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Stabilizing output-feedback control law for
hyperbolic systems using a Fredholm transformation

Jeanne Redaud, Jean Auriol, Silviu-Iulian Niculescu

Abstract—For most networked systems found in the literature,

the actuated boundary is usually located at one end. In this paper,

we first consider the stabilization of a chain of two intercon-

nected subsystems, actuated at the in-between boundary. Each

subsystem corresponds to coupled hyperbolic partial differential

equations. Such in-domain actuation leads to higher complexity,

and represents a significant difference with existing results.

Then, starting from a classical controllability condition, we

design a state feedback control law for the considered class of

systems. The proposed approach is based on the backstepping

methodology. However, to deal with the complex structure of the

system, we use Fredholm integral transforms instead of classical

Volterra transforms. We prove the invertibility of such transforms

using an original operator framework. The well-posedness of

the backstepping kernel equations defining the transformations

is also shown with the same arguments. By using a similar

procedure, we are then able to design a Luenberger-type observer.

Finally, we use the state estimation in the stabilizing controller

to obtain an output-feedback law, and some test cases complete

the paper.

Index Terms—Distributed parameter systems, hyperbolic sys-

tems, observer design, backstepping methodology, underactuated

networks.

I. INTRODUCTION

T
HE control of networks of Partial Differential Equations
(PDEs) is an active research topic. This class of systems is

naturally encountered in multiple applications as traffic flows
[1], electrical networks [2], [3], density-flow systems [4]–[6],
or unsteady flows on open canals [7]. Constructive control
designs for PDE systems often require specific structural
assumptions: not fully interconnected systems but cascades for
instance, or several independent actuators [8]. To envision the
most general real applications, the questions of the controlla-
bility for such networks of PDEs have to be considered.

Recently, the backstepping approach has enabled break-
throughs for the stabilization of interconnected systems of
PDEs. Delay robust stabilization of a chain of two inter-
connected subsystems of hyperbolic PDEs has, for instance,
been obtained by rewriting the network as a simple neutral
system with distributed delays [9]. This approach has been
extended to a chain with an arbitrary number of subsystems
in [10]. Other types of interconnected systems have also been
considered [11]–[13], including, more recently, a chain of
many interconnected PDE systems coupled at one end with
an ODE [14].

In most (if not all) of the above contributions, the actuator is
located at one end of the chain. Although such a configuration
covers a wide range of applications, as drilling pipes or UAV-
cable-payload structures, there are several situations for which
the actuator is located at an arbitrary node of the chain. For
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example, when developing traffic control strategies on vast
road networks, the actuator (ramp metering) can be located at a
crossroad. This situation has been considered in [1] in a simple
configuration, where in particular some boundary coupling
terms were equal to zero. We can also cite the case of micro-
endoscopes actuated by Electro-Active Polymers which can be
modeled by Timoshenko beam equations with actuation on a
small portion inside the system [15]. In a first approximation,
the actuator can be considered as quasi-punctual.

Having an actuator located at one of the intersection nodes
of the chain raises challenging controllability questions. In
most cases, such interconnected systems may not be control-
lable, and appropriate controllability conditions need to be
derived. Solving such a problem is a necessary step towards the
stabilization of complex networks and underactuated systems.
Similar challenges hold regarding observability problems.

In this paper, we focus on the stabilization and estimation of
a system of two interconnected 2⇥ 2 hyperbolic subsystems.
It is actuated at the in-between boundary. The application of
the classical backstepping methodology (using Volterra trans-
forms) leads to a reformulation of the system as two coupled
transport equations with integral couplings at the unactuated
boundary. Such system can be expressed as a time-delay
system with distributed actuation dynamics or distributed mea-
surement. Interestingly, this class of problem appeared in [16],
where the authors applied a dynamic inversion procedure using
predictor-based techniques. However, this approach is allowed
only if the resulting actuator transfer function has no pole
on the complex right-half plane. This stability requirement
seems to be a significant limitation: one could conceivably still
stabilize the system as long as there are no unstable modes in
the system corresponding to transmission zeros of the control
operator. Here, using the preliminary analysis that has been
done on the corresponding time-delay systems class discussed
in [17], [18], we overcome this limitation and present a new
approach to stabilize the considered class of systems. Indeed,
recent works emphasized the interest of taking advantages of
conversions between different representations [19].

The proposed methodology requires a natural controllability
assumption and is based on the design of an appropriate Fred-
holm integral transform. The Volterra transforms traditionally
used in the backstepping methodology do not offer enough
degrees of freedom to deal with this kind of interconnections.
Using an operator framework adjusted from [20], we show
that the existence and the invertibility of this new transform is
a consequence of the controllability condition. To the best of
the authors’ knowledge, this methodology is a novelty in the
literature and is a milestone towards the backstepping-based
design of stabilizing control laws for underactuated systems.
Unlike in [17], an output-feedback law is proposed here.

The strategy can be resumed as follows. First, we use
two Volterra transforms and several changes of variables to
rewrite the system under consideration as two heterodirec-
tional linear hyperbolic PDEs, with integral coupling terms at
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the unactuated boundary. Next, inspired by the backstepping
methodology, we map the resulting actuated system to a stable
target system to design the control law. Unlike traditional
approaches [21], we need to use a Fredholm integral transform
to get rid of the integral coupling terms.Contrary to Volterra
transforms, its existence and invertibility are not guaranteed.
Several results in the literature deal with the invertibility of
Fredholm transforms when kernels have a specific structure,
for instance, lower diagonal matrices [22], or specific boundary
conditions [23]. As these conditions are not fulfilled here, we
use an operator framework inspired by [20]. We show that
the invertibility of the transform is a consequence of a natural
controllability condition. To prove its existence, we show that
the kernels are solutions of a Fredholm equation that can be
solved using the previously introduced operator framework.
The observer design is constructed by analogy.

The layout of this paper follows the aforementioned steps
of the strategy. In Section II, we present the system under
consideration, the overall strategy as well as several assump-
tions. Then, in Section III, we design a full-state feedback
controller using integral transforms. Next, we follow a sim-
ilar methodology to design an observer state for the system
(Section IV). The resulting output-feedback control law is
presented in Section V. Some illustrative simulation results
are given in Section VI. Finally, the paper ends with some
perspectives in Section VIII. More computational details are
given in Appendix A.

Notations. For all a, b, ⌫ 2 [0, 1], define the characteristic
function 1[a,b](⌫), as the function equal to 1 if ⌫ 2 [a, b],
and equal to 0 elsewhere. Denote S 2 [0, 1]2 the unit square,
T � = {(x, y) 2 [0, 1]2 x � y} its lower triangular part
and T + = {(x, y) 2 [0, 1]2, x  y} its upper triangular
part. The Hilbert space of square integrable functions is
denoted L

2([0, 1];R) .
= L

2(0, 1), and the space of piece-
wise continuous functions defined on [0, 1] (resp. on the
unit square) is denoted Cpc(0, 1) (resp. Cpc(S)). For any
(u, v) 2 C

0([0, T ];L2(0, 1))2, the L
2�norm is defined by

k(u, v)kL2 = (
P2

i=1 kuik2L2 + kvik2L2)
1
2 . When not nec-

essary, the time dependency may be omitted. The Sobolev
space of L

2�functions whose derivative is in L
2 is denoted

H
1([0, 1];R) [24].

II. SYSTEM PRESENTATION

A. System under consideration

In this paper, we consider a system composed of two
scalar hyperbolic PDE subsystems interconnected through
their boundaries. This class of system may appear in the case
of oil production systems made of networks of pipes or traffic
network systems for instance. However, contrary to previous
results in the area, see, e.g. [10], as illustrated in Figure 1,
the considered system is here actuated at the junction. Each
subsystem i 2 {1, 2} is modeled by

@tui(t, x) + �i@xui(t, x) = �
+
i (x)vi(t, x), (1)

@tvi(t, x)� µi@xvi(t, x) = �
�
i (x)ui(t, x), (2)

with �
+
i ,�

�
i two continuous in-domain coupling functions.

With no loss of generality, we assume normalized state vari-
ables such that t > 0, x 2 [0, 1]. In addition, for the sake of
simplicity, transport velocities �i > 0, µi > 0 are assumed to
be constant, but the proposed approach still holds for space-
varying terms. The two subsystems are interconnected through

their boundaries

u1(t, 0) = q11v1(t, 0), v2(t, 1) = ⇢22u2(t, 1), (3)
v1(t, 1) = V (t) + ⇢11u1(t, 1) + ⇢12v2(t, 0), (4)
u2(t, 0) = q22v2(t, 0) + q21u1(t, 1). (5)

The different couplings terms qij and ⇢ij are assumed to be
constant. The real-valued actuation V (t) is located at the right
boundary of the first subsystem. We assume that we measure
the opposite boundary of the unactuated subsystem y(t) =
v2(t, 0).

Fig. 1. Schematic representation of the system (1)-(5)

We denote u
0
i (·) = ui(0, ·), v0i (·) = vi(0, ·) 2 H

1([0, 1],R)
the initial conditions associated to (1)-(2). They satisfy the
compatibility equations (3)-(5). The existence of solutions
in H

1 for the open-loop system in the sense of the L
2-

norm is guaranteed by [25, Appendix A]. The proposed
framework is more general than the one introduced in [1]
where several coupling terms were equal to zero. We see the
proposed system as an excellent test case before generalizing
results to more intricate networks. Indeed, before dealing with
complex networks of hyperbolic systems (that could be not
scalar), it is crucial to fully understand the difficulties that
can arise when the actuator is not located at one end of the
chain. For an interconnection of two scalar hyperbolic systems
with boundary input (or output), there are only two possible
locations for the actuator: at the end of the chain (a case
that has already been solved in the literature) or between the
two subsystems. The fact that the actuator is here located
at the junction makes difficult the application of classical
methods as the recursive methodology developed in [14].
More precisely, the re-circulation induced by the couplings
between the two subsystems may create some unstable loops
that prevent the stabilization. Consequently, having an ”in-
between actuation” leads to a completely different control
design. Therefore, to design a stabilizing feedback law, some
controllability assumptions are needed. Finally, as mentioned
in the introduction, the proposed class of systems can model
traffic networks [1]. In the case of non-scalar states (which
will be the purpose of future work), it can also model micro-
endoscopes actuated by Electro-Active Polymers.

B. Structural assumptions
We first make some structural assumptions on the boundary

couplings of the interconnected system. The conditions that
follow can be directly verified.

Assumption 1: The boundary coupling coefficient q21 does
not equal 0.

This first assumption is crucial for stabilizing the whole
system. In the case where q21 = 0, it is not possible to act
on subsystem 2 using the control input on subsystem 1; thus,
without this assumption, it would be impossible to stabilize the
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potentially unstable subsystem 2. Also, in this case, subsystem
1 is undetectable if only the available measurement v2(t, 0) is
used. This assumption is therefore necessary to design any
output feedback law.

Assumption 2: The boundary coupling coefficients q11 and
⇢22 do not equal 0.
If q11 = 0, the control input acts on subsystem 2 through
distributed terms only. Note that the backstepping method-
ology proposed here cannot be adjusted to deal with this
case. Similar considerations arise in the observer design when
⇢22 = 0. It is so far a limitation of this approach1.

Finally, we make the following (delay-) robustness assump-
tion

Assumption 3: The coupling coefficients |⇢11q11| and
|⇢22q22| are strictly less than 1.
The fact that the coefficient q022 = ⇢22q22 belongs to (�1, 1)
implies that subsystem 2 has a finite number of unstable roots
[26]. This restriction on coefficient |q022| is slightly stronger
than the necessary condition for delay-robust stabilisation
given in [27]. Similarly, the condition |⇢11q11| < 1 is used
to guarantee that subsystem 1 has a finite number of unstable
roots on the right-half plane. These two conditions could be
related to the general robustness assumptions stated in [9].

In addition to these three general assumptions, some specific
spectral controllability and spectral observability assumptions
are added in Sections III-B3 and IV-B3 respectively.

C. Structure simplification
Under Assumption 2, we first make a change of variables to

simplify the design of a stabilizing control law. We consider
the bijective transformation

u
0
1(t, x) = u1(t, x), v

0
1(t, x) = q11v1(t, x),

u
0
2(t, x) = ⇢22u2(t, x), v

0
2(t, x) = v2(t, x),

such that (1)-(2) hold for the new state (u0
i, v

0
i) with the new

coupling terms �0±
i defined by

�
0+
1 (x)

.
=

1

q11
�
+
1 (x), �

0�
1 (x)

.
= q11�

�
1 ,

�
0+
2 (x)

.
= ⇢22�

+
2 (x), �

0�
2 (x)

.
=

1

⇢22
�
�
2 .

The boundary conditions are now written as follows:

u
0
1(t, 0) = v

0
1(t, 0), v

0
2(t, 1) = u

0
2(t, 1), (6)

v
0
1(t, 1) = q11(V (t) + ⇢11u

0
1(t, 1) + ⇢12v

0
2(t, 0)), (7)

u
0
2(t, 0) = ⇢22(q22v

0
2(t, 0) + q21u

0
1(t, 1))

= q
0
22v

0
2(t, 0) + q

0
21u

0
1(t, 1). (8)

We can now define VS(t) = q11(V (t) + ⇢12v2(t, 0) +
⇢11u1(t, 1)), such that (7) rewrites as v

0
1(t, 1) = VS(t). With

the changes above, we have two unitary boundary couplings
and have included some boundary couplings in the control
input. This will simplify the analysis. Although there is now
a cascade structure from the first subsystem to the second
one, the stabilization problem is fundamentally different from
the one studied in [14]. This structure difference would
clearly appear when considering the natural extension of three
interconnected subsystems for which the actuator would be
located on the second subsystem. In the proposed design,

1More precisely, the case q11 = 0 implies a ”distributed only” effect
of the actuation. When solving the kernel equations, the resulting Fredholm
equations become degenerate and the proposed techniques do not apply.

the controller VS will take the form of an integral law with
piecewise continuous kernels. Thus, the control input will be
continuous. It ensures the well-posedness of the closed-loop
system (1)-(2) with the boundary conditions (6)-(8) in the H

1

state-space as long as the initial compatibility conditions are
verified. The proof follows from [25, Appendix A] with minor
adjustments (using Lumer-Philipps theroem). Alternatively,
since the original closed-loop system (1)-(2) will be mapped
to a simple target system (namely (42)-(44)) using invertible
bounded transformations, we can show that the well-posedness
of this final target system (directly using [25, Appendix A])
and deduce the well-posedness of the original closed-loop
system. However, the fact that the control law contains non
strictly proper terms ⇢12v2(t, 0) and ⇢11u1(t, 1) may lead to
some robustness issues [28]. To avoid this problem, we can
combine it with a well-tuned low-pass filter, as proposed in
[16]. However, the robustness aspects are out of the scope of
this paper and will not be considered here.

D. Overall strategy
As mentioned in the introduction, the objective of this paper

is to design an output-feedback control law V (t) that exponen-
tially stabilizes the system in the sense of the L

2�norm, i.e.,
we want to find V (t) such that there exist ⌫ > 0, C0 � 1,
for all (u0

i , v
0
i ) 2 H

1([0, 1];R2) verifying the compatibility
conditions, we have k(u, v)kL2  C0e�⌫tk(u0

, v
0)kL2 .

The control strategy we propose is based on the backstep-
ping methodology. It is schematically presented in Figure 2,
and can be resumed as follows:

• First, an invertible Volterra transform Li is applied on
each subsystem (states (u0

i, v
0
i)) mapping them on sim-

pler intermediate subsystems (states (↵i,�i)), without in-
domain couplings. Due to this first integral change of
variables, integral coupling terms appear at the boundary.
A change of variables allows rewriting the system as
two heterodirectional hyperbolic PDEs (state (w, z)).
However, there still remains integral coupling terms at
the boundary x = 0 for the uncontrolled system (more
precisely in ↵2(t, 0)) ;

• Second, following the approach given in [17], this new
system is mapped to an exponentially stable target system
(state (�, )), by removing the aforementioned integral
terms. This is done by using an appropriate invertible
Fredholm integral transform N ;

• Third, the existence and invertibility of the backstepping
transformation N is shown;

• Finally, a stabilizing full-state feedback control law is
designed for the original system, whose well-posedness
in closed-loop can easily be assessed.

The observer design strategy follows a similar strategy de-
scribed in Section IV. The observer state is then used in
Section V to provide an output-feedback controller.

III. FULL-STATE FEEDBACK CONTROL LAW DESIGN

In this section, a full-state feedback control law that expo-
nentially stabilizes the system (1)-(5) is proposed, based on
the strategy detailed above.

A. First target system without in-domain couplings
1) Volterra transform: Consider now two invertible integral

transforms Li, i 2 {1, 2} acting on H
1([0, 1];R2) such that
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Fig. 2. Schematic representation of the control strategy

✓
u
0
i

v
0
i

◆
= Li

✓
↵i

�i

◆
. More precisely, we have

⇢
u
0
1 = ↵1 �

R x
0 L

11
1 (x, y)↵1(y) + L

12
1 (x, y)�1(y)dy,

v
0
1 = �1 �

R x
0 L

21
1 (x, y)↵1(y) + L

22
1 (x, y)�1(y)dy,

(9)
(
u
0
2 = ↵2 �

R 1
x L

11
2 (x, y)↵2(y) + L

12
2 (x, y)�2(y)dy,

v
0
2 = �2 �

R 1
x L

21
2 (x, y)↵2(y) + L

22
2 (x, y)�2(y)dy,

(10)

where L
ij
1 (resp. L

ij
2 ) are bounded piecewise continuous

functions defined on the lower part of the unit square T � (resp.
on T +). The kernels satisfy the following set of equations

�i@xL
11
i (x, y) + �i@yL

11
i (x, y) = �

0+
i (x)L21

i (x, y), (11)
�i@xL

12
i (x, y)� µi@yL

12
i (x, y) = �

0+
i (x)L22

i (x, y), (12)
µi@xL

21
i (x, y)� �i@yL

21
i (x, y) = ��0�

i (x)L11
i (x, y), (13)

µi@xL
22
i (x, y) + µi@yL

22
i (x, y) = ��0�

i (x)L12
i (x, y), (14)

with boundary conditions

L
12
1 (x, x) = � �

0+
1 (x)

�1 + µ1
, L

21
1 (x, x) =

�
0�
1 (x)

�1 + µ1
, (15)

L
11
1 (x, 0) =

µ1

�1
L
12
1 (x, 0), L

22
1 (x, 0) =

�1

µ1
L
21
1 (x, 0), (16)

L
12
2 (x, x) =

�
0+
2 (x)

�2 + µ2
, L

21
2 (x, x) = � �

0�
2 (x)

µ2 + �2
, (17)

L
11
2 (x, 1) =

µ2

�2
L
12
2 (x, 1), L22

2 (x, 1) =
�2

µ2
L
21
2 (x, 1). (18)

These two sets of equations admit a unique continuous solution
[29]. The integral transform Li, i 2 {1, 2} is a bounded
(and therefore continuous) operator from H

1([0, 1];R2) to
H

1([0, 1];R2). The transformation is invertible as it is a
Volterra transform [30]. The inverse transforms L�1

i have the
same structure.
The two Volterra transforms map the original system to

@t↵i(t, x) + �i@x↵i(t, x) = 0, (19)
@t�i(t, x)� µi@x�i(t, x) = 0, (20)

with the boundary conditions

↵1(t, 0) = �1(t, 0), �1(t, 1) = V1(t), (21)
↵2(t, 0) = q

0
22�2(t, 0) + q

0
21↵1(t, 1) + I(↵i,�i), (22)

�2(t, 1) = ↵2(t, 1). (23)

The resulting integral boundary couplings and control law are
defined by

I(↵i,�i) = �q
0
21

Z 1

0
L
11
1 (1, y)↵1(y) + L

12
1 (1, y)�1(y)dy

+

Z 1

0
(L11

2 (0, y)� q
0
22L

21
2 (0, y))↵2(y) (24)

+ (L12
2 (0, y)� q

0
22L

22
2 (0, y))�2(y)dy,

V1(t) = VS(t) +

Z 1

0
L
21
1 (1, y)↵1(y) + L

22
1 (1, y)�1(y)dy.

Denote by (↵0
i (·),�0

i (·))T = L�1
i ((u0

i(0, ·), v0i(0, ·))T ) 2
H

1([0, 1],R2) the initial conditions associated to (19)-(20).
They satisfy the compatibility equations (21)-(23) (with V1 ⌘
0). This first target system (19)-(23) is therefore composed of
two transport equations, but presents integral terms (24) which
may be sources of instabilities at the boundary x = 0.

2) Change of variables: To simplify the problem, (19)-
(23) can be rewritten as a single 2 ⇥ 2 system whose state
is denoted (z(t, x), w(t, x)). Indeed, each subsystem can be
independently considered as a transport equation with a prop-
agation time ⌧i = 1

�i
+ 1

µi
, and a velocity ⇤i =

µi�i

�i+µi
. Let us

define the new set of coordinates (w(t, x), z(t, x)) by
8
>><

>>:

w(t, x) = 1[0,x2)(x)↵2(t,
x
x2
) + 1[x2,1](x)�2(t,

x�1
x2�1 ),

z(t, x) = q
0
21

⇣
1[0,x1)(x)↵1(t, 1� x

x1
)

+1[x1,1](x)�1(t,
x�x1
1�x1

)
⌘
,

(25)

with xi = µi

�i+µi
. It can be shown that if ↵2 and �2

are in H
1([0, 1];R), then w(t) 2 H

1([0, 1];R) due to the
condition �2(t, 1) = ↵2(t, 1) (which gives the continuity for
x = x2) [24, Section 8.2]. The converse obviously holds. The
same holds for the functions (↵1,�1) and z. The new states
(w(t, x), z(t, x)) satisfy the following set of equations

@tw(t, x) + ⇤2@xw(t, x) = 0, (26)
@tz(t, x)� ⇤1@xz(t, x) = 0, (27)

with

w(t, 0) = z(t, 0) + q
0
22w(t, 1) (28)

+

Z 1

0
Nw(y)w(t, y) +Nz(y)z(t, y)dy,

z(t, 1) = q
0
21V1(t) = V

0
1(t). (29)

The integral coupling terms are defined by

Nw(x) = 1[0,x2)(x)
1

x2
(L11

2 (0,
x

x2
)� q

0
22L

21
2 (0,

x

x2
))

+ 1[x2,1](x)
1

1� x2
(L12

2 (0,
1� x

1� x2
)� q

0
22L

22
2 (0,

1� x

1� x2
)),

Nz(x) = �
✓
1[0,x1)(x)

1

x1
L
11
1 (1, 1� x

x1
)

+1[x1,1](x)
1

1� x1
L
12
1 (1,

x� x1

1� x1
)

◆
.

Note that Nw (resp. Nz) is continuous by definition of xi and
due to the boundary conditions (16) and (18). In the following,
we use system (26)-(29) to design the control law.
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B. Operator formulation

We follow the backstepping methodology to design a control
law V

0
1 that stabilizes the system (26)-(29). Due to the presence

of integral coupling terms in (28), we cannot use a Volterra
transform to map the system to an exponentially stable target
system. We need more degrees of freedom, and therefore use
a Fredholm integral transform, whose kernels are defined on
S . However, it is well-known that such integral transforms are
not always invertible [30]. We then show that the invertibility
of the transform is related to a controllability assumption for
our system. The proof follows the approach proposed by [25]
and relies on an operator framework.

1) Reformulation of system (26)-(29): in the abstract form

d

dt

✓
w

z

◆
= A

✓
w

z

◆
+BV

0
1 , (30)

where we can identify the operators A and B through their
adjoints by taking formally the canonical scalar product of (30)
with smooth test functions and comparing with the weak
formulation [17]. The operator A is thus defined by

A :D(A) ⇢ L
2([0, 1],R2) ! L

2([0, 1],R2)✓
w

z

◆
7�!

✓
�⇤2wx(x)
⇤1zx(x)

◆
, (31)

with

D(A) = {(w, z) 2 H
1(0, 1)2| z(1) = 0,

w(0) = z(0) + q
0
22w(1) +

Z 1

0
Nw(y)w(y) +Nz(y)z(y)dy}.

Its adjoint A⇤ is defined by

A
⇤ :D(A⇤) ⇢ L

2([0, 1],R2) ! L
2([0, 1],R2)✓

w

z

◆
7�!

✓
⇤2wx(x) + ⇤2Nw(x)w(0)
�⇤1zx(x) + ⇤2Nz(x)w(0)

◆
, (32)

with D(A⇤) = {(w, z) 2 H
1([0, 1],R2)| w(1) =

q
0
22w(0), z(0) = ⇤2

⇤1
w(0)}. The operator B 2 L2(R, D(A⇤)0)

is defined by < BV
0
1 ,

✓
w

z

◆
>= ⇤1z(1)V 0

1 , and its ad-

joint B⇤ 2 L(D(A⇤),R) by

B
⇤
✓
w

z

◆
= ⇤1z(1). (33)

The operator A is well-posed and densely defined in
L
2([0, 1],R2). Adjusting the approach of [25, Appendix A] to

handle the integral terms, based on the Lumer-Philips theorem,
it is possible to show that A generates a C

0-semigroup.
Since A

⇤ is closed, its domain D(A⇤) is a Hilbert space,
equipped where the norm k(w, z)kD(A⇤) = (k(w, z)k2L2 +
kA⇤(w, z)k2L2)1/2, (w, z) 2 D(A⇤),
with k · kD(A⇤) and k · kL2 are equivalent norms on D(A⇤).
Since the control law V

0
1 resulting from our approach will

be an integral operator, the closed-loop is well-posed and
there exists a unique solution to (26)-(29) in H

1([0, 1];R2).
Following the approach of [20], we could have shown that
B is admissible. However, the well-posedness of the closed-
loop system will be shown by proving the well-posedness of a
target system (namely (42)-(44)) and using invertible bounded
transformations.

2) Generalities on Fredholm integral operators: The stabi-
lization of the PDE system (26)-(29) is done using a integral
transform of the Fredholm type. More precisely, consider an
operator T : L2([0, 1],R2) ! L

2([0, 1],R2) defined by

T
✓
u(x)
v(x)

◆
=

✓
u(x)
v(x)

◆
�
Z 1

0
K(x, y)

✓
u(y)
v(y)

◆
dy, (34)

where K 2 Cpc(S) is bounded piecewise continuous on S .
Note that the integral part has a regularizing effect, such
that 8(u, v)T 2 L

2([0, 1],R2),
R 1
0 K(x, y)(u(y), v(y))T 2

H
1([0, 1],R2). Unlike Volterra integral transformations, Fred-

holm transformations are not always invertible [30]. The
following lemma (adjusted from [20, Lemma 2.2, Proposition
2.6]) guarantees (under several conditions) the invertibility of
such an integral operator.

Lemma 1: Consider two operators A,B, such that
D(A) ⇢ L

2([0, 1],R2) and a Fredholm integral operator
T : L2([0, 1],R2) ! L

2([0, 1],R2) as defined by (34). Assume
(a) ker(T ) ⇢ D(A),
(b) ker(T ) ⇢ ker(B),
(c) 8z 2 ker(T ), T Az = 0,
(d) 8s 2 C, ker(s�A) \ ker(B) = {0}.

Then, the operator T is invertible. Moreover, its inverse is
a Fredholm integral operator whose kernels inherit the same
regularity properties.

Proof 1: The proof follows the steps of [20, Lemma
2.2, Proposition 2.6]. Since the integral part of T is a
compact operator, the Fredholm alternative [24] implies that
dimker(T ) < 1. Suppose that ker(T ) 6= {0}. Due to
condition (a), for all z 2 ker(T ) Az is well-defined, and
condition (c) implies that ker(T ) is stable by A, that is to
say, for all z 2 ker(T ), Az 2 ker(T ). Since ker(T ) is finite-
dimensional and not reduced to {0}, the restriction A| ker(T )
of A to ker(T ) has at least one eigenvalue ⌫ 2 C. Let ⇣
be the corresponding eigenfunction. Thus, ⇣ 2 ker(⌫ � A)
and ⇣ 2 ker(B) by condition (b). This is in contradiction
with condition (d). Thus, ker(T ) = {0} and T is injective.
Using the Fredholm alternative [24], we obtain that T is
invertible. The fact that the inverse operator is a Fredholm
integral operator whose kernels inherit the same regularity
properties comes from [20, Section 2.4]. ⇤

Remark 1: Note that the operator T is invertible if and
only if its adjoint operator T ⇤ is invertible. In some cases, the
invertibility of the adjoint operator is easier to prove.

3) Spectral controllability assumption: Considering the
four assumptions of Lemma 1, we note that the conditions
(a) � (c) only depend on the choice of the integral operator
T . However, the condition (d) corresponds to a fundamental
property of the system that does not depend on the operator.
Therefore, we make the following assumption.

Assumption 4: The operators A
⇤ defined in (32) and B

⇤

defined in (33) satisfy

8s 2 C, ker(s�A
⇤) \ ker(B⇤) = {0}.

Assumption 4 is a controllability condition that is similar to the
one given in [20]. It is related to the approximate controllabil-
ity of the system and has been introduced by [31] in a much
larger setting. We believe that as proposed in [20], it could
possibly be verified through a spectral analysis. Interestingly,
using a time-delay systems formalism, we propose below a
complex analysis version of this assumption.
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Denote �(t) = w(t, 0). Applying the method of character-
istics to the transport equations (26)-(27), we obtain

�(t) = q
0
22�(t� ⌧2) +

Z ⌧2

0
⇤2Nw(⇤2⌫)�(t� ⌫)d⌫ (35)

+ V
0
1(t� ⌧1) +

Z ⌧1

0
⇤1Nz(1� ⇤1⌫)V

0
1(t� ⌫)d⌫.

This corresponds to the general class of integral delay equation
considered in [17]. Let us formally take the Laplace transform
of (35) (with zero initial condition). We have F2(s)�(s) =
F1(s)V1(s), where the holomorphic function F2 and F1 are
defined by

F2(s) = 1� q
0
22e

�⌧2s �
Z ⌧2

0
⇤2Nw(⇤2⌫)e

�⌫s
d⌫, (36)

F1(s) = e�⌧1s +

Z ⌧1

0
⇤1Nz(1� ⇤1⌫)e

�⌫s
d⌫. (37)

To ensure that F2(s), F1(s) cannot simultaneously be equal to
zero, we are lead to the following2 spectral-like controllability
assumption [33], [34]:

Assumption 5: For all s 2 C, rank[F2(s), F1(s)] = 1.
We can show that Assumption 5 implies Assumption 4.

Lemma 2: Under Assumption 5, Assumption 4 is satisfied.
Proof 2: Consider s 2 C and (w, z) 2 ker(s�A

⇤)\ker(B⇤).
Since (w, z) 2 ker(B⇤), we have z(1) = 0. Since (w, z) 2
ker(s�A

⇤), we have
sw(x) = ⇤2w

0(x) + ⇤2Nw(x)w(0),

sz(x) = �⇤1z
0(x) + ⇤2Nz(x)w(0),

with the boundary conditions w(1) = q
0
22w(0),⇤1z(0) =

⇤2w(0). Solving these two equations, we obtain

w(x) = e
s

⇤2
x
w(0)� w(0)

Z x

0
Nw(⌫)e

s
⇤2

(x�⌫)
d⌫, (38)

z(x) = e�
s

⇤1
x
z(0) + z(0)

Z x

0
Nz(⌫)e

� s
⇤1

(x�⌫)
d⌫. (39)

Using z(1) = 0, w(1) = q
0
22w(0), and evaluating (38)-(39) in

x = 1, one gets w(0)F2(s) = 0, z(0)F1(s) = 0.
Using Assumption 5, we cannot simultaneously have F2(s) =
0 and F1(s) = 0. It prevents pole-zero cancellation from V1

to �. Thus, we either have w(0) = 0 or z(0) = 0. Since
(w, z) 2 D(A⇤), w(0) = z(0) = 0 and (w, z) = (0, 0). ⇤
Assumption 4 is therefore a direct consequence of the spectral-
like controllability assumption. Note numerical methods for
locating the zeros of analytical functions have been developed
[35], and there now exists algorithms to this problem. Assump-
tion 5 can then be numerically verified, using, for instance, the
software package ZEAL [36].

To give more mathematical details, function F1 cannot
vanish if the imaginary part of s is large enough (due to
Riemann-Lebesgue’s lemma) or if <(s) ! �1. Similarly,
F2 cannot vanish if <(s) ! +1. Thus, common zeros can
be detected on a compact set whose bounds are numerically
computed from the system parameters. So, on any arbitrary
subset of this compact set, the number of zeros can be
predetermined using curve integrals and Cauchy’s argument
principle [37].

Note that, in practice, numerical convergence in the com-
putation of the Fredholm transform kernels (34) will not be
achieved if Assumption 5 is not satisfied.

2Intuitively, as pointed out by [32], the spectral controllability simply says
that all its finite-dimensional modal subsystems are controllable in the usual
sense.

C. Constructive design of a stabilizing control law
In this section, we adjust the strategy developed in [17] to

design a full-state feedback controller for system (26)-(29).
1) Presentation of the target system: Following the back-

stepping method, we want to map the PDE system (26)-(29) to
a stable target system. Denote the target state as (�, ). Next,
define the integral operator N of the form (34) with kernels

N
ij 2 Cpc(S), verifying

✓
w(x)
z(x)

◆
= N

✓
�(x)
 (x)

◆
, such that

w(x) = �(x)�
R 1
0 N

11(x, y)�(y) +N
12(x, y) (y)dy, (40)

z(x) =  (x)�
R 1
0 N

21(x, y)�(y) +N
22(x, y) (y)dy. (41)

The target state satisfies the following set of equations

@t�(t, x) + ⇤2@x�(t, x) = 0, (42)
@t (t, x)� ⇤1@x (t, x) = 0, (43)

with the boundary conditions

�(t, 0) =  (t, 0) + q
0
22�(t, 1),  (t, 1) = 0. (44)

Note that this system corresponds to the system (26)-(29) with-
out the integral term in (28). Denote now (�0(·), 0(·))T =
N�1((w0(·), z0(·))T ) 2 H

1([0, 1],R2) the initial conditions
associated to (42)-(43). They satisfy the compatibility equa-
tions (44). The target system (42)-(44) is well-posed [25,
Appendix A]. It is exponentially stable in the sense of the
L
2�norm. Indeed, due to the propagation of the boundary

condition,  converges to 0 in finite time. For t >
1
⇤1

,
the first boundary condition becomes �(t, 0) = q

0
22�(t, 1) =

q
0
22�(t� 1

⇤2
, 0). According to [25], [26], the system converges

to 0 and is exponentially stable since |q022| < 1 (Assumption
1).
We now need to show that it is possible to map the sys-
tem (26)-(29) to this target system using a bounded invertible
transform. To this end, the first step is to rewrite it by using

an operator formulation. We have
d

dt

✓
�

 

◆
= A0

✓
�

 

◆
, where

A0 satisfies (31), and is defined on D(A0) = {(�, ) 2
H

1([0, 1],R2)| �(0) =  (0) + q
0
22�(1),  (1) = 0}. Its

adjoint A⇤
0 is defined on D(A⇤) by

A
⇤
0 :D(A⇤) ⇢ L

2([0, 1],R2) ! L
2([0, 1],R2)✓

u

v

◆
7�!

✓
⇤2ux(x)
�⇤1vx(x)

◆
. (45)

2) Kernel equations: To map the original system (26)-(29)
to the target system (42)-(44), the kernels of the Fredholm
integral transform N must satisfy a set of equations. Following
the backstepping methodology, we derive the expression of
(�, ) with respect to x and t and integrate by parts. Plugging
the resulting expressions into the target system, we obtain:

@xN
11(x, y) + @yN

11(x, y) = 0, (46)
⇤2@xN

12(x, y)� ⇤1@yN
12(x, y) = 0, (47)

⇤1@xN
21(x, y)� ⇤2@yN

21(x, y) = 0, (48)
@xN

22(x, y) + @yN
22(x, y) = 0, (49)

with the boundary conditions

N
11(x, 0) = ⇤1

⇤2
N

12(x, 0), N
22(x, 0) = ⇤2

⇤1
N

21(x, 0), (50)
N

11(x, 1) = q
0
22N

11(x, 0), N
21(x, 1) = q

0
22N

21(x, 0). (51)
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Evaluating (40) in x = 0, one gets

Nw(y)�
Z 1

0
Nw(⌫)N

11(⌫, y) +Nz(⌫)N
21(⌫, y)d⌫

= �N
11(0, y) +N

21(0, y) + q
0
22N

11(1, y), (52)

Nz(y)�
Z 1

0
Nw(⌫)N

12(⌫, y) +Nz(⌫)N
22(⌫, y)d⌫

= �N
12(0, y) +N

22(0, y) + q
0
22N

12(1, y). (53)

To ensure the well-posedness of the problem, we add the two
following boundary conditions

N
12(x, 1) = 0, N

22(x, 1) = 0. (54)

These boundary conditions do not correspond to a degree of
freedom. Setting them to zero is necessary to satisfy condition
(b) of Lemma 1, and further guarantee the invertibility of N
and its boundedness. We have the following theorem

Theorem 1: The set of equations (46)-(54) admits a unique
solution in Cpc(S;R2⇥2).
We cannot apply classical methods [38] to prove the existence
of a unique solution to (46)-(54), partly due to the integral
terms in the boundary conditions (52)-(53). The proof of
Theorem 1 requires technical computations, and is proposed
below.

D. Well-posedness of the kernel equations
In this section, the existence of a unique solution to the

kernels equations (46)-(54) is proved. First, we express all the
kernels as functions of the boundary functions N

12(0, y) and
N

21(0, y). We show that the existence of N12(0, ·), N21(0, ·)
implies the existence of all kernels on S . Moreover, they
share the same regularity properties. Then, we show that
N

12(0, ·), N21(0, ·) are defined by an integral equation of the
form (34). We can use Lemma 1 to conclude on the existence,
boundedness and uniqueness of the kernels. For brevity and
clarity, all the proofs are given in Appendix A. Unlike [17]
(where a similar proof was proposed), we do not restrain here
to the case ⇤1 < ⇤2.

1) Kernels reduction:
Lemma 3: For all (x, y) 2 S , (i, j) 2 {1, 2}2, N ij(x, y)

can be expressed as functions of N12(0, ·) and N
21(0, ·).

Proof 3: The explicit expression is given by (A.1)-(A.3) in
Appendix A. We apply the method of characteristics to the
transport equations (46)-(49) to express N

ij(x, y) on S as
functions of the corresponding boundary value. We then use
the boundary conditions (50)-(54) to express all the kernels
as functions of N12(0, ·) and N

21(0, ·). In the case ⇤2 > ⇤1,
it is necessary to divide the definition domain into different
subparts and to iterate this procedure to cover S entirely. ⇤

2) Integral formulation: Define the new variable N̄
12(y)

.
=

N
12(0, y) � 1[0,1�⇤1

⇤2
](y)q

0
22N

12(0, y + ⇤1
⇤2

). As shown in
Appendix A, this change of variable is a bijection. We then
rewrite N

21(0, y) and N̄
12(y) as the solutions of two inte-

gral equations. After some technical computations given in
Appendix A, we show that they satisfy
✓
Nw(y)
Nz(y)

◆
=

✓
N

21(0, y)
�N̄

12(y)

◆
(55)

�
Z 1

0

✓
�I12(⌫, y) I11(⌫, y)
�I22(⌫, y) I21(⌫, y)

◆✓
N

21(0, ⌫)
�N̄

12(⌫)

◆
d⌫,

with Iij four bounded piecewise continuous coupling terms
depending on Nw, Nz , defined by (A.6)-(A.9) and (A.14).

3) Operator formulation: From equation (55), we state
Theorem 2: The Fredholm integral operator Q of form (34)

defined by

Q : L2([0, 1],R2) ! L
2([0, 1],R2) (56)

✓
u(y)
v(y)

◆
7!

✓
u(y)
v(y)

◆
�

Z 1

0

✓
�I12(⌫, y) I11(⌫, y)
�I22(⌫, y) I21(⌫, y)

◆✓
u(⌫)
v(⌫)

◆
d⌫

is boundedly invertible.
Proof 4: The proof is given in Appendix A. ⇤
4) Well-posedness of the kernel equations: We then have

all arguments to prove Theorem 1.

Proof 5: By (55), we have Q

✓
N

21(0, ·)
�N̄12(·)

◆
=

✓
Nw

Nz

◆
.

The invertibility of the operator Q given by Theorem 2
implies the existence and uniqueness of N

12(0, y), N̄21(y)
in L

2([0, 1],R), and therefore the existence of
N

12(0, y), N21(0, y). Since the kernels Iij are piecewise
continuous, the integral operator Q�1 has a regularizing
effect. Since Nw and Nz are piecewise continuous,✓
N

12(0, y)
�N̄

21(y)

◆
= Q�1

✓
Nw(y)
Nz(y)

◆
are in fact defined in

Cpc([0, 1];R2). According to Lemma 3, the four kernels N
ij

are then uniquely defined in Cpc(S). ⇤

E. Invertibility of the Fredholm transform
We now show that the Fredholm integral transform N is

boundedly invertible.
Theorem 3: Consider the Fredholm integral operator N of

the form (34) defined on L
2([0, 1];R2), with kernels defined on

Cpc(S) as the unique solution of (46)-(54). Then the operator
N is boundedly invertible.

Proof 6: The adjoint operator N ⇤ associated to N , is also
of the form (34). We have

N ⇤(

✓
�(x)
 (x)

◆
) =

✓
�(x)
 (x)

◆
�
Z 1

0
N̄(y, x)T

✓
�(y)
 (y)

◆
dy.

Due to the regularity of the integral and of the kernels N
ij ,

we have ker(N ⇤) ⇢ H
1([0, 1],R2). Taking any z 2 ker(N ⇤),

and evaluating it in x = 0, x = 1, we directly obtain
conditions (a), (b) of Lemma 1. Since N maps the original
system (26)-(29) to the target system (42)-(44), we have for
all z 2 ker(B⇤), N ⇤

A
⇤
z = A

⇤
0N ⇤

z (see [20] for instance).
From (b), we therefore obtain condition (c). Condition (d)
does not depend on the operator N . We can then conclude
that N ⇤ is invertible, and so is N .

The inverse operator N�1 associated to N is of form (34),
with kernels Ň defined on Cpc(S;R2⇥2) as the unique solution
of Ň(x, y) = �N(x, y) +

R 1
0 N(x, ⌫)Ň(⌫, y)d⌫. ⇤

The function Ň can be numerically computed using a fixed-
point method. It is necessary to compute the control law V

0
1(t).

F. Stabilizing control law
Using the inverse transform, we define the full-state feed-

back controller V 0
1(t) by

V
0
1(t) = �

Z 1

0
Ň

21(1, ⌫)w(⌫, t) + Ň
22(1, ⌫)z(⌫, t)d⌫. (57)

We can then compute the control law V (t) stabilizing the
initial system

V (t) =
1

q11
VS(t)� ⇢12v2(t, 0)� ⇢11u1(t, 1), (58)
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with

VS(t) =� 1

q
0
21

(

Z 1

0
x2Ň

21(1, x2⌫)↵2(t, ⌫) (59)

+ (1� x2)Ň
21(1, 1� (1� x2)⌫)�2(t, ⌫)d⌫)

�
Z 1

0
[L21

1 (1, ⌫) + x1Ň
22(1, x1(1� ⌫))]↵1(t, ⌫)

+ [L22
1 (1, ⌫) + (1� x1)Ň

22(1, x1 + (1� x1)⌫)]�1(t, ⌫)d⌫.

Since the two Volterra backstepping transforms L1,L2 are
invertible, we can express the control law (59) as a function of
the original states (ui, vi). We can conclude this section with
the following theorem

Theorem 4: The state-feedback control law V (t) defined by
(58) exponentially stabilizes the hyperbolic system (1)-(5) in
the sense of the L

2�norm.
Proof 7: First, let us show that state-feedback control law

V
0
1(t) defined by (57) exponentially stabilizes the hyperbolic

system (26)-(29) in the sense of the L
2�norm. Any initial

condition of (26)-(29) in H
1([0, 1];R2) is mapped to an initial

condition for (42)-(44) in H
1([0, 1];R2). The target system

(42)-(44) admits a unique solution with adequate regularity.
As justified earlier, it is exponentially stable in the sense of
the L

2�norm. Due to the bounded invertibility of the Fred-
holm integral transform N (Theorem 1) in H

1([0, 1];R2), the
intermediate system (26)-(29) admits a unique solution with
desired regularity. With the control law V

0
1(t), the hyperbolic

system (26)-(29) and the target system (42)-(44) share the
same stability properties. It is straightforward to express ↵i

and �i as functions of w and z. Therefore, the convergence
of (w, z) to zero at an exponential rate immediately implies
the exponential stability of (↵i,�i). Due to the bounded
invertibility of the Volterra integral transforms Li, the original
states (ui, vi) share the same stability properties. ⇤
This proof can be easily adjusted to show that the well-
posedness of the target system (42)-(44) implies the well-
posedness of the closed-loop system (1)-(5).

IV. OBSERVER DESIGN

In this section, we design a state observer for the system
(1)-(5), using the measurement y(t) = v2(0, t). We use a
strategy similar to the one used in Section III. The design
of the observer will be done on a simpler target system.

A. Target system

1) Volterra transform and kernel equations: Define two
integral transforms Mi, i 2 {1, 2} on L

2([0, 1];R2) such that✓
ui

vi

◆
= Mi

✓
ai

bi

◆
. More precisely, we have

(
u1 = a1 +

R 1
x M

11
1 (x, y)a1(y) +M

12
1 (x, y)b1(y)dy,

v1 = b1 +
R 1
x M

21
1 (x, y)a1(y) +M

22
1 (x, y)b1(y)dy,

(60)⇢
u2 = a2 +

R x
0 M

11
2 (x, y)a2(y) +M

12
2 (x, y)b2(y)dy,

v2 = b2 +
R x
0 M

21
2 (x, y)a2(y) +M

22
2 (x, y)b2(y)dy,

(61)

where the kernels M
ij
1 (resp. M ij

2 ) are piecewise continuous
bounded functions defined on T + (resp. T �). They satisfy the

same set of equations (11)-(14) as kernels Li (except that the
coupling terms are now �

±
i ), with the boundary conditions

M
12
1 (x, x) = � �

+
1 (x)

�1 + µ1
, M

21
1 (x, x) =

�
�
1 (x)

�1 + µ1
,

M
11
1 (0, y) = q11M

21
1 (0, y), M

22
1 (0, y) =

1

q11
M

12
1 (0, y),

M
12
2 (x, x) =

�
+
2 (x)

�2 + µ2
, M

21
2 (x, x) = � �

�
2 (x)

µ2 + �2
,

M
11
2 (1, y) =

1

⇢22
M

21
2 (1, y), M

22
2 (1, y) = ⇢22M

12
2 (1, y).

These two sets of equations admit a unique piecewise con-
tinuous solution [39]. Applying the transformation (60) to the
first subsystem (respectively (61) to the second subsystem),
we obtain the target system

@tai(t, x) + �i@xai(t, x) = H
a
i (x)a1(t, 1) + F

a
i (x)b2(t, 0)

+K
a
i (x)V (t), (62)

@tbi(t, x)� µi@xbi(t, x) = H
b
i (x)a1(t, 1) + F

b
i (x)b2(t, 0)

+K
b
i (x)V (t), (63)

with the boundary conditions

a1(t, 0) = q11b1(t, 0), (64)
b1(t, 1) = ⇢11a1(t, 1) + ⇢12b2(t, 0) + V (t), (65)
a2(t, 0) = q22b2(t, 0) + q21a1(t, 1), (66)
b2(t, 1) = ⇢22a2(t, 1). (67)

Denote (a0i (·), b0i (·))T = M�1
i ((u0

i (·), v0i (·))T ) 2
H

1([0, 1];R2) the initial conditions associated to (62)-(63).
They satisfy the compatibility equations (64)-(67). The in-
domain coupling terms F

a
i , F

b
i , H

a
i , H

b
i are defined by the set

of equations

H
⇤
1 (x) +

Z 1

x
M

i1
1 (x, ⌫)Ha

1 (⌫) +M
i2
1 (x, ⌫)Hb

1(⌫)d⌫

= �1M
i1
1 (x, 1)� µ1⇢11M

i2
1 (x, 1), (68)

F
⇤
1 (x) +

Z 1

x
M

i1
1 (x, ⌫)F a

1 (⌫) +M
i2
1 (x, ⌫)F b

1 (⌫)d⌫

= �µ1⇢12M
i2
1 (x, 1), (69)

H
⇤
2 (x) +

Z x

0
M

i1
2 (x, ⌫)Ha

2 (⌫) +M
i2
2 (x, ⌫)Hb

2(⌫)d⌫

= ��2q21M i1
2 (x, 0), (70)

F
⇤
2 (x) +

Z x

0
M

i1
2 (x, ⌫)F a

2 (⌫) +M
i2
2 (x, ⌫)F b

2 (⌫)d⌫

= µ2M
i2
2 (x, 0)� �2q22M

i1
2 (x, 0), (71)

with i = 1 if ⇤ = a, and i = 2 if ⇤ = b. The coupling terms
K are defined by
✓
K

a
1 (x)

K
b
1(x)

◆
= M�1

1 (

✓
�µ1M

12
1 (x, 1)

�µ1M
22
1 (x, 1)

◆
),

✓
K

a
2 (x)

K
b
2(x)

◆
= 0.

(72)
The Volterra integral equations (68)-(72) admit a unique solu-
tion in L

2(0, 1). Due to the piecewise continuity of the kernels
M

ij and the regularizing property of the integral operator,
H

⇤
i , F

⇤
i ,K

⇤
1 are actually piecewise continuous functions.
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2) Change of variables: Consider a new set of coordinates
(!(t, x), �(t, x)) given by

8
>><

>>:

!(t, x) = q21(q111[0,⇠1)(x)b1(t, 1� x
⇠1
)

+1[⇠1,1](x)a1(t,
x�⇠1
1�⇠1

)),
�(t, x) = 1[0,⇠2)(x)b2(t,

x
⇠2
)

+1[⇠2,1](x)⇢22a2(t,
x�1
⇠2�1 ),

(73)

with ⇠i =
�i

�i+µi
= 1 � xi. Note that the boundary value in

�(0, t) corresponds to y(t). These new variables satisfy the
following set of equations

@t!(t, x) + ⇤1@x!(t, x) = H1(x)!(t, 1) + F1(x)�(t, 0)

+K1(x)V (t), (74)
@t�(t, x)� ⇤2@x�(t, x) = H2(x)!(t, 1) + F2(x)�(t, 0),

(75)

where ⇤i =
µi�i

µi+�i
is defined in Section III-A2, and where the

functions verify

H1(x) = q111[0,⇠1)(x)H
b
1(1�

x

⇠1
) + 1[⇠1,1](x)H

a
1 (

x� ⇠1

1� ⇠1
),

F1(x) = q21(q111[0,⇠1)(x)F
b
1 (1�

x

⇠1
) + 1[⇠1,1](x)F

a
1 (

x� ⇠1

1� ⇠1
)),

H2(x) =
1
q21

(1[0,⇠2)(x)H
b
2(

x

⇠2
) + 1[⇠2,1](x)⇢22H

a
2 (

x� 1
⇠2 � 1

)),

F2(x) = 1[0,⇠2)(x)F
b
2 (

x

⇠2
) + 1[⇠2,1](x)⇢22F

a
2 (

x� 1
⇠2 � 1

),

K1(x) = q21(1[0,⇠1)(x)q11K
b
1(1�

x

⇠1
) + 1[⇠1,1](x)K

a
1 (

x� ⇠1

1� ⇠1
)).

They satisfy the boundary conditions

!(t, 0) = ⇢11q11!(t, 1) + q21⇢12q11�(t, 0) + q21q11V (t),
(76)

�(t, 1) = q22⇢22�(t, 0) + !(t, 1). (77)

B. Observer and error state
1) Definition: In this subsection, we define an observer for

the system (74)-(77). Classically, it is a copy of the original
system with input injection terms (Luenberger-type observer).
Interestingly, we see that the measurement y(t) corresponds
to �(t, 0) = b2(t, 0) = v2(t, 0). The different changes of
variables turned the measurement at the in-between boundary
into a classical measurement at one end of the resulting
system. The observer state (!̂, �̂) satisfies the following set
of equations

@t!̂(t, x) + ⇤1@x!̂(t, x) = H1(x)!̂(t, 1) + F1(x)�̂(t, 0)

+K1(x)V (t) +G1(x)(�̂(t, 0)� y(t)), (78)
@t�̂(t, x)� ⇤2@x�̂(t, x) = H2(x)!̂(t, 1) + F2(x)�̂(t, 0)

+G2(�̂(t, 0)� y(t)), (79)

with the boundary conditions

!̂(t, 0) = ⇢11q11!̂(t, 1) + q21⇢12q11�(t, 0) + q21q11V (t),
(80)

�̂(t, 1) = q22⇢22�(t, 0) + !̂(t, 1). (81)

Since the boundary conditions of the observer system contain
non strictly proper terms �(t, 0) corresponding to the measure-
ment, it may lead to some robustness issues [40]. To avoid this
problem, we could low-pass filter the output y(t).

Finally, we define the error state (!̃, �̃) = (!, �) � (!̂, �̂).
It satisfies the set of PDEs

@t!̃(t, x) + ⇤1@x!̃(t, x) = H1(x)!̃(t, 1) +G
0
1(x)�̃(t, 0),

(82)
@t�̃(t, x)� ⇤2@x�̃(t, x) = H2(x)!̃(t, 1) +G

0
2(x)�̃(t, 0),

(83)

where G
0
i
.
= Fi + Gi are two bounded piecewise continuous

functions in Cpc(0, 1), and the boundary conditions

!̃(t, 0) = ⇢11q11!̃(t, 1), �̃(t, 1) = !̃(t, 1). (84)

Our objective is to determine the gains G
0
i such that the error

system (82)-(84) is exponentially stable.
2) Operator framework: We rewrite system (82)-(84) in the

abstract form
d

dt

✓
!̃

�̃

◆
= Ã

✓
!̃

�̃

◆
+ GC̃

✓
!̃

�̃

◆
, (85)

where the operator Ã is defined by

Ã :D(Ã) ⇢ L
2([0, 1],R2) ! L

2([0, 1],R2)✓
!̃

�̃

◆
7�!

✓
�⇤1!̃x(x) +H1(x)!̃(1)
⇤2�̃x(x) +H2(x)!̃(1)

◆
, (86)

with D(Ã) = {(!̃, �̃) 2 H
1([0, 1],R2)| !̃(0) =

⇢11q11!̃(1), �̃(1) = !̃(1)}.The operator Ã is well posed and
densely defined [25]. We can already draw a parallel with the
definition of operator Ã in (86) and the adjoint operator A

⇤

defined in Section III by (32). The trace operator C̃ is defined
by

C̃ :D(Ã) ⇢ L
2([0, 1],R2) ! R

(!̃ �̃)
T 7�! �̃(0), (87)

and the operator G is defined by

G : R ! Cpc(0, 1)
2

x 7! (G0
1.x G

0
2.x)

T
.

3) Spectral observability condition: Similarly to what has
been done in Section III-B3, we need to formulate an observ-
ability assumption to guarantee the possibility to estimate the
PDE states.

Assumption 6: The operators Ã and C̃ respectively defined
by (86) and (87) satisfy for any s 2 C

ker(s� Ã) \ ker(C̃) = {0}. (88)
This is analogous to the controllability Assumption 4. Rewrit-
ing equations (74)-(75) in the time-delay framework, we
can reformulate this assumption using holomorphic functions.
Define the functions

F̃1(s) = 1� ⇢11q11e
�⌧1s �

Z ⌧1

0
H1(⇤1⌫)e

(⌫�⌧1)sd⌫, (89)

F̃2(s) = e
�⌧2s + e⌧2s

Z ⌧2

0
H2(⇤2⌫)e

�⌫s
d⌫. (90)

Using the variation of constant formula, and taking the Laplace
transform in (86), we obtain !̃(1)F̃1(s) = !̃(1)F̃2(s) = 0. We
have the following spectral observability assumption

Assumption 7: For all s 2 C, rank[F̃1(s), F̃2(s)] = 1.
Expressing the solutions of (82)-(84) using the variation of
constants formula, we show that the Assumptions 6 and 7 are
equivalent. The proof is analogous to the one of Lemma 2 ans
is omitted here. Assumption 7 can be checked in the same
way as Assumption 5.
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C. Constructive design of the observer gains
In this section, we design the observer gains G

0
1, G

0
2 to

stabilize the error system (82)-(84). We use a Fredholm
integral transform to map this error system to a stable target
system. The proof of existence and invertibility of such a
transform follows the same strategy as the one presented in
III.

1) Presentation of the target system: Following the back-
stepping methodology given in [41], we map the error sys-
tem (82)-(84) to a stable target system with equivalent stability
properties. Consider the candidate target system

@t⇣̃(t, x) + ⇤1@x⇣̃(t, x) = 0, (91)
@t⌘̃(t, x)� ⇤2@x⌘̃(t, x) = 0, (92)

with the boundary conditions

⇣̃(t, 0) = ⇢11q11⇣̃(t, 1), ⌘̃(t, 1) = ⇣̃(t, 1). (93)

Denote (⇣̃0, ⌘̃0) in H
1([0, 1];R2) the initial conditions as-

sociated to (91)-(92) satisfying the compatibility conditions
(93). The well-posedness of the error system (91)-(93) im-
plies the one of the error system (78)-(81) and consequently
of the observer system (82)-(84). This target system (91)-
(93) is exponentially stable in the sense of the L

2�norm,
since |⇢11q11| < 1 by Assumption 3 [25]. Define now the
Fredholm integral transform K of the form (34), such that✓
⇣̃

⌘̃

◆
= K

✓
!̃

�̃

◆
. More precisely, we have

⇣̃(t, x) = !̃(t, x)�
Z 1

0

K
11(x, ⌫)!̃(t, ⌫) +K

12(x, ⌫)�̃(t, ⌫)d⌫,

(94)

⌘̃(t, x) = �̃(t, x)�
Z 1

0

K
21(x, ⌫)!̃(t, ⌫) +K

22(x, ⌫)�̃(t, ⌫)d⌫,

(95)

where K
ij
, i, j 2 {1, 2} are four bounded piecewise contin-

uous functions defined on S .
2) Kernel equations: Following the backstepping method-

ology, we show that the kernels Kij must satisfy the following
set of equations

@xK
11(x, y) + @yK

11(x, y) = 0, (96)

@xK
12(x, y)� ⇤2

⇤1
@yK

12(x, y) = 0, (97)

@xK
21(x, y)� ⇤1

⇤2
@yK

21(x, y) = 0, (98)

@xK
22(x, y) + @yK

22(x, y) = 0, (99)

where we have

H1(x) + ⇤1(K
11(x, 1)� ⇢11q11K

11(x, 0))� ⇤2K
12(x, 1)

=

Z 1

0
K

11(x, ⌫)H1(⌫) +K
12(x, ⌫)H2(⌫)d⌫, (100)

H2(x) + ⇤1(K
21(x, 1)� ⇢11q11K

21(x, 0))� ⇤2K
22(x, 1)

=

Z 1

0
K

21(x, ⌫)H1(⌫) +K
22(x, ⌫)H2(⌫)d⌫, (101)

and the boundary conditions

K
11(0, y) = ⇢11q11K

11(1, y), K
12(0, y) = ⇢11q11K

12(1, y),

K
11(1, y) = K

21(1, y), K
22(1, y) = K

12(1, y). (102)

To these conditions, we add the two following boundary
conditions,

K
21(0, y) = 0, K

22(0, y) = 0. (103)

The boundary conditions (103) are necessary to ensure that
condition (b) of Lemma 1 is satisfied for the operator K.
If we manage to show that (96)-(103) admit a solution, we
will be able to prove that (82)-(84) can be mapped to (91)-
(93). Indeed, differentiating (94)-(95) with respect to time
and space, integrating by parts, and using the fact that the
state (!̃, �̃) verifies (82)-(84), we directly obtain the target
system (91)-(93).

3) Well-posedness of kernel equations: The proof of the
existence of a solution to (96)-(103) derives from the proof of
Theorem 1 given in Section III-D (see Appendix A). Indeed,
let us define the kernels Ñ

ij on S by

Ñ
11(x, y) = K

11(1� y, 1� x), (104)

Ñ
12(x, y) =

⇤1

⇤2
K

21(1� y, 1� x), (105)

Ñ
21(x, y) =

⇤2

⇤1
K

12(1� y, 1� x), (106)

Ñ
22(x, y) = K

22(1� y, 1� x). (107)

The kernels Ñ
ij satisfy the same set of PDEs (46)-(49)

than kernels N
ij (defining the invertible Fredholm integral

transform N ). Moreover, they satisfy the same boundary
conditions (50), (51) and (54) (the only difference being the
name of the coupling coefficient (q022 or ⇢11q11), that are both
strictly less than 1 by Assumption 3). Finally, the kernels Ñ

ij

satisfy similar integral equations

Ñw(y)�
Z 1

0
Ñw(⌫)Ñ

11(⌫, y) + Ñz(⌫)Ñ
21(⌫, y)d⌫

= �Ñ
11(0, y) + Ñ

21(0, y) + ⇢11q11Ñ
11(1, y),

Ñz(y)�
Z 1

0
Ñw(⌫)Ñ

12(⌫, y) + Ñz(⌫)Ñ
22(⌫, y)d⌫

= �Ñ
12(0, y) + Ñ

22(0, y) + ⇢11q11Ñ
12(1, y),

with Ñw(y)
.
= 1

⇤1
H1(1 � y) and Ñz(y)

.
= 1

⇤2
H2(1 � y).

Under the spectral observability Assumption 6, we prove
the well-posedness and the existence of kernels Ñ

ij on S ,
following the approach given in Appendix A. Since the change
of variables (104)-(107) is invertible, we immediately state
the well-posedness of (96)-(103). Since we have (H1, H2) 2
Cpc(0, 1)2, and due to the regularizing properties of the inte-
gral operator, the kernel equations (96)-(103) admit a unique
piecewise continuous solution on S .

4) Invertibility of the Fredholm transform: Similarly to
what was done in Section III-E, we have the following:

Theorem 5: The Fredholm integral transform K whose
kernels are defined by (96)-(103) is invertible.

Proof 8: We show that this operator satisfies the conditions
of Lemma 1. ⇤

5) Definition of the observer gains: Following the back-
stepping procedure, we obtain the expressions of the observer
gains G0

i. Indeed, in order to map the original system (82)-(84)
to the target system (91)-(93), the observer gains must satisfy
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the integral equations

G
0
1(x)�

Z 1

0
K

11(x, ⌫)G0
1(⌫) +K

12(x, ⌫)G0
2(⌫)d⌫

= �⇤2K
12(x, 0),

G
0
2(x)�

Z 1

0
K

21(x, ⌫)G0
1(⌫) +K

22(x, ⌫)G0
2(⌫)d⌫

= �⇤2K
22(x, 0),

() K(

✓
G

0
1(x)

G
0
2(x)

◆
) =

✓
�⇤2K

12(x, 0)
�⇤2K

22(x, 0)

◆
. (108)

Since K is invertible, the observer gains G0
1 and G

0
2 defined by

(108) exist and are uniquely defined as piecewise continuous
functions on [0, 1]. They satisfy

✓
G

0
1(x)

G
0
2(x)

◆
= K�1

✓
�⇤2K

12(x, 0)
�⇤2K

22(x, 0)

◆
. (109)

D. Convergence of the observer state
We can now show the convergence of the observer state

(!̂, �̂) to the real state (!, �). First, we have the following:
Lemma 4: Any solution (!̃, �̃) of (82)-(84) converges to

zero in the sense of the L
2-norm.

Proof 9: System (91)-(93) is exponentially stable in the
sense of the L

2�norm. Since the backstepping transform K is
bounded and invertible by Theorem 5, system (82)-(84) shares
equivalent stability properties. ⇤
Thus, the error system (82)-(84) is exponentially stable. The
observer state (78)-(81) defined with gains Gi = G

0
i � Fi

converges towards the initial state (!, �). We then define
observer states for (ai, bi) by

â1(t, x) =
1

q21
!̂(t, ⇠1 + (1� ⇠1)x), (110)

â2(t, x) =
1

⇢22
�̂(t, 1� (1� ⇠2)x), (111)

b̂1(t, x) =
1

q21q11
!̂(t, ⇠1(1� x)), b̂2(t, x) = �̂(t, ⇠2x).

(112)

Using the Volterra integral transforms Mi (60)-(61), we then
define observer states for the initial states (ui, vi) by

✓
ûi

v̂i

◆
= Mi

✓
âi

b̂i

◆
. (113)

We have the following theorem:
Theorem 6: The state estimates (ûi, v̂i) defined by (113)

converge towards the original states (ui, vi) in the sense of
the L

2�norm.
Due to space restrictions, the proof is omitted. It is worth
mentioning that it is a direct consequence of the properties of
the Volterra integral transforms Mi.

V. OUTPUT-FEEDBACK CONTROL LAW

We can now combine the state observer designed in Section
IV with the full state feedback control law V (t) designed in
Section III-F, to obtain an output feedback controller. We can
state the main theorem of this article:

Theorem 7: The output-feedback control law
V (t, û1(t), û2(t), v̂1(t), v̂2(t)) defined by

V̂ (t) =
1

q11
V̂S(t)� ⇢12y(t)� ⇢11û1(t, 1), (114)

with

V̂S(t) = � 1
q12

R 1
0

✓
x2Ň

21(1, x2⌫)
(1� x2)Ň22(1, 1� (1� x2)⌫)

◆T

L�1
2

✓
û2(t, ⌫)
v̂2(t, ⌫)

◆
d⌫

+
R 1
0

✓
L
21
1 (1, ⌫)� x1Ň

21(1, x1(1� ⌫))
L
22
1 (1, ⌫)� (1� x1)Ň21(1, x1 + (1� x1)⌫)

◆T

L�1
1

✓
û1(t, ⌫)
v̂1(t, ⌫)

◆
d⌫

exponentially stabilizes system (1)-(5) in the sense of the
L
2�norm.
Proof 10: Similarly to what has been done in [42], we define

(ûi, v̂i) = (ûi � ui + ui, v̂i � vi + vi) = (�ũi + ui,�ṽi + vi).
By linearity of the integral operators, we obtain

V̂ (t) = V (t) + Ṽ (t), (115)

where Ṽ (t) = � 1
q11

ṼS(t) + ⇢11ũ1(t, 1), is the difference
between the output feedback law and the previously designed
state feedback law. By Lemma 4, and since the control
integral operator is bounded, we have |ṼS(t)| �!

t!1
0 and

kũ1(t)kL2 �!
t!1

0 as the error states converge to zero. Thus,

the term Ṽ (t) can be seen as a disturbance that converges to
zero. Using Theorem 4, and the input-to-state stability of the
system (as it is done in [42], [43] for two equations), we can
conclude to the exponential stability of the system. Indeed, the
closed-loop system would rewrite as a neutral system subject
to a disturbance that goes to zero [44]. Applying the variations
of constants formula yields the expected result. ⇤

VI. APPLICATIONS AND EXTENSIONS

Although applied to a specific case of a chain of two inter-
connected hyperbolic PDE subsystems, the approach proposed
in this paper can be extended to other classes of systems.

A. General classes of integral delay equations
Besides time-delay systems, the approach given in this

article can be used to stabilize systems represented by a
general class of Integral Delay Equations (IDE), as done in
[17]. This is the consequence of the strong links between
hyperbolic systems and time-delay systems of neutral type.

B. Underactuated 1+2 linear hyperbolic system
Another class of systems that can be stabilized with this ap-

proach are underactuated 1+2 hyperbolic systems, where only
one of the two leftward-convecting equations is actuated. Such
system was stabilized in [16], under a more restrictive assump-
tion, since the authors assumed exponentially stable actuation
dynamics, which is not the case here. This application case
corresponds to a state w(t, x) = (u(t, x), v1(t, x), v2(t, x))T

satisfying

@tw(t, x) + ⇤@xw(t, x) = ⌃(x)w(t, x), (116)

where the different arguments evolve in {(t, x) s.t. t >

0, x 2 [0, 1]}, and with the following boundary conditions

u(t, 0) = q1v1(t, 0) + q2v2(t, 0), (117)
v1(t, 1) = ⇢1u(t, 1) + V (t), v2(t, 1) = ⇢2u(t, 1). (118)

The diagonal matrix ⇤ is given by ⇤ = diag(�,�µ1,�µ2),
where the different velocities �, µ1, µ2 are assumed to be
constant and positive, as the boundary couplings q1, q2, ⇢1 and
⇢2. The components of the matrix ⌃ are continuous functions.
Thus the proposed methodology is of high interest for the
stabilization of underactuated hyperbolic systems.
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VII. SIMULATION RESULTS

In this section, we give some simulation results to illustrate
the relevance of the stabilizing output-feedback control law
proposed in this paper. The control strategy was implemented
using Matlab. We simulated our system on a time scale of 30s,
with 101 space-discretization points in [0, 1]. The numerical
values of the parameters are

�
�1
�2

�
=
�
2
1

�
,
� µ1
µ2

�
=
�
1.3
1.8

�
,

� �+
1

�+
2

�
=
��0.2
�0.3

�
,
� ��

1

��
2

�
=
�
0.2
0.3

�
,
� q11 ⇤
q21 q22

�
=
�
0.9 ⇤
1 0.4

�
,

� ⇢11 ⇢12
⇤ ⇢22

�
=
�
0.3 0.8
⇤ 0.9

�
. The initial conditions of the states are

constant functions ui(0, .) = 0.1, vi(0, .) = 0.2. The observer
values are initialized to 0. Assumptions 1-3 are obviously
satisfied. Assumptions 5 and 7 have been verified numerically.

Beforehand, the kernel of the invertible Volterra transforms
Li,Mi and Fredholm transforms N ,K (and their inverse) are
computed using the successive approximation technique [45].
Their values are stored in matrices whose dimension is directly
defined by the number of discretization points (here 101). As
illustrated on Figure 3, the computation time becomes very
important when the space step gets smaller.

Fig. 3. Evolution of computation time (in sec) for kernels N
ij , for different

precision (✏) and space step (1/p) of the domain.

Then, the functions H
⇤
i , F

⇤
i ,K

⇤
1 , Gi are computed using the

same method. The integral terms are approximated using a
trapezoidal method. All the values are computed off-line and
do not need to be updated while running the closed-loop
simulations. If needed, functions are interpolated using the
linear method interp1.
Next, we can simulate the evolution of the system using the
classical finite volume method based on a Godunov scheme
[46]. As illustrated on Figure 4 (blue curve), the parameters
are chosen such that the whole interconnected system remains
unstable in open-loop. In presence of the control law (114) rep-

Fig. 4. Evolution of the L
2�norm of the state in closed-loop and open-loop.

resented on Figure 5, the system (u, v) becomes exponentially
stable. Indeed, as illustrated in Figure 4 (red), its L

2�norm
converges to zero.

Fig. 5. Evolution of the control effort V(t).

VIII. CONCLUSION

In this paper, we proposed a new approach to stabilize a
chain of two interconnected hyperbolic PDE subsystems for
which the actuator and the measurement are located at the
in-between boundary. In the proposed methodology, we first
designed a full-state feedback controller, by using classical
Volterra transforms and a change of variables to rewrite
the chain as a scalar hyperbolic system. We then used the
backstepping approach to map this PDE system to a simple
(exponentially stable) target system. However, the configura-
tion considered in the paper required a Fredholm transform,
which is not always invertible. We proved the invertibility of
the Fredholm transform using an operator framework inspired
by [17], [20]. The well-posedness of the kernels defining the
Fredholm transform was proved using the same ideas. Second,
we used a similar approach to design a state observer. This
led to an output-feedback controller, whose performances have
been illustrated by some numerical simulations. The proposed
approach paves the way for future contributions on networks
with actuation inside the graph structure. We believe that
this approach could be combined with [14] to tackle a wider
diversity of physical systems with an arbitrary number of PDEs
or ODEs. It is also a milestone towards the stabilization of
under-actuated systems. In the coming period, we wish to
extend our results to non-scalar systems or to more complex
networks. We will also consider more complex cases where
some of the boundary couplings are equal to zero resulting in
degenerate Fredholm equations.
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APPENDIX A
WELL-POSEDNESS OF KERNEL EQUATIONS OF A

FREDHOLM TRANSFORM

A. Proof of Lemma 3
Let us show that N

ij(x, y), (i, j) 2 {1, 2}2 can be ex-
pressed on S as functions of N12(0, ·) and N

21(0, ·). Applying
the method of characteristics on the transport equations (46)-
(49), we can express N

ij on S as functions of their boundary
values.
First, for kernels N

11
, N

22, the slope of the characteristics
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Fig. 6. Representation of the kernels N
11
, N

22

does not depend on ⇤i, as illustrated on Figure 6. The kernels
are entirely defined by their boundary values in y = 1
and y = 0. Using the boundary conditions (50)-(54), direct
computations give

N
11(x, y) =

⇤1

⇤2
(1[0,y](x)q

0
22N

12(x� y + 1, 0)

+ 1[y,1](x)N
12(x� y, 0)), (A.1)

N
22(x, y) =

⇤2

⇤1
1[y,1](x)N

21(x� y, 0). (A.2)

To express the two other kernels as functions of their boundary
terms, we need to have a closer look to their characteristics,
whose slope depends on the ratio ⇤1

⇤2
. The case ⇤2 = ⇤1 is

the easiest to handle, since the characteristic lines are parallel
to the antidiagonal of S .
In the other cases, the characteristic lines for kernels N21

, N
12

do not divide S into two equal triangular domains, as illus-
trated on Figure 7.

(a) ⇤2 < ⇤1

(b) ⇤2 > ⇤1

Fig. 7. Representation of kernels N
21
, N

12

In particular, in the case ⇤2 > ⇤1 the boundary condition
N

12(x, 1) = 0 defines the values of N12(1, y) for the triangu-
lar domain x 2 [0, 1], y 2 [1� ⇤2

⇤1
x, 1] only, and the boundary

condition N
21(0, y) directly defines the kernels’ values for the

triangular domain x 2 [0, ⇤1
⇤2

], y 2 [0, 1� ⇤2
⇤1

x] only. One can
note that the boundary condition N

12(x, 1) = 0, 8x 2 [0, 1]
propagates along the characteristic lines, such that N

12 is
equal to 0 on the right upper part of S , as illustrated by the
red domains on Figure 7.
To determine the values on S in that case, we use an iterative
procedure. Let us define p as the unique integer verifying
p
⇤1
⇤2

 1 < (p + 1)⇤1
⇤2

. We can divide the square S into
different sub-domains Dk, k 2 J0, p + 1K, as illustrated on
Figure 8.

Fig. 8. Different domains in the expression of N21

More precisely, we have:
• D0 = {0  y  1, 0  x  ⇤1

⇤2
(1� y)},

• 8k 2 J1, p � 1K, Dk = {0  y  1, ⇤1
⇤2

(k � y)  x <

⇤1
⇤2

(k + 1� y)},
• Dp = {0  y  1, ⇤1

⇤2
(p� y)  x < min(1, 1� ⇤1

⇤2
y)},

• Dp+1 = {p+ 1� ⇤2
⇤1

x  y  1, p⇤1
⇤2

 x  1}.
Note that when ⇤2 < ⇤1 we have p = 0. Integrating along
the characteristic lines, and using (51), we obtain by iteration
8k 2 J0, p+ 1K,

8(x, y) 2 Dk,kp+1, N
21(x, y) = q

0k
22N

21(0, y � k +
⇤2

⇤1
x).

In the same way, we can express kernel N12 as a function of
N

12(0, y). We have, for all (x, y) 2 S

N
12(x, y) = 1[0,

⇤2
⇤1

(1�y)](x)N
12(0, y +

⇤1

⇤2
x). (A.3)

This concludes the proof.

B. Integral formulation
In this subsection, we rewrite N

21(0, y) and N
12(0, y)

as the solutions of two integral equations of the form (55)
and give the explicit expression of the terms Iij . Notice
first that using the transport equation (46) in (50), we obtain
N

11(0, y)�q
0
22N

11(1, y) = 0 which simplifies (52). Then, we
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have N
22(0, y) = 0, 8y 2 [0, 1] and N

12(1, y) = 0, 8y 2
[max(0, 1� ⇤1

⇤2
), 1]. We therefore have

Nw(y)�
R 1
0 Nw(⌫)N11(⌫, y) +Nz(⌫)N21(⌫, y)d⌫ = N

21(0, y),

Nz(y)�
Z 1

0
Nw(⌫)N

12(⌫, y) +Nz(⌫)N
22(⌫, y)d⌫

= �N
12(0, y) + 1[0,1�⇤1

⇤2
](y)q

0
22N

12(0, y +
⇤1

⇤2
).

We decompose the integral terms into subdomains (depending
on p) to express the kernels N

ij as functions of the boundary
values N

12(0, ·) and N
21(0, ·). We obtain

Nw(y) = N
21(0, y) (A.4)

�
R 1
0 I11(⌫, y)(�N

12(0, ⌫))� I12(⌫, y)N21(0, ⌫)d⌫,

Nz(y) = �(N12(0, y)� 1[0,1�⇤1
⇤2

](y)q
0
22N

12(0, y + ⇤1
⇤2

))

�
R 1
0 I21(⌫, y)(�N

12(0, ⌫))� I22(⌫, y)N21(0, ⌫)d⌫, (A.5)

where

I11(⌫, y) = 1[0,1](⌫)(1[0,
⇤1
⇤2

(1�y)](⌫)Nw(y +
⇤2

⇤1
⌫)

+ 1[
⇤1
⇤2

(1�y),
⇤1
⇤2

](⌫)q
0
22Nw(y � 1 +

⇤2

⇤1
⌫)) (A.6)

I12(⌫, y) =
⇤1

⇤2
[1[y,1](⌫)Nz(

⇤1

⇤2
(⌫ � y)) (A.7)

+
pX

k=1

1[0,
⇤2
⇤1

�k+y](⌫)q
0k
22Nz(

⇤1

⇤2
(⌫ � y + k))

+ 1[p+1+
⇤1
⇤2

,1](y)1[0,
⇤2
⇤1

�(p+1)+y](⌫)q
0p+1
22 Nz(

⇤1
⇤2

(⌫ � y + p+ 1))],

I21(⌫, y) = 1[y,y+
⇤1
⇤2

](⌫)1[0,1](⌫)
⇤2

⇤1
Nw(

⇤2

⇤1
(⌫ � y)), (A.8)

I22(⌫, y) =
pX

k=0

1[0,
⇤2
⇤1

(1�y)�k](⌫)q
0k
22Nz(y +

⇤1

⇤2
(⌫ + k)).

(A.9)
The computations to obtain the terms Iij rely on Fubini’s
theorem. To rewrite the integral equations (A.4)-(A.5) using
an integral operator of the form (34), we need to get rid of
the term 1[0,1�⇤1

⇤2
](y)q

0
22N

12(0, y + ⇤1
⇤2

) in (55). Let f be a

bounded function, and define the function f̄ , such that for all
y 2 [0, 1] we have

f̄(y) = f(y)� 1[0,1�⇤1
⇤2

](y)q
0
22f(y +

⇤1

⇤2
). (A.10)

This yields the following lemma:
Lemma 5: The operator .̄ defined by (A.10) is invertible.

More precisely, we have

f(y) =
pX

k=0

q
0k
221[0,1�k

⇤1
⇤2

](y)f̄(y + k
⇤1

⇤2
). (A.11)

Proof 11: Formula (A.11) is obtained by an iterative ap-
proach. Let us take y 2 [0, 1], and assume that ⇤2 > ⇤1 (else,
the change of variables is equal to the identity and the proof
is straightforward). We have
8
>>><

>>>:

f̄(y) = f(y), if 1� ⇤1
⇤2

< y  1,

f̄(y) = f(y)� q
0
22f(y +

⇤1

⇤2| {z }
�⇤1

⇤2

), if 0  y  1� ⇤1
⇤2

.

Then, if 1 � ⇤1
⇤2

 ⇤1
⇤2

() ⇤2
⇤1

< 2 () p = 1, we directly
have f(y) = f̄(y) + q

0
22f̄(y + ⇤1

⇤2
). Else, we need to iterate

p � 1 more times the operation, which successively add the
terms q

0k
221[0,1�k

⇤1
⇤2

](y)f̄(y + k
⇤1
⇤2

). We finally obtain (A.11).
⇤
Defining, N̄12(y) = N

12(0, y) � 1[0,1�⇤1
⇤2

](y)q
0
22N

12(0, y +
⇤1
⇤2

), we can rewrite (A.4)-(A.5) as

Nw(y) = N
21(0, y) (A.12)

�
R 1
0 Ī11(⌫, y)(�N̄

12(⌫))� I12(⌫, y)N21(0, ⌫)d⌫,

Nz(y) = �N̄
12(y) (A.13)

�
R 1
0 Ī21(⌫, y)(�N̄

12(⌫))� I22(⌫, y)N21(0, ⌫)d⌫).

Using the expression (A.11) in the integral terms, we can
define the new coupling terms Īj1, j 2 {1, 2} by

Īj1(⌫, y) =
pX

k=0

q
0k
221[

⇤1
⇤2

k,1](⌫)Ij1(⌫ �
⇤1

⇤2
k, y). (A.14)

Remark 2: Note that in the case ⇤2  ⇤1, the change of
variables (A.11) is the identity.
We can finally define on S four bounded functions
I11, I21, I12, I22 introduced in (56) by Ij2 = Ij2 and Ij1 =
Īj1 j 2 {1, 2} (A.7)-(A.9),(A.14).

C. Proof of Theorem 2
In this section, we prove the invertibility of the Fredholm

integral operator Q of the form (34) defined in (56). Similarly
to the proof 8, it relies on Lemma 1. Indeed, the four functions
Iij are bounded, such that the integral part of Q is a compact
operator. By [24, Theorem 6.6] (Fredholm alternative), we
have dimker(Q) < 1. Let us show that conditions (a)� (d)
are verified.
First, conditions (a), (b) are proved by evaluating the compo-
nents of the kernel R(x, y) in y = 0 and y = 1. We obtain

I11(0, ⌫) =
pX

k=0

q
0k
221[k

⇤1
⇤2

,1](⌫)Nw(
⇤2

⇤1
⌫ � k), (A.15)

I12(0, ⌫) =
⇤1

⇤2

pX

k=0

q
0k
221[0,

⇤2
⇤1

�k](⌫)Nz(
⇤1

⇤2
(⌫ + k)), (A.16)

I11(1, ⌫) = q
0
22I11(0, ⌫), I12(1, ⌫) = q

0
22I12(0, ⌫),

(A.17)

I21(0, ⌫) =
⇤2

⇤1
I11(0, ⌫), I22(0, ⌫) =

⇤2

⇤1
I12(0, ⌫).

(A.18)

Let us take z =

✓
f

g

◆
2 ker(Q), s.t for all x 2 [0, 1], we have

✓
f(x)
g(x)

◆
=

 R 1
0 �I12(⌫, x)f(⌫) + I11(⌫, x)g(⌫)d⌫R 1
0 �I22(⌫, x)f(⌫) + I21(⌫, x)g(⌫)d⌫

!
.

Due to the regularizing property of the integral, we have
ker(Q) ⇢ H

1([0, 1],R2). The boundary condition (A.17) gives
f(1) = q

0
22f(0), and (A.18) give f(0) = ⇤1

⇤2
g(0), such that

z 2 D(A⇤).
Next, we evaluate the coupling terms I21, I22 in y = 1. We
obtain I21(1, ⌫) = I22(1, ⌫) = 0. We then have ⇤1g(1) = 0,
such that z 2 ker(B⇤).
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We now need to prove that ker(Q) is stable by A
⇤ (condition

(c)), i.e 8z 2 ker(Q),QA
⇤
z =

✓
0
0

◆
. We have

A
⇤
z =

✓
⇤2f

0(y) + ⇤2f(0)Nw(y)
�⇤1g

0(y) + ⇤2f(0)Nz(y)

◆
.

We compute the derivative of functions (f, g) 2 ker(Q) on
one side, and we integrate by parts in the integral terms on
the other side. Some computations are given below. On the
first component of QA

⇤
z, we need to show that

⇤2f
0(y) + ⇤2f(0)Nw(y) +

R 1
0 I12(⌫, y)(⇤2f

0(⌫) + ⇤2f(0)Nw(⌫))d⌫

�
R 1
0 I11(⌫, y)(�⇤1g

0(⌫) + ⇤2f(0)Nz(⌫))d⌫ = 0. (A.19)

Let us check that the terms in f(0) are compensated, that is
to say,

f(0)

Z 1

0
I12(y, ⌫)⇤2Nu(⌫)� I11(y, ⌫)⇤2Nv(⌫))d⌫ = 0.

Due to the presence of characteristic functions, we obtain two
sums of integral terms in Nw(·) ⇥ Nz(·). By a change of
variables in the second term, we get the equality.
Next, we compute separately ⇤1

R 1
0 I11(y, ⌫)g0(⌫)d⌫ and

⇤2

R 1
0 I12(y, ⌫)f 0(⌫)d⌫. Once again, we decompose the in-

tegral on different subdomains to get rid of the character-
istic function. We integrate by parts and use the fact that
f(1) = q

0
22f(0), g(1) = 0, f(0) = ⇤2

⇤1
g(0) to simplify

some terms. Finally, we compute the derivative of f . We have
f(y) =

R 1
0 I11(y, ⌫)g(⌫) � I12(y, ⌫)g(⌫)d⌫, by definition of

z 2 ker(Q). We then verify that all the terms are compensated
using several changes of variables in the integral terms and
Fubini’s theorem.
In a second time, we follow the same steps to show that the
second component of QA

⇤
z vanishes, that is

�⇤1g
0(y) + ⇤2f(0)Nz(y) +

R 1
0 I22(⌫, y)(⇤2f

0(⌫) + ⇤2f(0)Nw(⌫))d⌫

�
R 1
0 I21(⌫, y)(�⇤1g

0(⌫) + ⇤2f(0)Nz(⌫))d⌫ = 0.

Once again, we show that

f(0)

Z 1

0
I22(y, ⌫)⇤2Nu(⌫)� I21(y, ⌫)⇤2Nv(⌫))d⌫ = 0

using a change of variables (⌘ = ⇤2
⇤1

(⌫ � y)� k).
Next, we compute separately the other integral terms and use
integration by parts. The integral term

R 1
0 I22(y, ⌫)⇤2f

0(⌫)d⌫
rewrites

pX

k=0

Z ⇤2
⇤1

(1�y)�k

0
1[0,1](⌫)q

0k
22Nz(

⇤1

⇤2
(⌫ + k) + y)⇤2f

0(⌫)d⌫.

We get rid of the characteristic function by decomposing into
different integration domains, as illustrated on Figure 9 a). Let
us define the decreasing sequence yk = 1 � ⇤1

⇤2
(k + 1), k 2

J0, p + 1K. We decompose the integral term according to the
value of y relative to yk. We factorize all terms in f(0) result-
ing from the integration by parts to obtain �⇤2f(0)Nz(y).
Integral term

R 1
0 I21(y, ⌫)⇤1g

0(⌫)d⌫ rewrites

�⇤2

pX

k=0

q
k
22

Z y+(k+1)
⇤1
⇤2

y+k
⇤1
⇤2

1[0,1](⌫)Nw(
⇤2

⇤1
(⌫�y)�k)g0(⌫)d⌫.

Following the same procedure, we decompose the integration
domain as illustrated on Figure 9 b). Finally, we compute

Fig. 9. Representation of the integration domain for 2 <
⇤2
⇤1

< 3, p = 2

the derivative of g using condition (b) and the expression of
ker(Q). It proves that 8z 2 ker(Q), QA

⇤
z = 0. The condition

(d) is given by Lemma 2 and derives from spectral control-
lability of the system (Assumption 5). Using the arguments
given in the proof of Lemma 1, we obtain that Q is invertible.
This concludes the proof.
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