] with W [P ](j|i 1 i 2 ) := x 1 ,x 2 ,y W (y|x 1 x 2 )P (x 1 x 2 j|i 1 i 2 y): P (x 1 x 2 j|i 1 i 2 y) i 1 i 2 j W x 1 x 2 y := W [P ] i 1 i 2 j Note that W [P ] is a MAC since W [P ](j|i 1 i 2 ) ≥ 0 and: j W [P ](j|i 1 i 2 ) = x 1 ,x 2 ,y W (y|x 1 x 2 ) j P (x 1 x 2 j|i 1 i 2 y) = x 1 ,x 2 y W (y|x 1 x 2 ) P (x 1 x 2 |i 1 i 2 ) since P is non-signaling = x 1 ,x 2 P (x 1 x 2 |i 1 i 2 ) = 1 .
The following proposition states that combining a classical code to a non-signaling strategy leads to lower bounds on the non-signaling assisted capacity region of a MAC: Proposition 5.1. If P is a non-signaling code for the MAC W , we have that C(W

[P ]) ⊆ C NS (W ). Proof. Let (R 1 , R 2 ) ∈ C(W [P ]
). Then, by denition, we have that:

lim n→+∞ S(W [P ] ⊗n , 2 R 1 n , 2 R 2 n ) = 1 .
Let us x ε > 0. There exists some rank N such that S(W

[P ] ⊗N , 2 R 1 N , 2 R 2 N ) ≥ 1 -ε. Let us call 1 := 2 R 1 N and 2 := 2 R 2 N . Thus, there exists encoders e 1 : [ 1 ] → [k 1 ], e 2 : [ 2 ] → [k 2 ] and a decoder d : [ ] → [ 1 ] × [ 2 ] such that: 1 1 2 i 1 ,i 2 ,j W [P ](j|i 1 i 2 ) a 1 ∈[ 1 ],a 2 ∈[ 2 ] e 1 (i 1 |a 1 )e 2 (i 2 |a 2 )d(a 1 a 2 |j) ≥ 1 -ε .
which implies the previous statement. But, for W ⊗n BAC,ε 1 ,ε 2 , one can easily check that for all y n , x n 1 , x n 2 , W ⊗n (y n |x n 1 x n 2 ) > 0 since ε 1 , ε 2 ∈ (0, 1). Indeed, you just have to ip the inputs to a valid preimage of the output. Thus if S N S (W ⊗n BAC,ε 1 ,ε 2 , k 1 , k 2 ) = 1, we have that ∀y n , x n 1 , x n 2 , r x n 1 ,x n 2 ,y n = p x n 1 ,x n 2 . In particular, this implies that

x n 1 ,x n 2 r x n 1 ,x n 2 ,y n = x n 1 ,x n 2 p x n 1 ,x n
2 , therefore 1 = k 1 k 2 , so k 1 = 1 and k 2 = 1. Thus S N S (W ⊗n , 2 nR 1 , 2 nR 2 ) = 1 implies that (R 1 , R 2 ) = (0, 0).

We have then applied the numerical method described in Proposition 5.2 to W BAC,ε 1 ,ε 2 for the sym- metric case ε 1 = ε 2 = ε := 10 -3 . Since it is hard to go through all non-signaling codes P and product distributions q 1 , q 2 , we have applied the heuristic of using non-signaling codes obtained while optimizing S NS (W ⊗n , k 1 , k 2 ) in the symmetrized linear program. We have combined them with uniform q 1 , q 2 , as the form of those non-signaling codes coming from our optimization program is symmetric. We have evaluated the achievable corner points for all k 1 , k 2 ≤ 2 n for n ≤ 5 copies which led to Figure 4 The red point depicts the zero-error non-signaling assisted capacity region (Proposition 5.3). The blue curve depicts achievable non-signaling rates pairs obtained from C(W ⊗5 BAC,ε,ε [P ]) through the numerical method described in Proposition 5.2.

Compared to the noiseless BAC, we can rst notice that the classical capacity region is slightly smaller, with a classical sum-rate capacity of 1.478 at most. On the other hand, although the zero-error nonsignaling assisted capacity of W BAC,ε,ε is completely trivial, we have with our concatenated codes strategy found signicant rate pairs achievable with non-signaling assistance. In particular, we have reached a non-signaling assisted sum-rate capacity of 1.493 which beats the best classical sum-rate capacity. Thus, it shows that non-signaling assistance can improve the capacity of the noisy binary adder channel as well.

Conclusion

In this work, we have studied the impact of non-signaling assistance on the capacity of multiple-access channels. We have developed an ecient linear program computing the success probability of the best non-signaling assisted code for a nite number of copies of a multiple-access channel. In particular, this gives lower bounds on the zero-error non-signaling assisted capacity of multiple-access channels. Applied to the binary adder channel, these results were used to prove that a sum-rate of log 2 (72) 4

1.5425 can be reached with zero error, which beats the maximum classical sum-rate capacity of 3 2 . For noisy channels, we have developed a technique giving lower bounds through the use of concatenated codes. Applied to the noisy binary adder channel, this technique was used to show that non-signaling assistance still improves the sum-rate capacity.

Our results suggest that quantum entanglement may also increase the capacity of such channels. However, even for the binary adder channel, this question remains open. One could also ask if such ecient methods to compute the best non-signaling assisted codes can be extended to Gaussian multipleaccess channels. Finally, the existence of a single-letter formula for the non-signaling assisted capacity of multiple-access channels remains open, even for the binary adder channel. An intriguing question is whether the non-signaling assisted capacity of multiple access channels is given by the same expression as in Theorem 1.1 and dropping the requirement that X 1 and X 2 are independent.

  and then decode these messages from the output in Y with d : Y → [k 1 ] × [k 2 ], as depicted in Figure 2.1. This leads to the following optimization program for S(W, k 1 , k 2 ):

Lemma 3 . 11 .

 311 Let τ ∈ O G (A × B), and call ν := τ A and µ := τ B . For x ∈ ν, let us call B x τ := {y : (x, y) ∈ τ }. Then, |B x τ | = |B x τ | =: c ν τ for any x, x ∈ ν, and furthermore, we have that c ν τ = |τ | |ν| . Symmetrically, the same occurs for A y τ := {x : (x, y) ∈ τ } with y ∈ µ, where one gets that |A y τ | = |A y τ | =: c µ τ = |τ | |µ| for y, y ∈ µ. Proof. Let x, x ∈ ν. Thus there exists g ∈ G such that x = g • x. Let:

  so y = y . Thus we get that |B x τ | ≤ |B x τ |. By a symmetric argument with x replacing x and g -1 replacing g, we get that |B x τ | ≤ |B x τ |, and so |B x τ | = |B x τ | =: c ν τ . Furthermore, {B x τ } x∈ν is a partition of τ , so x∈ν |B x τ | = |ν|c ν τ = |τ |, and thus c ν τ = |τ | |ν| . Lemma 3.12. For any (x, y) ∈ A × B and v (x,y) G variable indexed by orbits of A × B, let us dene the variable v x,y := v (x,y) G

( 21 )

 21 Lemma 3.13. For any τ ∈ O G (A × B), µ ∈ O G (B) and v x,y variable indexed by elements of A × B, let us dene v τ := (x,y)∈τ v x,y . We have:

Figure 4 :

 4 Figure 4: Capacity regions of the noisy binary adder channel W BAC,ε,ε for ε = 10 -3 . The black dashed curve depicts the classical capacity region C(W BAC,ε,ε ) which was found numerically using Theorem 1.1.

  One can prove an equivalent formulation of the linear program computing S NS (W, k 1 , k 2 ) with a number of variables and constraints polynomial in only |X 1 |, |X 2 | and |Y| and independent of k 1 and k 2 : Proposition 3.1. For a MAC W : X 1 × X 2 → Y and k 1 , k 2 ∈ N * , we have:

	3	Basic Properties and Computational Aspects of Non-Signaling As-
		sisted Codes for MACs
	3.1	A Smaller Linear Program Computing S NS (W, k 1 , k 2 )

  is not achievable with non-signaling assistance. Symmetrically, R 2 > log 2 |X 2 | is not achievable with non-signaling assistance. Furthermore, if one takes R 1 +R 2 > log 2 |Y|, then in particular k 1 k 2 > |Y|, so by the second property of Proposition 3.5, S NS (W ⊗n

  log 2 |Y| is not achievable with non-signaling assistance.3. Since (R 1 , R 2 ) is achievable with non-signaling assistance, we have S NS (W ⊗n , 2 nR 1 , 2 nR 2 ) → But, for all positive integer n, we have that 2 nR 1 ≤ 2 nR 1 and 2 nR 2 ≤ 2 nR 2 , so by the third property of Proposition 3.5, we have that S NS (W ⊗n ,2 nR 1 , 2 nR 2 ) ≥ S NS (W ⊗n , 2 nR 1 , 2 nR 2 ). Thus S NS (W ⊗n , 2 nR 1 , 2 nR 2 → n→+∞ 1since it is upper bounded by 1, and so (R 1 , R 2 ) is achievable with non-signaling assistance.

n→+∞ 1. Proposition 3.7. C NS 0 (W ) is the closure of the set of rate pairs (R 1 , R 2 ) such that:

  BAC ) C NS (W BAC ).

			2 (72) 8	, log 2 (72) 8	∈ C NS 0 (W BAC ) but log 2 (72) 8	, log 2 (72) 8	∈ C(W BAC ), and as
	a consequence, we have that C(W Proof. Since 2 8 log 2 (72)					
	log 2 (72) 8	, log 2 (72) 8	∈ C NS 0 (W BAC ) by Proposition 3.7. However, log 2 (72) 8	+ log 2 (72) 8	> 3 2 so	log 2 (72) 8	, log 2 (72) 8	∈
	C(W							

8

= 72 and numerically S NS (W ⊗8 BAC , 72, 72) = 1 thanks to Corollary 3.10, we get that BAC ) by Theorem 1.1 applied to W BAC . Since C(W BAC ) ⊆ C NS (W BAC ) and C NS 0 (W BAC ) ⊆ C NS (W BAC ), we thus get that C(W BAC ) C NS (W BAC ).
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In particular, we have:

Then, one can easily check that P is non-signaling, and thus:

This implies that lim

Thanks to Proposition 5.1, we have for any non-signaling code P , C(W

. Thus, applying Theorem 1.1 on W ⊗n [P ] leads to lower bounds on C NS (W ): Proposition 5.2 (Numerical Method to nd lower bounds on C NS (W )). For any number of copies n,

following the product law q 1 × q 2 , and J ∈ [ ] the outcome of W ⊗n [P ] on inputs I 1 , I 2 . In particular, the corner points of this capacity region are given by: I(I 1 : J|I 2 ) n , I(I 2 : J) n and I(I 1 : J) n , I(I 2 : J|I 1 ) n .

Application to the Noisy Binary Adder Channel

We will now apply this strategy to a noisy version of the BAC. We will consider ip errors ε 1 , ε 2 of inputs

x 1 , x 2 on W BAC , which leads to the following denition of W BAC,ε 1 ,ε 2 :

First, let us note that the zero-error non-signaling assisted capacity region of W BAC,ε 1 ,ε 2 is trivial, which won't help us to understand C NS (W BAC,ε 1 ,ε 2 ):

2 . Indeed, we have for an optimal p, r that: