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Abstract: Dry-stone retaining walls can be found worldwide and constitute critical assets of the built
heritage for many sloped territories, holding cultural and economic value. Their design currently
follows empirical rules, though the first steps towards a static safety assessment have recently been
proposed in the scientific and engineering literature. However, the seismic design of these structures
still lacks research studies. Therefore, this work conducts discrete element simulations to assess their
dynamic behaviour. First, the approach is validated through existing scaled-down shaking table
experiments, and it is found that the numerical simulations are conservative (i.e., on the safe side).
Next, full-scale dry-stone retaining walls are subjected to harmonic excitations as an idealisation of
earthquakes. Finally, based on a simplified limit-equilibrium analytical tool, their seismic behaviour
factor is estimated for the first time in the literature, which falls within the proposed values of the
European standards (Eurocode 8). This will allow engineers to adopt a validated behaviour factor in
practice to assess and design dry-stone retaining walls with a pseudo-static approach.

Keywords: discrete element method (DEM); masonry; earthquake engineering; seismic design;
standards; geotechnical engineering; slope engineering

1. Introduction

Masonry is one of the oldest building materials worldwide and is currently the material
adopted in a significant part of the built heritage. Many different building techniques can
be found within this general typology. Among them, dry-stone masonry consists of a
clever assemblage of rubble (undressed) stones without mortar. This vernacular technique
can be found in many countries, including several UNESCO sites (Lavaux’s Terraces,
Machu Picchu, Douro’s Valley, the Great Wall of Zimbabwe). More recently, the dry-stone
technique and associated know-how have been listed as a World Intangible Heritage by
UNESCO, recognising the specificities of this still living technique and its contribution to
high-quality landscapes and built heritage.

Dry-stone retaining walls (DSRWs), which constitute a high portion of this built
heritage, are still used for agricultural or transportation purposes. One can also highlight
their advantages, including their low embodied energy [1], permeability to water flow [2,3]
and adaptability to different environmental sites. However, appropriate maintenance
actions for the dry-stone heritage are missing due to insufficient knowledge concerning
this building technique and, until recently, a lack of design standards [4,5].

This state of the art led many researchers to study the static behaviour of DSRWs, with
different goals. While some studies aimed to reproduce the particular shapes, also called
bulging phenomena, observed in the field [6–9], others carried out parametric analyses
via the Discrete Element Method (DEM) [10,11]. Finally, some research groups produced
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useful analytical tools to assess the stability of existing structures [12–14]. The literature
encompasses experimental [9,14–17], analytical [12,13,18] and numerical DEM [19–23]
works, conducted either in 2D [6,10,14,24,25] or 3D [9,17,21,26]. Therefore, the design of
DSRWs under static loading is now relatively easy to process, given that dedicated safety
rules and criteria are provided [4,5,27]. If prejudice prevents broader use of this building
technique, there is, however, still a lack of knowledge regarding the seismic assessment
of DSRWs.

Contrarily to static designs, the seismic design of such assets has been investigated only
recently, with experimental, analytical and numerical pseudo-static studies [18,22,27]. Still,
most of the building standards worldwide take seismic hazards into account in the design
procedures of structures [28]. The most complete (but also complex) approach used to assess
the seismic capacity of structures is the performance-based method. Originally introduced
by Newmark [29], it is still in use nowadays [30,31]. It computes the displacement of
a retaining wall during an earthquake motion. It then compares the response (e.g., top
displacement) with the maximum allowable displacement, from a structural point of view,
to draw conclusions on the acceptability of the design. This method often requires several
simulations with different seismic inputs on the same structure [30] to provide statistically
significant results. Thus, a simplified (and more engineering-oriented) approach is also
proposed by the Eurocode standards (EC8) for the seismic design of retaining walls [32],
where the seismic assessment of DSRWs is conducted using a pseudo-static method. A
seismic behaviour factor (also known as the seismic response modification factor), denoted
as r, reduces the reference design acceleration to account for a larger dynamic capacity,
related to a reserve of ductility given by the non-linear behaviour of the system. However,
such a factor has not been explicitly evaluated for DSRWs. As the structural behaviour of
DSRWs (the presence of weak block interfaces) is different from that of classical concrete
retaining walls, a dedicated seismic behaviour factor r for DSRWs should be identified.
Therefore, as its contribution to the current state of the art, the present work proposes a
research path to characterise a relevant seismic behaviour factor r for DSRWs. It involved
scaled-down dynamic experiments on DSRW mock-ups [33] to validate a numerical DEM
model before simulating full-scale DSRWs. Herein, Discrete Element Modelling (DEM)
is preferred to Finite Element Modelling, as large displacements are assumed to occur at
interfaces between blocks [34]. Additionally, DEM has already shown high potential to
reproduce the brittle failure of such structures [10,11,19,20].

The study first describes the numerical DEM modelling strategy (Section 2). Next, the
DEM model is validated against scaled-down laboratory experiments (Section 3). Section 4
presents numerical simulations of the full-scale DSRWs. Their comparison with pseudo-
static predictions gives an initial estimate of the behaviour factor r. The conclusions are
drawn in the final section.

2. Numerical DEM Strategy for Dynamic Simulations

The numerical strategy uses the plane strain software UDEC (version 7.0) developed
by the Itasca consulting group [35]. The numerical model consists of an assembly of
masonry units retaining a homogeneous backfill. Each masonry unit is represented by
a deformable homogeneous medium characterised by linear elastic isotropic parameters
(Young’s modulus E and Poisson’s ratio ν). The backfill is modelled as an elastoplastic
medium: its mechanical behaviour is driven by elastic parameters (Young’s modulus E and
Poisson’s ratio ν) and a Mohr–Coulomb plasticity criterion (friction angle ϕ, cohesion C,
tensile strength T and dilation angle ψ). Both the units and backfill are therefore meshed
using finite elements of size ∆z, which should respect the following inequality to ensure an
appropriate propagation of elastic waves through the media:

∆z < 0.1 × λmin = 0.1 × VS × Tmin = 0.1 × [G/ρ]0.5 × Tmin (1)

where λmin, VS and Tmin are the propagated waves’ smallest wavelength, shear velocity
and minimum period, respectively. G and ρ are the medium’s shear modulus and unit
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weight, respectively. Equation (1) does not constrain ∆z much (see Sections 3 and 4 for
a formal check). Therefore, herein, ∆z is defined based on the masonry unit height so
that at least six subcontact points are generated between each unit and the backfill, as this
parameter appears to be critical to reasonably reproduce the actual force distribution at the
interfaces [20,22,36,37].

Zero-thickness contact interfaces are assumed between the units and between the unit
and the backfill. They follow an elastoplastic Mohr–Coulomb criterion.

In UDEC, equations of motion are solved explicitly via a central finite difference
scheme. For each computational node of the finite element mesh (both units and backfill),
and at each time t, the dynamic equations of motions are solved as follows, thus giving
new positions and velocities at time t + ∆t:

miai(t) = ΣFi(t)

vi(t + ∆t/2) = vi(t − ∆t/2) + ai(t) × ∆t

ui(t + ∆t) = ui(t) + vi(t + ∆t/2) × ∆t

(2)

where ∆t corresponds to the timestep of the simulations; Fi corresponds to all the applied
loads, namely the external loads (gravity, dynamic shaking at the bottom of the model),
contact interactions between the different deformable bodies, and internal loads given by
classical continuum mechanics calculations [35]; mi, ai, vi and ui correspond to the associated
mass, acceleration, velocity and displacement of the computational node, respectively. At
the new simulation time t + ∆t, the positions of each computational node give the strain
of each finite element, which, in turn, updates the stress as a result of the constitutive
law of the material. Contact forces are also recomputed at this stage according to the
following equations:

∆Fn = Ac × kn × ∆un = Ac × kn × [un(t + ∆t) − un(t)]

∆Fs = Ac × ks × ∆us = Ac × ks × [us(t + ∆t) − us(t)]
(3)

where ∆Fn and ∆Fs are the normal and shear contact force increments at a given subcontact,
Ac corresponds to the subcontact area, kn (respectively, ks) is the normal (respectively shear)
elastic contact stiffness, and un (respectively us) represents the normal (respectively shear)
relative displacement between the two contact points. The constitutive law of the interface
is then applied (the Mohr–Coulomb model in this case), which reads:

Fn(t + ∆t) = Fn(t) + ∆Fn, Fn < T × Ac

Fs(t + ∆t) = Fs(t) + ∆Fs, |Fs| < Fs, max = C × Ac − Fn × tan(ϕ)
(4)

Additional expressions exist to include the dilation effect but are not presented because
hereafter, the dilation angle is always taken to be equal to zero [35]. Updating all the forces
in the system allows the resolution of the equations of motion (Equation (2)) for the next
simulation time t + ∆t.

Finally, numerical damping is used to model the actual energy dissipation. In dy-
namics, Rayleigh damping is generally preferred [37,38], including mass- and stiffness-
proportional contributions, because it gives constant damping across a relatively wide
frequency range. However, only mass-proportional damping is considered here, lead-
ing to a reasonable timestep ∆t [38]. Additionally, the input signals are all harmonic.
Therefore, the under-evaluation of damping at higher frequencies when disregarding
stiffness-proportional damping is insignificant for the current simulations.

In Sections 3 and 4, the numerical models are characterised by three different bound-
aries: free, fixed-velocity and free-field boundaries (Figure 1). In particular, the velocity of
the bottom computational nodes (the backfill and bottom wall units) are fixed to match the
dynamic solicitation. Next, a free-field boundary is applied to the right part of the model
(vertical boundary). An elastic 1D numerical model is first run parallel to the primary
model. It has the same dynamic input signal, elastic properties and computational nodes
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as the backfill boundary. At each time t, the velocities produced from this 1D model are
directly applied to the vertical boundary of the main simulation. In other words, it assumes
that the free-field boundary is far enough from the masonry wall (i.e., no impact of reflected
waves on the wall in the media close to the boundary).

Wall

Cohesive layer

Backfill Applied velocity Free-field boundary

Free boundaries

Figure 1. UDEC model of the experiments (see Section 3). The different boundary conditions
are detailed.

Spurious large deformations are obtained for non-cohesive backfill free layers because
there is zero confining pressure, and hence zero shear resistance, of the elements involved.
Therefore, an artificial thin cohesive layer is added to the backfill to stabilise the behaviour
of the shallow elements (Figure 1). Cohesion of only 2 kPa with a tiny depth avoids
unrealistic deformation without significantly modifying the global response of the system.

The following two sections focus on the numerical modelling of the scaled-down
experiments (Section 3) and full-scale walls (Section 4). The specifics of each model and
their numerical parameters are described in the corresponding sections.

3. Validation of the Model on Scaled-Down Experiments
3.1. Experimental Results

The numerical strategy is validated against an existing experimental campaign [33].
The reader is referred to the original study for a detailed description, while the primary
outcomes are gathered herein. Several scaled-down dry-joint retaining walls with different
slenderness H/B values (constant width B and different heights H) were subjected to
harmonic horizontal shaking (Figure 2). The walls were 400 mm long, 34 mm wide and
between 50 mm and 140 mm high. The bottom course of the masonry units was fixed to the
container. The walls were retaining a sandy backfill of the same height and length, with a
depth of 400 mm. An acceleration input signal (S(t)) of increasing amplitude and constant
frequency f (equal to 10 Hz, 30 Hz, 50 Hz or 70 Hz) was applied through a shaking table to
the bottom of the mock-up, as follows:

S(t) = A × t × sin(ω × t) (5)

where A is a constant that describes the amplitude rate, and ω is the angular frequency,
defined as: ω = 2 × π × f. The primary campaign used a frequency f of 10 Hz. The
horizontal displacement dtop of the second-to-last (top) course of bricks was monitored
through a laser sensor (Figure 2). Section 3.3 uses dtop to compare the experimental and
numerical outcomes. In reference [33], wall failure was declared when dtop exceeded 5%
of the wall height H. Note that H refers to the wall height free to move throughout the
shaking, disregarding the first fixed masonry course (see Figures 2 and 3).
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H

B

Figure 2. Retaining wall mock-up [33], for a wall of slenderness H/B = 3.3.

Fixed course

Section 1 Section 2 Section 3 Section 4
p₁ = 7/23 p₂ = 7/23 p₃ = 7/23 p₄ = 2/23

H

B

Figure 3. Four different cross-sections in the wall length illustrated for the walls with a slenderness
H/B = 2.7. Recall that H refers to the wall height free to move throughout the shaking, disregarding
the first fixed masonry course.

3.2. Numerical Parameters of the UDEC Simulations

The numerical models’ geometric data (external shape and unit dimensions) is drawn
from the experiments (Figure 1). Table 1 gathers all the parameters considered in the simu-
lations. The material properties considered in the numerical model are either collected from
the original study [33] or from numerical studies that modelled the same material [21,22]
when no experimental data were available. Apart from the small layer on the top of the
backfill, the cohesion C (continuum and interface) is always equal to zero (dry sand backfill
and dry contact wall assembly). Note that the timestep ∆t is automatically computed by
UDEC once all the numerical parameters are defined [35]. This led to 12 h of computation
(on an HP computer with a speed of 2.3 GHz) for 1 s of simulation, while the experimental
signals range from 15 to 30 s. According to Equation (1), the maximum allowable mesh size
is 70 mm in the backfill and 800 mm in the wall, both being much larger than the actual
numerical mesh size ∆z, which is equal to 2 mm.
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Table 1. Properties used for the numerical simulations of the scaled-down experimental tests.

Units Backfill Wall–Backfill
Interface

Volumetric properties

Unit weight γ (kN/m3) [33] 14.4 15.4 -
Elastic modulus E (MPa) 1000 10 -

Poisson ratio ν 0.2 0.3 -
Friction angle ϕ (◦) [33] - 45 -

Interface properties

Friction angle ϕ (◦) [33] 32 - 32
Normal stiffness kn (Pa/m3) 2.6 × 1012 - 3.0 × 1010

Tangential stiffness ks (Pa/m3) 2.6 × 1012 - 3.0 × 1010

Numerical parameters

Timestep ∆t (s) ≈1 × 10−6

Rayleigh viscous damping ξ 10% at 10Hz

The viscous damping coefficient ξ used in the numerical simulations is based on the
energy dissipation of the backfill. Preliminary simulations have allowed an evaluation
of the cyclic strain of the backfill. By using computational nodes intentionally placed far
from the wall (and the associated failure zones), a cyclic strain of 0.025% is found, which
is the typical threshold where damping greater than 5% can be observed [39]. As two
preliminary simulations using a damping ξ of 5% and 15% gave identical results (a relative
difference less than 2%), a damping value ξ of 5% is considered thereafter. Since only the
mass-proportional part of the Rayleigh damping is used, a multiplicative factor of 2 is
applied to the chosen value to ensure appropriate effective damping (5%) at the critical
frequency (Table 1) [35].

In the experiments, an absorbing foam placed at the back of the backfill was intended
to reproduce a “free-field boundary condition”. Preliminary simulations directly modelling
the foam with its properties (taken from [40]) revealed that modelling the right vertical
boundary with either an absorbing foam or with a free-field boundary led to almost
identical behaviour of the mock-up. The latter modelling strategy, being faster, has been
considered in the rest of this section.

UDEC assumes a unique cross-section along the wall while the actual walls are
3D assemblages with four different cross-sections (Figure 3); the first three are equally
distributed, while the fourth corresponds to the two ends of the wall. As the position of the
headers (and, in general, the assemblage) in the height of the wall significantly influences
the behaviour of dry-jointed structures [22,41,42], the four different cross-sections are
expected to have different responses (Figure 3).

Figure 4 shows the horizontal displacement dtop of the second-to-last course obtained
from the numerical simulations of the wall with a slenderness H/B = 2.7 using the first three
cross-sections; the fourth one has the same response as the second one (Figure 3). Next, the
global curve is computed, weighting the individual responses according to the proportions
in Figure 3 [22]. For each dtop, one finds the corresponding times in each response and then
weights them to obtain the global response time. This is illustrated in Table 2 for a single
displacement dtop equal to 5 mm. As can be noticed in Figure 4, the weighted response is
very close to the response of Cross-section 3 (a difference of less than 0.25 s for all points in
the signal). Therefore, Cross-section 3 is assumed to represent the global response and is
used alone in the following numerical simulations to save computational time.
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Figure 4. Comparison of the displacement at the top of the wall (slenderness H/B = 2.7) for the
different cross-sections (Figure 3) and the global weighted response.

Table 2. Computation of the weighted response illustrated with the threshold dtop equal to 5 mm.

Section No. Proportion Time for dtop = 5 mm (s)

1 7/23 18.4
2 7/23 21.5
3 7/23 19.9
4 2/23 21.5

Weighted average 20.1

3.3. Validation of the Modelling Strategy

As the first step, Figure 5 compares the numerical response dtop (only for Cross-section
3) with the experimental curves from five repeated tests on a wall with a slenderness H/B
= 2.3. The obtained trends are globally similar (also found for all the studied configura-
tions; not shown for brevity). In addition, the numerical response is encompassed by the
experimental ones, highlighting the validity of the numerical strategy.

Wall (numerical or experimental) failure was declared when dtop exceeded 5% of the
wall height H [33]. The acceleration at the instant of failure, taken from the dynamic signal,
is denoted Afail. Figure 6 and Table 3 compare the outcomes, both in terms of acceleration
at failure Afail and the observed failure mode, between the experiments and simulations.
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Figure 5. Comparison of the numerical response with the envelop of the experimental results [33] for
walls with a slenderness H/B = 2.3.

Figure 6. Comparison of the acceleration at failure (Afail) between the numerical simulations and
experimental tests for different wall slenderness (H/B).
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Table 3. Experimental and numerical acceleration at failure (Afail) for different wall slenderness:
the mean value is given when several experimental points are available. The relative difference is
computed by taking the experimental value as a reference. Finally, the detected failure modes are
also indicated.

Wall Slenderness (H/B) Exp. Afail (m/s2) Exp. Failure Mode Num. Afail (m/s2) Num. Failure Mode Error (%)

H/B = 1.3 4.2 S 3.7 S −11%
H/B = 1.7 4.6 S 3.4 S −27%
H/B = 2.3 3.3 S/T 3.2 S −5%
H/B = 2.7 3.2 T 2.6 T −18%
H/B = 3 2.7 T 1.7 T −35%

H/B = 3.3 2.0 T 1.4 T −32%

Mean −21%

Firstly, it can be observed that the numerical simulations accurately reproduce the
observed failure mechanisms. Secondly, the numerical simulations underestimate, on aver-
age, the actual experimental responses by 20%. However, since most numerical parameters
have been taken by default, the agreement is considered to be good. Furthermore, in [33],
the authors noted that the friction angle of the backfill sand could be as high as 55◦ (larger
than the considered value of 45◦). Table 4 shows the numerical underestimations of Afail for
the wall with a slenderness H/B = 2.7 for three different backfill friction angles (45◦, 50◦

and 55◦), which significantly affect the capacity of the walls.

Table 4. Effect of the backfill friction angle on the numerical acceleration at failure Afail of the wall
with a slenderness H/B = 2.7.

Backfill Friction Angle ϕ (◦) 45◦ 50◦ 55◦

Error compared with experiment (%) −18% −13% −10%

In addition, in Figures 4 and 5, one can also note that the numerical responses are
softer than the experimental ones, indicating that the estimated material properties may
need correction (e.g., units of Young’s modulus or joint stiffness). The comparison of the
accelerations at failure becomes sensitive to the chosen threshold value. For example,
considering a threshold of 10% (instead of the original 5%) to define the experimental and
numerical failures (Figure 5) decreases the average error from 21% to 16%. Finally, UDEC
does not catch 3D effects that are also partly responsible for the observed discrepancies. In
particular, the most resistant cross-section (Figure 3) may play a more significant role than
the weaker cross-sections, contrary to the assumptions of Table 2.

3.4. Effect of the Frequency

Figure 7 compares the numerical and experimental responses obtained for an input
signal with f = 30 Hz (instead of 10 Hz). An excellent agreement (a difference of less than
1%) is also noticeable when computing the acceleration at failure Afail (a threshold of 5%),
similar to the case with f = 10 Hz (Table 3).

To conclude, the precise calibration of the numerical model to fit the experimental
results is not sought here, since the number of parameters is significant. Nevertheless, it
has been shown that the numerical strategy is accurate enough for modelling the influence
of both the wall’s slenderness and the signal frequency on the wall’s response. Therefore,
this strategy is used further to simulate larger-scale systems (Section 4). Finally, the mod-
elling approach underestimates the actual capacity, which is conservative and particularly
important, as design recommendations are proposed in the following section.
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Figure 7. Comparison of experimental and numerical responses for a wall with a slenderness of
H/B = 2.3 subjected to a dynamic input of 30 Hz.

4. Full-Scale Numerical Simulations: Extraction of the Seismic Behaviour Factor
4.1. Description of the Case Study

The full-scale DSRWs considered in this section stem from the “C3s” DSRW taken from
the literature [16] (Figure 8). Table 5 gathers all the geometrical parameters of the DSRWs
numerically tested throughout this section (Figure 9). According to the experiments, the ma-
sonry units are 0.1 m high and 0.35 m long [16]; Table 6 shows all the numerical parameters.
Similar to Section 3, the viscous damping ξ is defined by preliminary simulations showing
a cyclic strain of 0.002% in the backfill, thus justifying a value of viscous damping equal to
5% [39], again multiplied by 2 since only mass-proportional damping is considered [35].

Figure 8. Picture of the “C3s” DSRWs tested by A.S. Colas: initial and collapse configurations are
shown [43].
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Table 5. Geometric parameters of the case study wall “C3s” and the DSRWs numerically simulated
in Section 4 [16]. The reader is referred to Figure 9 to understand the geometries better.

Geometrical Parameters Original Wall “C3s” DSRW1 DSRW2 DSRW3 DSRW4

Height H (m) 2.5 2.5 2.5 2.5 2.5
Width at base B (m) 0.7 0.7 0.7 0.7 0.7
Width at top b (m) 0.55 0.55 0.55 0.55 0.7

Internal batter λm (%) 0 0 0 0 0
External batter λv (%) 6 6 6 6 0
Bed inclination α (º) 9.1 9.1 9.1 3.4 0
Backfill slope β (º) 32.6 0 32.6 0 0

g p

©2019 Itasca Consulting Group, Inc.

©2019 Itasca Consulting Group, Inc.

©2019 It
asc

a C
onsu

ltin
g G

ro
up, I

nc.

©2019 Itasca Consulting Group, Inc.

DSRW1 DSRW2 DSRW3 DSRW4

DSRW1

H

b

B

β
λᵛ

α

λᵐ

Monitored point

Cohesive layer

Free-field boundary

Applied velocity

Free boundaries

W = 5m

Figure 9. Zoom images of the geometrical models for the numerical simulations of full-scale DSRWs.
The geometrical parameters are also depicted. The original case study “C3s” corresponds to DSRW2.

According to Equation (1), the maximum allowable mesh size is 1.6 m for the backfill
and 14.5 m for the units, which are again much larger than the actual numerical mesh size
of 17 mm. As shown in Figure 9, the top block’s horizontal displacement dtop is monitored
throughout the simulation and serves as the failure indicator (Section 4.2). Figure 9 also
presents the numerical boundary conditions (Section 2), while the width W of the backfill
is chosen to be equal to 5 m. Though this dimension may be considered small, Figure 10
illustrates that using a twice as large a width gives a similar wall response at the top
when the wall is subjected to a harmonic input (see Section 4.2 for a description of the
input signal). These simulations also validate the numerical procedure, analysing the
deformation of the backfill at wall collapse (Figure 11). Though a slight detachment of the
contact between the backfill and wall is noticeable at the very top of the wall, the backfill
mostly follows the movement of the wall. For comparison, a similar amount of detachment
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is noticed for the simulations of the scaled-down experiments (Section 3). This continuous
contact is sought to ensure an accurate transfer of forces at the wall–backfill interface, even
up to the system’s collapse.

Table 6. Mechanical parameters of the full-scale DSRW simulations. Most of the data come from the
reference experimental study [16,24,43], while the rest is taken on a default basis.

Mechanical Parameters Units Backfill [43] Interface

Volumetric properties

Unit weight (kN/m3) [43] 20.0 14.9 -
Elastic modulus E (MPa) 10,000 92.7 -

Poisson ratio ν 0.3 0.22 -
Friction angle ϕ (◦) - 37.7 -

Interface properties

Friction angle ϕ (◦) [43] 25.0 37.7 37.7
Normal stiffness kn (Pa/m3) 2.8 × 1012 - 2.9 × 1010

Tangential stiffness ks (Pa/m3) 2.8 × 1012 - 2.9 × 1010

Numerical parameters

Timestep ∆t (s) ≈ 5 × 10−6

Rayleigh viscous damping ξ 10%

W = 10

W = 5

Figure 10. Comparison of the responses given by the numerical simulations of DSRW1 for two
backfill widths W.
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Stable model Model at collapse

Full-scale simulations Scaled-down simulations

Model at failure (5%)

Figure 11. Numerically obtained deformation for DSRW1. At the wall’s collapse, the backfill is still
in contact with the wall and adapts well to the sliding between courses. Similar findings are obtained
when modelling the experiments (Section 3).

4.2. Dynamic Input Signal

As is common in earthquake engineering, the present study adopts horizontal har-
monic signals (with different frequencies) as dynamic inputs to simplify the chaotic nature
of actual ground motions: it allows a more straightforward (with fewer parameters) defini-
tion of the dynamic inputs [44–47].

The maximum magnitude of earthquakes expected in France does not exceed M = 7,
the most significant event having had an estimated magnitude of M = 6.2 (Lambesc,
1909). According to the literature, the duration of earthquakes may be linked to their
magnitude [48–52]; hence, to be as close as possible to the metropolitan French seismicity,
the duration T of the input signal aims to reach T = 15s [45]. This appears to be slightly
lower than the outcomes of the formulas proposed in [49–51] but keeps practical durations
of the numerical simulations. In addition, no earthquakes with a longer duration T have
been recorded in metropolitan France.

Finally, the intended input signal S1(t) shape is shown in Figure 12a (analytical equa-
tions similar to Equation (4)). It is composed of an increasing and a decreasing part,
idealising seismic accelerograms. Based on the analysis of several actual recorded earth-
quakes [53–55], the duration of the decreasing part is defined as twice the increasing one.
One must note that the exact time of the signal peak Apeak (hereafter named peak accel-
eration) will not significantly influence the structural response, as the total energy of the
signal is not affected by this parameter. The resistance of a given DSRW is defined as the
maximum peak acceleration Apeak that leads to wall stability after applying an input signal
S1(t) of signal peak Apeak (Figure 12a). To obtain a first rough estimate of the resistance of a
single DSRW, at least two 15 s simulations with different Apeak values are necessary: one
leading to a stable wall and one to collapse.

Envisioned as a less costly parameter, Acol is the maximum acceleration that still guar-
antees the wall’s stability after application of an input signal with only a single increasing
ramp S2(t), truncated to Acol (Figure 12b). The definition of the instant of collapse (Figure 12)
is derived from a preliminary simulation of DSRW1 with f = 5 Hz (Figure 13). In particular,
DSRW1 is found to be stable at simulation time t1 (Figure 13a,b) but unstable a few instants
afterwards, at time t2 (Figure 13c,d). According to Figure 13e, a top wall displacement dtop
equal to 20% of the wall height delimits these stable and collapse states well. Therefore,
Acol is designated as the acceleration of S2(t) when dtop exceeds 20% of the wall height.
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Apeak
Collapse instantAcol

a) b)

Figure 12. Example of the harmonic input signals S(t) used in the numerical simulation of full-scale
DSRWs with a frequency of f = 3Hz. (a) S1(t): signal with two ramps, idealising a seismic signal and
(b) S2(t): signal with an infinitely increasing ramp. Note that the increasing ramps of both signals
have the same slope.

After stabilisationBefore stabilisation

t1

t2 Collapse

a) b)

c) d)

e)

t1

Figure 13. Definition of the threshold indicating the DSRW’s collapse using the input signal S2(t).
(a) DSRW1 at simulation time t1; (b) DSRW1’s stabilisation under vertical gravity only, starting from
simulation time t1; (c) DSRW1 at simulation time t2; (d) DSRW1’s stabilisation under vertical gravity
only, starting from simulation time t2; (e) comparison of the obtained displacement up to simulation
times t1 and t2.

Finally, based on DSRW1, the ratio between Apeak and Acol is estimated through one
simulation with S2(t) as the input signal and two simulations with S1(t) (Apeak = 0.6 × Acol
and Apeak = 0.7 × Acol, respectively). Note that the three increasing ramps have the same
slope, resulting in slightly different durations T for S1(t), though these are very close to
the intended duration of 15 s (Figure 14a,b). As depicted in Figure 14, in the first case
(Apeak = 0.6 × Acol), DSRW1 remains stable throughout the motion, while in the second case
(Apeak = 0.7 × Acol), it collapses. Therefore, 60% is relevant to characterising the Apeak to Acol
ratio. In Section 4.4, the numerical simulations apply only S2(t) to the walls to identify Acol.
Next, if we assume that it does not significantly depend on the system’s parameters (wall,
frequency and signal ramp), the ratio 60% gives an estimate of Apeak. In particular, this
strategy considerably reduces the computational time (by three to four times) compared
with a direct evaluation of Apeak using only S1(t) signals.
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Collapse

Figure 14. Evaluation of the ratio between Apeak and Acol for DSRW1: (a) dynamic input signal with
Apeak = 0.6 × Acol; (b) dynamic input signal with Apeak = 0.7 × Acol; (c,d) models at Apeak; (e,f) models
at the end of the dynamic input; (g,h) computation of the post-seismic static equilibrium.

4.3. Different Configurations Tested

First, four geometries of DSRW are investigated numerically (Figure 9 and Table 5).
They are subjected to input signals S2(t) with a frequency of f = 5 Hz (Figure 12b). To
keep approximately constant simulation durations (linked to the intended duration of the
idealised seismic signal S1(t), T = 15s), the collapse time tcol is always intended to equal
8.3 s. Therefore, as the walls have different intrinsic resistances, the respective slopes of
S2(t) need to be different. Herein, for each wall, the slope is defined so that its pseudo-static
resistance is always reached at 2.5 s, which leads to approximately the same duration for
the simulations (Section 4.4).

Next, DSRW1 is subjected to input signals S2(t) of different natural frequencies (f = 3,
5 and 10 Hz). Frequencies larger than 10 Hz are not critical to DSRWs (Section 4.4), while
frequencies smaller than 3 Hz are not representative of the frequency of earthquakes in
metropolitan France. Finally, a vertical dynamic signal is added to the horizontal one S2(t)
for two additional simulations involving DSRW1. The vertical input signal has the same
shape as the horizontal input S2(t) and half the amplitude, according to the ratio proposed
by Eurocode 8 [27,32]. In the first simulation, the positive peaks of the horizontal and
vertical accelerations are in-phase, while in the second one, they are in opposite phases.
In these cases, the slope of S2(t) is recomputed, accounting for the vertical acceleration
that updates DSRW1’s pseudo-static resistance. The outcomes are presented in Figure 15
and compared with the original case. The most critical case appears when the signals
(horizontal and vertical) are in opposite phases; in other words, when the maximum
(positive) horizontal load coincides with the minimum (negative) vertical load, i.e., with the
minimum equivalent natural vertical gravity. Table 7 summarises the collapse acceleration
Acol and time tcol for each simulation. As expected and intended, tcol is only slightly affected
by variation in the parameters. On the contrary, the acceleration at collapse Acol is more
affected: in particular, DSRW2, the only wall with a sloped backfill, has a much lower
capacity, illustrating the negative effect of backfill slopes on the stability of DSRWs, similar
to retaining walls in general.
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Figure 15. Comparison of the response of DSRW1 subjected to dynamic input signals with and
without vertical acceleration.

Table 7. Collapse acceleration Acol and time tcol for all simulations performed. Here, tcol is almost
constant for all the simulations (with a range between 7.6 s and 9.5 s, and a coefficient of variation
of 7%).

DSRW Name DSRW1 DSRW2 DSRW3 DSRW4

Frequency (Hz) 3Hz 5Hz 10Hz 5Hz 5Hz 5Hz 5Hz 5Hz
Vertical acceleration - - - in-phase opposition - - -

tcol (s) 7.6 8.5 9.5 8.9 8.6 9.4 8.3 8.5
Acol (m/s2) 4.83 5.38 6.03 5.34 5.19 1.83 5.06 4.63

4.4. Comparison of Pseudo-Static Predictions and the Estimated Behaviour Factor r

Table 8 estimates the peak acceleration Apeak for each DSRW, considering the ratio of
60% found in Section 4.2. In addition, Table 8 also shows the pseudo-static resistance Apseudo
of each wall computed using an analytical approach based on the limit-equilibrium of a
Coulomb’s wedge of soil [18,27]. The properties used in the analytical model are the same
as for the numerical simulations (Tables 5 and 6). Furthermore, the stones are assumed to
be perfect, which leads to a high interface stiffness in the numerical simulations (Table 6)
and no internal rotation of the stones in the analytical approach (see the details in [56]).

Finally, Table 8 estimates the behaviour factor r for the investigated DRSWs as the
ratio between the peak acceleration Apeak, and the pseudo-static resistance Apseudo. On
average, the behaviour factor r equals 2.08, with a minimum value of 1.83. Therefore, to
fit the thresholds (1, 1.5 or 2) recommended by Eurocode 8 for retaining walls [32], the
authors propose r = 1.5, which is conservative, as it is intended to be used for practical
design/assessment. Furthermore, the latter can readily be used in conjunction with a
pseudo-static approach to give fast practical recommendations on-site. This is of particular
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interest when many DSRWs need to be assessed/designed, requiring fast methods where
performance-based approaches are less competitive, as they require more computational
time and often need several expensive time-history analysis to give reliable results.

Table 8. Comparison of the collapse acceleration Acol, the estimated peak acceleration Apeak and the
pseudo-static resistance Apseudo, along with the estimated behaviour factor r for every single numerical
case in this study. When the vertical acceleration is accounted for, the displayed accelerations only
show the horizontal components, the vertical ones being always half of the latter.

DSRW Geometry DSRW1 DSRW2 DSRW3 DSRW4

Frequency (Hz) 3Hz 5Hz 10Hz 5Hz 5Hz 5Hz 5Hz 5Hz
Vertical acceleration - - - in-phase opposition - - -

Acol (m/s2) 4.83 5.38 6.03 5.34 5.19 1.83 5.06 4.63
Apeak = 0.6 × Acol (m/s2) 2.90 3.23 3.62 3.21 3.11 1.10 3.04 2.78

Apseudo (m/s2) 1.58 1.58 1.58 1.50 1.50 0.49 1.36 1.52
r = Apeak/Apseudo 1.83 2.04 2.29 2.14 2.07 2.26 2.00 2.04

5. Conclusions

This work presents dynamic numerical simulations involving dry-stone retaining
walls (DSRWs). Firstly, a discrete element modelling (DEM) tool is validated against a
scaled-down laboratory mock-up subjected to horizontal harmonic shaking. The outcomes
show good agreement regarding the collapse mechanism and the shape of the response
while predicting a slightly lower failure capacity, thus being conservative. It is also noted
that the agreement holds for various slenderness and frequency values.

Next, time-history dynamic simulations involving full-scale DSRWs are carried out.
The associated data are taken from the literature. The dynamic input signals are harmonic,
aiming to model seismic motions in a simplified and fully controlled manner. The signals’
properties are based on the most critical seismicity of French metropolitan areas. However,
the outcomes also hold for any country with a similar (or lower) seismicity. The effects of
the frequency and the vertical acceleration are investigated. It is found that the frequency of
the input signals is the most critical characteristic of the motion, and it noticeably modifies
the maximum acceleration supported by the DSRW.

Finally, the behaviour factor r is deduced for each simulation, comparing the pseudo-
static resistance with that obtained from the time-history dynamic simulations. An average
factor r = 2 is found, with a minimum value (for low frequencies) of 1.8. Therefore—and
this is the novelty of the present study—the authors advise a conservative value of r = 1.5
for DSRWs, chosen among the recommended values by the Eurocode 8 standard. This
value can readily be used in a practical framework to assist engineers and practitioners in
designing new (or assessing existing) DSRWs following a classical pseudo-static approach
for fast analyses.

Future work will involve sets of artificial and recorded seismic motions to confirm the
recommended value for the seismic behaviour factor r.
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