
HAL Id: hal-03702259
https://hal.science/hal-03702259

Submitted on 23 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Run-time remapping algorithm of dataflow actors on
NoC-based heterogeneous MPSoCs

Mostafa Rizk, Kevin J. M. Martin, Jean-Philippe Diguet

To cite this version:
Mostafa Rizk, Kevin J. M. Martin, Jean-Philippe Diguet. Run-time remapping algorithm of dataflow
actors on NoC-based heterogeneous MPSoCs. IEEE Transactions on Parallel and Distributed Systems,
2022, 33 (12), �10.1109/TPDS.2022.3177957�. �hal-03702259�

https://hal.science/hal-03702259
https://hal.archives-ouvertes.fr

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 1

Run-time remapping algorithm of dataflow actors
on NoC-based heterogeneous MPSoCs

Mostafa Rizk, Kevin J. M. Martin, and Jean-Philippe Diguet

Abstract—Multiprocessor system-on-chip (MPSoC) platforms
have been emerging as the main solution to cope with pro-
cessor frequency ceiling and power density issues while still
improving performances. Then, network-on-chip (NoC) has been
adopted to provide the increasing number of processors with
the required communication bandwidth as well as with the
necessary flexibility. Video processing and streaming applications
are adopting dynamic dataflow model of computation as the need
for high performance parallel computing is growing. Dataflow
applications executed on modern MPSoC-based architectures are
becoming increasingly dynamic and more data-dependent. Dif-
ferent tasks execute concurrently with significant modifications
in their workloads and resource demanding over time depending
on the input data. Hence, adopting any static or offline dynamic
scheduling for mapping tasks will not cope with the computation
variations. This paper introduces an original run-time mapping
algorithm based on the Move Based (MB) method targeting
a dedicated heterogeneous NoC-based MPSoC architecture to
achieve workload balancing and optimized communication traf-
fic. The performance of the proposed algorithm is verified by
conducting cycle-accurate SystemC simulations of the adopted
NoC implementing a real MPEG4-SP decoder. The obtained
results reveal the effectiveness of our proposed algorithm. For
various real-life videos, the proposed algorithm systematically
succeeded to enhance significantly the performance.

Index Terms—NoC, Heterogeneous MPSoC, Run-time remap-
ping, Dataflow actor, Move-based algorithm.

I. INTRODUCTION

MULTIPROCESSOR system-on-chip (MPSoC) plat-
forms have been emerging as the main solution to cope

with processor frequency ceiling and power density issues
while still improving performances. Then, networks-on-chip
(NoCs) have been adopted to provide the increasing number
of processors with the required communication bandwidth as
well as with the necessary flexibility. But legacy code for
instance, mainly designed for single or few core architectures,
does not scale well with manycore architectures and fails
to fully benefit from the available parallelism. However, as
discussed decades ago [1], dataflow programming can address
the limitations of conventional approaches regarding synchro-
nization and shared memory issues. With the rise of massively
parallel architectures, we can reconsider the use of dataflow

M. Rizk is with CNRS and member of Lab-STICC UMR CNRS 6285,
Brest, France also with the School of Engineering, International University of
Beirut, Lebanon, and with the Physics and Electronics Department, Lebanese
University, Lebanon. e-mail: mostafa.rizk@imt-atlantique.fr

K. J. M. Martin is with Universtité de Bretagne-Sud (UBS) and member
of Lab-STICC UMR CNRS 6285, Lorient, France

J-P. Diguet is with CNRS and member of CROSSING, IRL CNRS 2010,
Adelaide, Australia

Manuscript received Month DD, YYYY; revised Month DD, YYYY.

programming as a solution to efficiently exploit the resources
of parallel architectures for computing intensive application
domains such as video coding, computer vision, machine
learning and physics simulation for instance.

A dataflow application can be specified as a graph where
nodes, called actors, process data called token(s). The compu-
tational models are based on First-In First-Out (FIFO) buffers
and respect their formalized read and write rules. Each FIFO
holds a set of tokens. Fig. 1(a) illustrates a network of actors,
which exchange tokens through defined FIFO channels [2].
Fig. 1(b) presents an example of a structure of the software
FIFO generated with the tool ORCC [3]. A network of actors
holds specific features that make it different from a generic
task graph. First, an actor is non-preemptive. Once started, an
actor ends its execution. Second, the actor can start if and
only if there are enough tokens as input, and enough space
in the output FIFOs. The FIFOs are considered updated (i.e.
tokens consumed and produced) at the end of the execution of
the actor, establishing a conservative synchronization scheme,
and preventing from any data race.

When the number of actors is larger than the number of
processing elements (PEs), then the main design challenge is
the mapping of actors on the network of PEs. In the case
of static dataflow [4], where the number of tokens produced
and consumed by the actors is known, an optimal solution
can be computed offline [5]. However, an increasing number
of applications cannot be specified with a static graph since
the performance improvement of complex applications usually
lead to context and data-dependent optimizations. This evolu-
tion is, for instance, significant in the domain of video coding.
Dynamic models are then used to express data-dependent
behavior of some applications [6]. Dynamic dataflow is a
useful model of computation (MoC) for handling streaming
data and video processing applications.

As the workload of an actor may change according to the
input data set, adapting the mapping while the application
runs is required to optimize the use of the computing and
communication resources. The mapping problem is known
as NP-complete. Heuristic methods, for a fast response time,
are thus required to address manycore architectures. Run-
time adaptation relies on system observation, decisions and
configurations. Several previous works have addressed the
problem of task mapping at run-time. In [7], the authors
have proposed a dynamic resource balance algorithm targeting
NoC-based Many-core homogenous platforms to enhance the
system performance by balancing the utilization of on-chip
computing resources and communication resources. In [8],
the authors have introduced a hybrid application mapping

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 2

(a) Network of Actors

Size

Content

Number of
readers

Index of readers

Index of writer

Base address

Base address
+ 4

Base address
+ 4 + Size *
size_of_type

(b) Structure of the software FIFO

Fig. 1. Actors and software FIFO Models [2]

that combines design-time analysis with run-time mapping
in the context of dynamic thermal and reliability-aware re-
source management. Most of the available methods focus
on determining the suitable mapping of tasks before starting
the execution of the application [9], [10], [11], [12], [13],
[14]. The mapping of actors is also an active topic for other
target platforms like Coarse-Grained Reconfigurable Arrays
(CGRA) [15] or Field Programmable Gate Array (FPGA) [16].

This research work addresses the problem of reconfiguring
at run-time and at the application level the mapping of dataflow
actors on heterogeneous processors. In this work, heteroge-
neous means that processors share the same instruction set
architecture (ISA) while having different coprocessors and
different clock domains. The proposed method, which is
called run-time remapping, relies on continuous monitoring
of exact performance metrics such as the computational time
and communication time during real-time execution of the
application. Accordingly, a new mapping of the involved actors
is determined at run-time targeting the enhancement of the
overall performance. This approach is sequentially repeated
while the application is running. The application is neither sus-
pended nor modified. The proposed remapping method meets
with the dynamic behavior of dataflow applications. Static or
offline mapping methods cannot capture the dynamic behavior
and thus may not lead to optimal solutions. Also, on-the-fly
and hybrid mapping methods suffer from a lack of means to
monitor the performance and remap the actors accordingly.
In order to apply the proposed method, the architecture of
NoCs must be augmented to efficiently provide new services
of monitoring performance metrics and remapping the actors,
which are not available in conventional networks.

Adopting the devised remapping method and NoC-based
architecture leads to balancing the workload. The obtained
results show that the adoption of the remapping method
reduces the standard deviations of the computational times
and communication times of involved processors by 38.58%
and 69% respectively. Thus, the variation of the use rate of
processors is reduced compared to running the application
without remapping. In addition, a reduction of 8.6% in the total
execution time has been achieved as well as a reduction of 21%
in the number of packets’ hops is recorded when comparing
to the execution without remapping.

In this paper we introduce three contributions:
• First, we optimize for a NoC-based architecture with het-

erogeneous processors, a new run-time remapping (RR)
algorithm based on the Move Based (MB) method [17],
which allows only one actor to move at a time from one
processor to another. Our solution is then compared with
state of the art methods for dataflow architectures.

• Second, we present new NoC services that allow to
implement the observation and adaptation mechanisms.

• Finally, we demonstrate our solution with a full im-
plementation of MPEG4-SP, which is available as a
reference of a typical dynamic dataflow application. It is
also complex enough to exhibit data-dependent execution
and communication times. We consider a SystemC packet
cycle-accurate NoC simulator to fully decode reference
videos and demonstrate the effectiveness of the adaptation
mechanism with a real-life dataflow application.

The rest of the paper is organized as follows. Section II
presents the related work. Section III illustrates the adopted
architecture model. Section IV describes the processing flow.
Section V details the conducted experiments and presents the
obtained results. Finally, Section VI concludes the paper.

II. RELATED WORK

The question of mapping parallel applications on multi or
many-core architectures is a very wide problem, with a large
number of dimensions, including the programming model, the
target architecture (homogeneous or heterogeneous, bus-based
or NoC-based, etc.), and the optimization goal (throughput,
execution time, energy, etc.) [18]. The interested reader can
refer to the paper gathering different mapping strategies for
NoC-based architectures [19]. Following the taxonomy pro-
posed in [18], the mapping problem can be solved based on
two main strategies: design-time, and run-time. When solved
at design-time, the mapping is called static since it’s computed
offline and does not change while the application runs. This
approach allows for exact methods to find an optimal solu-
tion [20] [5] [15], but suffers from a lack of flexibility since
it cannot capture the dynamic behavior of some applications.
Moreover, even in the case of deterministic execution times of
actors in a static context, the paper [21] interestingly shows
the difference between the optimal mapping obtained from a
well-formalized problem and the real execution trace, due to
execution variabilities coming from the hardware.

The dynamic workload should be handled using run-time
techniques. The run-time mapping strategies can themselves
be divided into two categories: on-the-fly mapping, or hybrid
mapping. On-the-fly mapping techniques are application- and
platform-agnostic and solve the problem online. Very simple
and efficient heuristics should be used to shorten the response
time. For NoC-based MPSoCs, various fast heuristics targeting
the reduction of communications under constraints have been
already proposed [22] [23] [24]. These approaches consider
one task per core. Allowing multiple tasks on one core is
considered in [10]. Heuristics are fast but can be far from
optimal solutions, so hybrid approaches have been introduced.
They are based on pre-computed optimal solutions for a set
of cases. The job is split into two phases: (1) at design-
time, a set of solutions is computed, and (2) one solution

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 3

is selected at run-time. A wide variety of approaches can
then be cited: based on traces in [25], on priority in [26],
on scenario in [27], on previously identified design points
in [28], or on WCET and scheduling in [29]. None of these
studies demonstrates its efficiency with real video applications
running reference sequences. The proposed real-time mapping
reconfiguration method in [8] requires to suspend the currently
running application and the manager remaps the tasks at run-
time according to scenarios previously defined at design-time
based on the evaluation of multiple mappings, optimizing for
their resource requirements and power consumption. Finally,
a last approach can fall into the family of hybrid mappings,
which considers to recompute partially the mapping problem
at run-time. This is called run-time remapping. The work
presented in this paper follows such an approach for dataflow
applications and leverages design-time analysis profiling re-
sults to find at run-time a first mapping. The application is
then monitored to update the profiling results and a run-time
remapping algorithm runs regularly to check if a new mapping
would be better than the current one.

Among the innumerable papers dealing with task mapping,
we consider run-time methods for dataflow tasks, and have
identified a limited number of solutions. In [30], the mapping
is modeled as a graph partitioning problem, and the problem is
solved at run-time by METIS tool, based on profiling informa-
tion obtained by a first run. Though the migration cost of the
actors is not taken into account, the results are promising and
could be improved if the mapping does not change completely
at each iteration. The approach in [17] allows to successively
refine the mapping according to the dynamic behavior of the
application, by allowing only one actor to move at a time from
one processor to the other. This approach assumes dynamic
dataflow application and the target architecture is composed
of several heterogeneous cores interconnected by a bus or a
NoC. The communication cost is computed based on a rough
analytical model of the interconnection network, with the loss
of accuracy that comes with it, whereas in our work, we
consider profiled values gathered automatically by the system,
with a finer grain down to the link. In [31], the application is
specified with KPN (Kahn Process Network) and the target
architecture is a shared-memory based MPSoC, with also
a model of the communication channel (bus or NoC). The
approach proposes to rely on three main steps: the two usual
design-time preparation and run-time mapping steps plus a
new customization step. The design time step computes a set
of candidates and populates a database. The run-time mapping
initialization derives from the candidates a new initial mapping
for the given workload. Finally, the run-time customization
step incorporates a Scenario-based run-time Task Mapping
(STM) algorithm that is applied to find new mapping of tasks
when the system detects that an objective is unsatisfied. It
first detects the so-called critical task and then identifies why
it misses its objectives: either poor locality or load imbalance.
In case of poor locality, an algorithm that considers the
communication between tasks is used to find a new mapping.
In case of load imbalance, a load balancing strategy based on
computational demands of the tasks is used. This step produces
a new mapping that may move several tasks, which leads to

a (re-)mapping overhead.
When focusing on the small subset of the existing work

around hybrid and run-time (re-)mapping of dataflow appli-
cations on NoC-based architectures, we consider the work
presented in [31] for comparison.

III. ARCHITECTURE MODEL

The target architecture is a heterogeneous Multi-Processor
System on Chip (HMPSoC) containing several different PEs
and shared memories connected with a Network-on-Chip
(NoC). Fig. 2 presents the structure of the adopted NoC-
based architecture. Our method is scalable and without loss
of generality we consider a specific model of architecture
which is required for a data-accurate functional simulation
with a packet-level time accuracy. The target architecture is a
4× 4 mesh-based NoC with 32-bit links that interconnects 28
intellectual property (IP) cores including 15 memory modules,
12 PEs and a processing element that acts as a manager
(MGR). The PEs and memory modules are technologically
independent of the structure of the NoC. They communicate
through the network using a network interface (NI). We
consider a simple NoC model that employs the wormhole
packet switching mode, the deterministic XY routing algo-
rithm, and a flow control policy without virtual channels. The
implemented routers have one buffer of 3 flits per input port
and use distributed arbitration logic (one arbiter per port).
The back-end part of the NI is typical and includes a packet
maker/un-maker, which are used to assemble and disassemble
the packets, and a priority manager to synchronize packet
transmission and reception.

In this work, it is assumed that PE1 imports the incoming
streamed data from an Input buffer and PE12 outputs the
processed data. Fig. 2 illustrates the buffers in order to com-
municate with external systems. Each PE has its local memory.
It is assumed that there are no restrictions to map any MPEG4-
SP application actor to any PE. The used PEs can all work in
parallel according to dataflow firing rules. However, some PEs
are enhanced by hardware accelerators dedicated to certain
functionalities in order to perform them more efficiently. The
shared memories are distributed in memory blocks which have
a unique NI. From an NoC perspective, the novelty is the
introduction of new command packets used as instructions
to manage FIFO accesses, broadcast mapping information,
collect monitoring data, and the transfer of binary codes. In
order to cope with the command packet and associated noti-
fication packet concepts, the NIs implement some additional
logic modules. The command packets were already proposed
in [32] but only produced by the manager and for a specific
application.

A. Manager

The manager is a PE dedicated to the following five tasks:
(1) map initially the actors on the available PEs, (2) parse
the feedback collected data from all modules (memories and
PEs), (3) apply the run-time remapping algorithm and selects
the actor to be moved (if any), (4) notify the corresponding
PEs (looser, gainer, etc.) about the updated mapping and

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 4

R00

MFM
8

MFM
5

MFM
1

MFM
10

PE7

PE5

PE1

PE9

MIM

MFM
6

MFM
2

MFM
11

PE2

PE10

MFM
3

MFM
12

MGR

PE3

PE11

MFM
9

MFM
7

MFM
4

MFM
13

PE8

PE6

PE4

PE12

R10

R20

R30

R11

R21

R01

R31

R12

R22

R02

R32

R13

R23

R03

R33
32 bits

BCM

R RouterPE
Processing
Element

MFM
Multi-FIFO
Memory Module

MIM
Mapping/Monitoring
information memory module

BCM
Binary code
memory module

MGR Manager

.

.

.

.

.

.

Input
Buffer

Output
Buffer

Fig. 2. The structure of the used NoC-based architecture

TABLE I
HARDWARE ACCELERATORS USED IN THE SIMULATION PLATFORM

PE ID Accelerated Function Acceleration Ratio
PE3 & PE6 IDCT 1/0.3

PE4 IQ + IAP 1/0.75
PE10 Add 1/0.57
PE11 Interpolation 1/0.4

(5) manage the transferring of the binary code corresponding
to the moved actor from the shared memory into the cache of
the gainer processor.

B. Processing Elements

The target platform includes twelve PEs. All PEs are
supposed to be able to execute any of the forty-one actors
involved in the MPEG4-SP application. As the number of PEs
is smaller than the number of actors, each PE is considered
to run more than one actor. Hence, an actor scheduler is
required to manage the order of execution of actors. Mainly,
in dataflow applications, all schedulers suffer from inefficient
polling which leads to useless memory accesses when a
scheduling attempt fails. In this work, the well-known round-
robin scheduling technique has been adopted in all PEs. The
actors are given the attempt to be executed in a circular order
without priority. The PE will execute the allocated actor if
there are enough input tokens and enough space in the output
FIFOs as specified in dataflow applications.

Furthermore, some PEs are augmented with hardware accel-
erators in order to perform special functions more efficiently.
In this work, we adopt one of the hardware accelerator specifi-
cation described in previous similar work [17]. Table I shows
the list of accelerators adopted in the simulation platform. In
addition, the PEs have been specified randomly to operate
on different frequencies. Table II shows the randomly chosen
operating frequency of all PEs in terms of the NoC operating
frequency f .

C. Memory Modules

The tailored platform integrates three types of memory
modules. Each module includes a memory block that returns
the data allocated at its specified address. Since the PEs and
the manager do not recognize the local mapping of stored data

TABLE II
PROCESSING ELEMENT OPERATING FREQUENCY

PE ID Operating Frequency
PE1, PE12, MGR f
PE2, PE6, PE10 2f
PE3, PE7, PE11 3f

PE4, PE8 4f
PE5, PE9 5f

in each memory module and in order to remain compliant with
any available memory, the typical NI is extended to accommo-
date the services for managing the addressing and arranging
the retrieved output bits into flits. These new functionalities
are implemented as additional components in the front-end of
the NI corresponding to each memory module type in order
to be independent of NoC parameters. In the following the
functionalities of each memory type is described.

1) Binary code memory module (BCM): It contains the
binary codes of all actors. The manager sends a specific packet
request to BCM to forward the binary code of the moved actor
to a given PE according to the decision taken after executing
the RR algorithm. A simple module, so-called memory address
mapper (MAM), is integrated into the NI of the BCM in order
to find the correct memory address. For a specific actor, MAM
determines the starting address of the binary code and its
corresponding size based on the actor’s ID and by the means
of simple look-up-tables that include the starting addresses and
the size of the binary codes of all actors. Furthermore, MAM
manages the extraction of data from the memory and delivers
it to the packet maker unit.

2) Mapping/Monitoring information memory module
(MIM): This memory module accommodates twelve memory
blocks. Each block is dedicated to a specific PE and is
supposed to store two types of data. The first type is the
mapping information, which is generated by the manager
and indicates which actors are to be executed by each PE in
addition to their supplementary information about input and
output FIFOs and the reading orders for each input FIFO
(III-D1c). The second type is the monitoring information
(III-D1e), which is collected by the PEs during processing
a specified number of video frames. Storing the monitoring
information overwrites the mapping information, which is not
needed by the PEs anymore.

When a packet holding either mapping or monitoring in-
formation is received, the MIM module first identifies the
corresponding PE. Accordingly, it dissembles the packet and
stores the data found in the packet payload into the memory
block assigned to the identified PE.

Moreover, the MIM informs the manager about the avail-
ability of new monitoring information and the corresponding
PE about the availability of new mapping information. To do
so, the MIM sends notification packets (III-D1a) as per the
concept of notifying memory concept demonstrated in [2]. In
addition, the MIM responds to reading requests (III-D1b) sent
from the manager to acquire the stored monitoring information
from the PEs or to get the new mapping information.

3) Multi-FIFO memory module (MFM): This type of mem-
ory module is dedicated to store the data which is either

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 5

TABLE III
ADDRESSES DETERMINED BY THE MFM-NI CONTROLLER

Packet Type Starting Address Offset
Request/Set writing index FIFOsize 0
Request/Set reading index FIFOsize+ 1 reading order
Reading Request packet Reading address incremented till

Data packet Writing address reaching data size

imported to the system or processed by the PEs. Each MFM
accommodates a specific number of FIFOs. Only one FIFO
is used at once. The inputs of all FIFOs are connected to
the module’s inputs using demultiplexers whereas the FIFOs’
output data ports are multiplexed. This signal is buffered from
the value of FIFO address which is specified in the payload
of the arriving packets (see Fig. 4). The multiplexer and
demultiplexers are added to the adapter in the NI.

Moreover, the MFMs receive the following types of packets:
(1) FIFO Index packet (III-D1f) that aims either to retrieve
or to set the writing and reading indexes, (2) Data Reading
Request packet (III-D1g) that demands to read data from a
specified FIFO and (3) Data packet (III-D2a) that is used to
write data in a specified FIFO.

A simple circuit is integrated into the adapter of the NI in
all MFM modules in order to manage the memory addressing
for all listed-above packet types. It is composed of a simple
controller and two 4-to-1 multiplexers and an adder in order
to generate the appropriate address values to be given to
the MFM FIFOs. After disassembling the arriving packet,
the packet un-maker delivers the packet type and the data
size to the controller. Accordingly, the controller generates
the control signals to configure the two multiplexers, which
are dedicated to select the values of starting address and the
offset as listed in Table III. These two values are then added
to compute the memory address. In addition, the controller
determines the number and type of the required memory
accesses. It incorporates a simple comparator and an address
counter which is incremented for each required access.

D. Packets’ structure

The developed NoC architecture considers two categories
of packets: (1) command packets and (2) data packets.

1) Command packets: Command packets are initiated by
the cores and processed by the NIs of destination nodes. Sev-
eral command packets, described hereafter, have been opted
in order to manage FIFO accesses, send mapping information,
collect monitoring data, and manage the transferring of binary
codes.

a) Notification packets (NP): The NPs aim to inform
the PEs that new information is ready to be requested. This
technique is inherited from the notifying memories (NM)
concept presented in [2]. When receiving a NP, the PE will
send a reading request to retrieve the available data at the
corresponding notifying memory. In this work, notification
packets are used either to inform an ordinary PE that new
mapping information is available or to notify the manager that
updated monitoring information has been generated and stored.
The NP has empty payload and aims to trigger the manager

Number of mapped Actors

Packet header

Information
about the 1st

mapped
Actor

origin / destination / type / time

…

Output0 FIFO ID

Outputm0
FIFO ID

…

Actor0 ID

Input0 ID

…

Inputn0
FIFO ID

Reading order from Input0

Reading order from Inputn0

Output0 FIFO ID

Outputmk
FIFO ID

…

Actork ID

Inputk ID

…

Inputnk
FIFO ID

Reading order from Input0

Reading order from Inputn0

Information
about the kth

mapped
Actor

NTtotal[Sn]

Tav[Sn]

Packet header origin / destination / type / time

…

Actor0 Comm Time
Monitoring
Information
about the 1st

mapped
Actor

Actor0 Comp Time

Actor0 Input1
…

Actor0 Inputn0

Actor0 Input2

Actork Comm Time
Monitoring
Information
about the kth

mapped
Actor

Actork Comp Time

Actork Input1

…

Actork Inputnk

Actork Input2

NTtotal[S1]

Monitoring
Information
about the

arriving tokens

Tav[S1]

NTtotal[S2]

…

Tav[S2]

Fig. 3. Packets structure for mapping (left) and monitoring (right) information

and PEs to request data when it is ready rather than frequent
inefficient polling.

b) Monitoring/Mapping information reading request
packets (MRP): This type of packet is used to request the
information stored in the MIM module as a response to the
NP. It is either generated by the manager to acquire the new
monitoring information sent from a definite PE or by one
of the PEs to get the new mapping information provided by
manager. For both information types, monitoring or mapping
information, the request packet does not include any payload.

c) Mapping information packets (MpIP): The manager
uses a MpIP to inform all involved PEs after determining or
modifying the actor mapping strategy. Its payload includes the
following: (1) the number of actors which are mapped to the
PE, (2) the IDs of the mapped actors, (3) the IDs of the input
and output FIFOs, and (4) the actor reading order in each input
FIFO. Fig. 3 illustrates the structure of the packet holding the
mapping information.

d) Mapping Confirmation packets (MCP): A MCP aims
to inform the manager that the new mapping information is
well received by both the former and the new owner of the
actor. The MCP payload is also empty.

e) Monitoring information packets (MnIP): This type of
packet holds the feedback information needed by the manager
to perform the RR algorithm. Fig. 3 presents the structure of
the monitoring information packet.

f) FIFO index packets (FIP): The FIPs are designed to
hold the writing indexes or reading indexes of FIFOs. As
mentioned before, DF applications rely on a large number
of requests to memories for firing rule checking. So, these
indexes are used to determine either the number of available
tokens corresponding to each reader actor or the free space in
a FIFO. If data is required to be read from input FIFOs, the
firing rule is satisfied by checking if the number of available
tokens in all input FIFOs is equal or greater than the required
number during computation. Whereas, if data has to be written
to output FIFOs, the firing rule is satisfied by checking if all
output FIFOs have sufficient empty room to accommodate the
produced tokens. Hence, before processing an action, a PE

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 6

origin / destination / type / time

Reading OrderFIFO Address

Packet header

Packet payload

origin / destination / type / time

Reading OrderFIFO Address

Packet header

Packet payload

origin / destination / type / time

FIFO Address Reading Order New Index Value

Packet header

Packet payload

Fig. 4. Packet structures for holding reading (top) / writing (middle) index
requests and set index (bottom)

origin / destination / type / time

FIFO Address Reading Address Data Size

Packet header

Packet payload

Fig. 5. The structure of the packets holding the reading requests

has to request the reading and/or writing indexes of input and
output FIFOs. When the PE receives the value of demanded
reading/writing index, it will check the satisfaction of the
firing rule. After reading/writing data from/to a FIFO, the
reading/writing index has to be incremented by the size of
the transferred data. The PE, which consumes/produces data,
has to set the new reading/writing index in the targeted FIFO
after reading/writing operation is performed. Accordingly,
four types of packets are utilized: (1) Request read index,
(2) Request write index, (3) Setting read/write index, and
(4) Holding read/write index.

As the FIFO may have several reading indexes correspond-
ing to different reader actors, the PE has to determine the
reading order of the actor and sends it in the payload of the
packet. However, a FIFO has only one writer actor; hence, to
attain the value of its writer index the PE has to send the FIFO
address in the destination memory module. In both packets,
the packet type, given in the packet’s header, is used by the
NI at the destination memory module to decode the request
type. Fig. 4 depicts the structure of the FIP packets holding
the requests of a reading index and writing index.

On the other side, whenever a memory module receives a
request of reading/writing index it will retrieve its value from
the specified FIFO and sends it back to the PE. The NI in
the memory module will assemble a 1-flit payload packet as
shown in Fig. 4.

In order to set the reading/writing index after finalizing the
data transfer operations from/to a FIFO, the PE sends a control
packet that notifies the FIFO about its new reading/writing
index. It includes one flit that contains the FIFO address in the
destination memory module, the reading order of the actor, and
the new value of the reading index. Since the FIFOs have only
one writer actor, the writing packet payload simply includes
the address of the targeted FIFO in the destination memory
module and the new value of the writing index.

g) Data reading request packets (DRP): Fig. 5 presents
the packet holding the reading request of data from PE to
memory module. Its payload consists of one flit that includes
the address of the FIFO in the destination memory module,
the starting address of reading, and the size of required data.

h) Code transferring packets (CTP): Actor binary codes
are stored in a shared memory. When updating the actor
mapping, the binary code referring to the moved actor should

origin / destination / type / time

Gainer ID Actor ID Capacity

Packet header

Packet payload

Fig. 6. Manager command requesting the transfer of the moved actor code

origin / destination / type / time

FIFO Address Writing Address

Data Flit1

Packet header

Packet payload
…

Data Flitn

Fig. 7. The structure of packets carrying processed data

be transferred from the shared memory to the cache of the
new PE. The manager sends a command of transferring the
binary code in the form of a reading request packet. The sent
request includes the actor ID, the address of the new PE, and
the size of transferred data per packet (see Fig. 6).

2) Data packets: The second category of packets refers to
the ordinary flow of data between PEs and memory modules.
These packets, described hereafter, carry data that is either
processed in a PE and written in a memory module or sent
from a memory module as a response to a PE reading request.

a) Dataflow packets (DFP): The DFPs encompass all
packets transferred between PEs and the FIFOs distributed in
the memory modules. They carry data that is either processed
in a PE and will be stored in a FIFO or sent from a FIFO as a
response to a PE reading request. Fig. 7 presents the structure
of packets carrying processed data in their payloads.

b) Binary code packets (BCP): The BCPs aim to transfer
the binary code from the shared memory to the cache memory
of the new PE. Note that the binary code is divided into sec-
tions of reasonable sizes which are transferred consequently.
The size of the transferred data (payload capacity) is specified
by the manager according to the monitored traffic in the
network and based on the required cache lines to be filled
before launching the actor on the new PE. For example, the
packet including in its payload 64 flits of 32-bitwidth transfers
256 bytes which form 4 lines of L1 cache.

IV. PROCESSING FLOW

A. Initial mapping

Initially, the actors are mapped randomly to the PEs, or can
be mapped using the exact method presented in [20]. FIFOs are
mapped randomly and are approximately equally distributed
on all memory blocks. The manager informs by means of
packets all involved PEs. For each PE in charge of executing
actors, the manager generates and sends its corresponding
mapping information in a separate packet (MpIP). Packets
holding the mapping information are stored in a predefined
location in MIM. Then, the involved PEs are notified to
retrieve their mapping information from the shared memory
using notifying packets. At this stage, the manager waits the
PEs, which are incorporated in processing a specific number of
video frames NF to send their monitoring information. Note
that NF is set originally to a default value and may be changed
dynamically by the manager.

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 7

TABLE IV
PARAMETERS AND VARIABLES USED FOR THE MAPPING ALGORITHM

Parameter Definition
DPN application graph (DPNapp)

|A| Number (Nb) of actors
|F| Nb of FIFO channels
|K| Nb of data packets
|Ic| Nb of input ports of actor Ac

Architecture graph (arch)

|P| Nb of processing elements
|M| Nb of memory modules

Profiling data (profile)

Ri Mean number of firings of actor i
W i Total computation cost of actor i
Csi Instruction code size of actor i

Before receiving the notification packet about initial map-
ping of actors, all PEs are in idle state. Once it receives
the notification packet, the PE sends a request to retrieve
the mapping information which includes IDs of actors to be
executed, IDs of input and output FIFOs for each actor, and
the reading order of each input FIFO. The mapped actors are
scheduled according to the order sent from the manager and
the PE begins to execute them in round-robin manner.

B. Monitoring actor execution

The execution of actors continues until receiving a new
notification packet about changing the mapping information.
All involved PEs monitor their running actors during the
processing of NF video frames, which determine the ob-
servation window. Precisely, each PE node accumulates for
every mapped actor Ac its communication time Tcm[Ac],
computation time Tcp[Ac], and total number of tokens received
to each input port NTtotal[Ac[Ij]

] where c ∈ {1, ..., |A|} and
j ∈ {1, ..., |Ic|}. In addition, the adapter, which is embedded in
the NI of each node n (processor or memory), extracts from
each received packet carrying processed data, the following
information for each source Si: (1) the total number of
transferred tokens from Si to n: NTn

total[Si, n] and (2) the
average time delay consumed per token to reach the node n
from source Si: Tav[Si, n].Table IV gathers the variables and
parameters used to formalize our mapping approach.

The total number of transferred tokens is simply determined.
First, input packets are classified according to their sources Si.
Then, their corresponding sizes sizePk

[Si], which reflect the
number of data-flits, are accumulated.

NTn
total[Si, n] =

K∑
k=1

sizePk
[Si, n] (1)

where i ∈ {1, ..., |P|+ |M|}.
The average time delay per token per each source Tav[Si, n]

is calculated by dividing the time delay of each token trans-
ferred from Si by NTtotal[Si, n].

Tav[Si, n] =

∑K
k=1 sizePk

[Si, n]×DPk
[Si, n]

NTn
total[Si, n]

(2)

where k ∈ {1, ..., |K|}.

DPk
[Si] is determined by embedding, at the source node,

for each packet Pk its sending time-stamp Ts[Pk] in its header
then subtracting it from the reception time Tr[Pk] at the
destination node. All tokens in a packet are considered to have
the same delay.

D[Pk] = Tr[Pk]− Ts[Pk] (3)

C. Collecting monitoring information

When the number of the processed frames meets the ob-
served window, each PE node generates its own monitoring
information packet. The packet is then sent to the MIM
module (presented in III-C). Directly, the accumulated values
are reset with the beginning of the new observation window.
Then, the PE continues executing the previously mapped actors
according to the adopted circular order. This guarantees that
the remapping does not impose any additional overhead in
terms of latency. The MIM module notifies in its turn the
manager when new monitoring data is available correspond-
ing to a specific processor throughout a notification packet
(III-D1a). Whenever a new notification packet is received by
the manager, the latter directly requests to retrieve the new
available monitoring data. Also, the manager requests using
command packets from all memory modules to send their
monitoring information. Note that memory modules respond
to the manager and send the requested data directly without
any notification process since the adopted MoC allows the
direct communication between a memory and a processor.
All received monitoring packets are disassembled and their
contents are parsed and saved in the manager local registers.

When the feedback data is collected from all modules
incorporated in processing the video frames, the manager
applies the run-time remapping algorithm. At this stage, the
manager owns locally the following data: (1) the commu-
nication time of each actor: Tcm[Ac], (2) the computation
time of each actor: Tcp[Ac], (3) the number of input tokens
corresponding to every input port of all actors: NT a

total[Ac[Ij]
],

(4) the number of incoming tokens to each processor module
from each memory module m: NTn

total[Sm, p], (5) the average
communication delay of received tokens to each processor p
from each memory module m: Tav[Sm, p], (6) the number
of incoming tokens to each memory module m from each
processor module p: NTn

total[Sp,m], and (7) the average
communication delay of received tokens to each memory
module m from each processor module p: Tav[Sp,m] where
c ∈ {1, ..., |A|}, j ∈ {1, ..., |Ic|}, m ∈ {1, ..., |M|} and
p ∈ {1, ..., |P|}.

D. Estimating NoC communication time delay

Communication time delay is a critical factor in HMPSoC
platforms using NoCs. The communication time of the moved
actor is affected by the location of the new hosting PE in
the network. NoC time-delay estimation impacts directly the
prediction process of the communication time of the moved
actor. Hence, the accuracy level in estimating the delay latency
changes the decision on the actor move in the RR algorithm. In
this work, two novel methods have been proposed to estimate
the communication time delay for transferring one token in the

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 8

MFM
8

MFM
5

MFM
1

MFM
10

PE7

PE5

PE10

MIM

MFM
2

MFM
11

PE2

PE11

MFM
3

MFM
12

MGR

PE3

PE12

MFM
9

MFM
7

MFM
4

MFM
13

PE9

PE6

PE4

PE13

R20

R30

R21

R31

R12

R22

R02

R32

R13

R23

R03

R33
32 bits

BCM

R01

R10

R00

PE1

MFM
6

R11

Fig. 8. Example on path declaration in the NoC

NoC. The first method is called the average-path token delay
and it is based on finding the average delay for transferring
one token depending on the path delays between all nodes of
the NoC. The second is called the average-link token delay
and considers the time-delay of the token according to the
used physical links connecting the NoC components while
transferring the token. Both proposed methods make use of the
monitoring data, which is collected while processing NF video
frames in the previous observation window. The techniques
used in estimating the NoC communication time-delay are
described in the following subsections.

1) Average-path token delay (APTD): In this approach, a
path is considered to be formed from the set of the intercon-
nections between two specific nodes. As an example, Fig. 8
illustrates in red the path P[PE1,MFM6] between processing
element PE1 to memory module MFM6. As a deterministic
routing is applied in this work, the packets always use the same
path between the source node and the destination node. Since
the adopted MoC forbids the transfer of packets in between
memory modules and in between PEs, the active paths are
those connecting either memory modules to PEs or PEs to
memory modules. Note that the packets transferred from a
processing element p to a memory module m do not follow
the same path used in transferring packets from the memory
module m to the processing element p. Fig. 8 illustrates in red
the followed path to transfer packets from PE1 to MFM6 and
in yellow the followed path to transfer packets from MFM6

to PE1. In APTD, the manager calculates the average path
delay per token Tav in several steps as shown in Algo. 1. Tav

refers to the average time delay required to transfer one token
from the source node to the destination node, regardless of the
path between the source and destination nodes. As an example,
the average time delay of all tokens transferred through either
the path P[PE1,MFM6] or the path P[MFM6,PE1] (Fig. 8) is
considered equal regardless of the number of links constituting
each path and the corresponding traffic in each link and the
switch conflicts in the connecting routers. Tav is computed by
dividing the sum of the communication-time delays Dtotal by
the total number of transferred tokens in the network NTtotal:

Tav =
Dtotal

NTtotal
(4)

The manager benefits from the collected monitoring data.
It makes use of the number of input tokens NTn

total[Si, n]
transferred to each destination node n from each source node
Si to determine the total number of all transferred tokens in

Algorithm 1 Average-path token delay (APTD)
Step 1: Find the sum of the communication delays Dtotal

Step 2: Find the total number of all tokens NTtotal

Step 3: Calculate the average time delay per token Tav

the network (NTtotal) as presented in (5):

NTtotal =

|P|+|M|∑
n=1

|P|+|M|∑
i=1

NTn
total[Si, n] (5)

Also, the communication-time delays for all tokens transferred
in the network are accumulated. The sum of the communica-
tion delays Dtotal is determined according to (6):

Dtotal =

|P|+|M|∑
n=1

|P|+|M|∑
i=1

Tav[Si, n]×NTn
total[Si, n] (6)

where Tav[Si, n] is the collected average time delay required
to transfer one token from the source node Si to the destination
node n.

2) Average-link token delay (ALTD): A link is defined as
the interconnection between two consecutive components of
the NoC: Router, Memory and PE. As an example, Fig. 8
shows the links constituting the path P[PE1,MFM6]. In this
approach, the average communication time delay per token
is determined for each link as shown in Algo. 2. The total
communication-time delay in a path P[Si,n] connecting the
source node Si and the destination node n is determined from
the monitored data as shown in (7):

DP
total[Si, n] = Tav[Si, n]×NTn

total[Si, n] (7)
Each path is segmented into a set of links LP[Si,n]

. The average
communication time delay per link DL

av[Si, n] in the path
P[Si,n] is determined as follows:

DL
av[Si, n] =

DP
total[Si, n]

NL[Si, n]
(8)

where NL[Si, n] is the number of links constructing the path
P[Si,n]. Here, the links constructing a path are assumed to have
similar contribution in the total communication time delay
monitored in the path. As a link l is shared among different
paths, the total link communication-time delay Dtotal[l] is
the sum of all average communication-time delay per link
computed in all paths in which link l constitutes one of their
interconnections:

Dtotal[l] =

|P|+|M|∑
n=1

|P|+|M|∑
i=1

DL
av[Si, n] ∋ l ∈ LP[Si,n]

(9)

On the other hand, the tokens passing through a path are
definitely passing through all links constructing the path.
Hence, the total number of tokens NTtotal[l] passing through
a link l is the sum of all tokens passing through all paths,
which link l constitutes one of their interconnections:

NTtotal[l] =

|P|+|M|∑
n=1

|P|+|M|∑
i=1

NTtotal[Si, n] ∋ l ∈ LP[Si,n]

(10)
The average communication-time delay per token Tav[l]
for each link l is determined by dividing the accumulated
communication-time delay Dtotal[l] by the number of tokens

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 9

Algorithm 2 Average-link token delay (ALTD)
Step 1:
for each path P[Si,n] do

a- Find the total communication-time delay DP
total[Si, n]

b- Calculate average communication time delay per link
DL

av[Si, n]
end for
Step 2:
for each link l do

a- Find the total link communication-time delay Dtotal[l]
b- Find the total number of tokens NTtotal[l]
b- Calculate the average communication time delay per
token Tav[l]

end for

NTtotal[l] passing through this link.

Tav[l] =
Dtotal[l]

NTtotal[l]
(11)

E. Applying RR algorithm

For each observation window (NF frames), the manager
executes at run-time the RR algorithm, which is divided into
two main steps. The first step is dedicated to find all possible
candidate actors which their moves would enhance the overall
throughput. The second step sets a tradeoff between the cost of
migration and the predicted improvement of the performance.

1) Specify the possible candidate actors: In this work, the
definitions of the terms period of each processor p (Periodp),
maximum period (Periodmax) and throughput (Th) have
been adopted as introduced in [17]. Periodp is the sum of
total computation time compTp and total communication time
commTp recorded during NF video frames:

Periodp = compTp + commTp ∀p ∈ P (12)
where compTp and commTp of processor p are the sums
of the computation times and of the communication times
respectively of all actors which are mapped on this processor:

compTp =
∑

k:P[k]=p

Tcp[Ak] ∀p ∈ P (13)

commTp =
∑

k:P[k]=p

Tcm[Ak] ∀p ∈ P (14)

The throughput is defined as the inverse of the maximum
period over all processors.

Hence, the first task is to find the PE with the maximum
period. The manager computes the periods of all PEs during
the current observation window of NF video frames. Later,
a simple comparison between all obtained period values is
performed in order to specify the processor with the maximum
period. The processor with the maximum period (Periodmax)
is nominated as looser processor. The algorithm used to
determine the looser processor is outlined in Algo. 3. The
set of candidate actors to be moved C includes the actors
that have been previously executed by the looser processor.
Fig. 9 demonstrates an example of Periodp and Periodmax.
The figure shows three PEs (PE1, PE2 and PE3) that run
six actors (A1, A2, A3, A4, A5 and A6). In this example,

PE1 has the largest period, thus it is selected as the looser
processor.

Algorithm 3 Finding processor with maximum period
Periodmax ← 0
looser ← ϕ
for p ∈ P do

if Periodmax < Periodp then
Periodmax ← Periodp
looser ← p

end if
end for

2) Decision of the actor move: The actor selected to be
moved should have a maximum total gain. According to the
collected monitoring values, the manager estimates the total
gain achieved for all combinations of mapping the actors
which belongs to the candidate list C onto all available
PEs. The estimated total gain Gaine

total[CAc,p] of a mapping
combination CAc,p, which corresponds to moving Ac to p,
is computed by finding the difference between the estimated
performance gain Gaine

per[CAc,p] and the estimated migration
cost of the actor Costemig[CAc,p]. The mapping combination
that leads to the maximum estimated total gain is then selected.
The engaged processor and actor are specified and so-called
the gainer processor and moved-actor respectively.

a) Estimated performance gain: For each actor Ac in the
candidate list C, the manager considers it is moved virtually
to all PEs except the looser processor. For each virtual-move
combination, the manager estimates the achieved period of
each processing element Periodep[CAc,p]. The new period of
processor p is estimated by adding to the processor period
Periodp the estimated communication time T e

cm[CAc,p] and
the estimated computation time T e

cp[CAc,p] of the moved actor
Ac as shown in the following expression:
Periodep[CAc,p] = Periodp+T e

cp[CAc,p]+T e
cm[CAc,p] (15)

Note that the tokens, which are consumed by a certain reader
actor running on a processing element PER, are imported
from a FIFO f . These tokens are previously generated by
another actor running on another processing element PEW .
The generated tokens are first stored in a FIFO f and then
transferred once requested to the processing element PER

where the reader actor is executed. Hence, the tokens pass

𝑃𝑒𝑟𝑖𝑜𝑑𝑃1

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]

𝑃𝑒𝑟𝑖𝑜𝑑𝑃2

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑃3

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥

𝑡𝑖𝑚𝑒

Fig. 9. An example of Periodp and Periodmax

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 10

through two paths. The first path P[PEW ,MFMf] connects the
processing element PEW , which executes the writer actor,
and the memory module that accommodates the FIFO f .
On the other hand, the second path P[MFMf ,PER] connects
the memory module that accommodates the FIFO f and the
processing element PER which executes the reader actor. The
communication-time delays in both paths are considered when
estimating the communication time of the moved actor.

When adopting APTD method for determining the commu-
nication delay in the NoC, the estimated communication-time
delay per input j for each actor Ac is equal to the total number
of input tokens NTtotalS[Ac[Ij]

] transferred to the actor at this
input multiplied by the double of the calculated average path
communication-time delay per token Tav (4). The average path
delay per token is doubled to compensate the time delay of
the two paths P[PEW ,MFMf] and P[MFMf ,PER]. The total
estimated communication time is the sum of all estimated
communication-time delays of all inputs:

T e
cm[CAc,p] =

|Ic|∑
j=1

2× Tav ×NTtotal[Ac[Ij]
] (16)

Note that the adopted model of computation forbids the trans-
fer of tokens in between actors (running on PEs) directly with-
out passing through a FIFO (allocated in a memory module
MFMf). Hence, tokens produced by the writer actor (running
on PEW) will pass through two paths (P[PEW ,MFMf] and
P[MFMf ,PER]) before arriving to the reader actor (running on
PER). The exact number of tokens passes through both paths
while considering same average path delay per token Tav . So,
the average path delay per token is doubled in (16).

When adopting ALTD method, the estimated
communication-time per input j is equal to the total
number of input tokens NTtotal[Ac[Ij]

] transferred to the
actor Ac through this input multiplied by the sum of all
average communication-time delay per token Tav[l] for each
link l constructing the paths which the input tokens use
to reach the processing element running the actor Ac. The
total estimated communication time will be the sum of all
estimated communication-time delays of all inputs:

T e
cm[Ac] =

|Ic|∑
j=1

(∑
i=1

Tav[li]

)
×NTtotal[Ac[Ij]

]

∋ li ∈
{
LP[PEW ,MFMf]

∪ LP[MFMf ,PER]

} (17)

In addition, the estimated computation time T e
cp[CAc,p] of

the moved actor Ac is determined depending on the recorded
computation time of the moved actor Ac during the previ-
ous mapping Tcp[Ac] and the estimated total speed-up ratio
SUe

total[CAc,p], which is achieved when moving Ac to p:
T e
cp[CAc,p] = Tcp[Ac]× SUe

total[CAc,p] (18)
such that

SUe
total[CAc,p] =

AAc
[p]

AAc
[looser]

× f [looser]

f [p]
(19)

where f [p] is the operating frequency of processor p (Table II)
and AAc

[p] is the acceleration enhancement ratio of the moved
actor Ac when running on processor p (Table I).

Note that for all mapping combinations, the period of the

looser processor is modified when an actor Ac is supposed
to be mapped to another processor p. Hence, it is updated by
subtracting the actual communication time Tcm[Ac] and the
actual computation time Tcp[Ac] of the moved actor Ac:
Periodelooser[CAc,p] = Periodmax−Tcm[Ac]−Tcp[Ac] (20)

For each mapping combination, the manager determines the
maximum estimated period Periodemax[CAc,p] which denotes
the maximum period among all processors when actor Ac is
mapped to processor p. Fig. 10 demonstrates an example of
finding Periodemax[CAc,p]. The figure considers the example
illustrated in Fig. 9. Three actors are mapped to the looser pro-
cessor PE1. The candidate list C includes three actors: A1, A2

and A3. Six mapping combinations are illustrated: CA1,PE2
,

CA1,PE3
, CA2,PE2

, CA2,PE3
, CA3,PE2

and CA3,PE3
. The

figure shows how to find the maximum estimated period
Periodemax[CAc,p] for each mapping combination. It is shown
in the figure that both the estimated communication time and
estimated computation time of the same actor differ when
mapped to different PEs.

These computed new periods are then used to find the
performance gain related to each mapping combination:

Gaine
per[CAc,p] = Periodep[CAc,p]− Periodmax (21)

b) Estimated migration cost: The migration cost of an
actor is the required time to transfer its binary code into the
local memory of the new hosting processing element. It de-
pends on the size of the binary data required to be transferred
and the communication-time delay in the network. The sizes
of the binary codes of all actors are considered to be known
by the manager in terms of number of flits. Accordingly, the
migration cost of the moved actor is estimated by the manager
using the estimated NoC communication-time delay. When
adopting APTD method, the estimated migration cost related
to the moving of actor Ac to processor p is calculated as
expressed in (22):

Costemig[CAc,p] = sizebin[Ac]× Tav (22)
where sizebin[Ac] is the size of the binary code of actor Ac

and Tav is the average path communication-time delay per
token (4). When ALTD method is adopted, the migration cost
of the moved actor Ac is determined by (23):

Costemig[CAc,p] = sizebin[Ac]×

(∑
i=1

Tav[li]

)
∋ li ∈ LP[BCM,p]

(23)

c) Estimated total gain: The manager computes the total
gain estimated to be achieved for all mapping combinations
by finding the difference between the estimated performance
gain Gaine

per[CAc,p] and the estimated migration cost of the
actor Costemig[CAc,p].
Gaine

total[CAc,p] = Gaine
per[CAc,p]− Costemig[CAc,p] (24)

The moving of an actor would lead to permanent performance
gain and the migration cost is paid once. However, the
estimated performance gain takes the cost of migration into
account in order to aggravate the probability of enhancing
the overall performance directly after applying the move (in
the next observation window). In fact, the variation of the
input data and its corresponding effects on executing the

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 11

𝑃𝐸1

𝑇𝑐𝑝
𝑒 [𝐶𝐴1,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴1,𝑃𝐸3]𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴1,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑡𝑖𝑚𝑒

𝑃𝐸1

𝑇𝑐𝑝
𝑒 [𝐶𝐴1,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴1,𝑃𝐸3]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴1,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3]𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2] 𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴3,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6] 𝑇𝑐𝑝
𝑒 [𝐶𝐴3,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴3,𝑃𝐸3]

𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1] 𝑇𝑐𝑝[𝐴2] 𝑇𝑐𝑚[𝐴2]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴3,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝
𝑒 [𝐶𝐴3,𝑃𝐸2] 𝑇𝑐𝑚

𝑒 [𝐶𝐴3,𝑃𝐸2]

𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1]

𝑇𝑐𝑝
𝑒 [𝐶𝐴2,𝑃𝐸3] 𝑇𝑐𝑚

𝑒 [𝐶𝐴2,𝑃𝐸3]

𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴2,𝑃𝐸3]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3] 𝑡𝑖𝑚𝑒

𝑃𝐸1 𝑇𝑐𝑝[𝐴1] 𝑇𝑐𝑚[𝐴1]

𝑇𝑐𝑝
𝑒 [𝐶𝐴2,𝑃𝐸2] 𝑇𝑐𝑚

𝑒 [𝐶𝐴2,𝑃𝐸2]𝑃𝐸2 𝑇𝑐𝑝[𝐴4] 𝑇𝑐𝑚[𝐴4] 𝑇𝑐𝑝[𝐴5] 𝑇𝑐𝑚[𝐴5]

𝑃𝑒𝑟𝑖𝑜𝑑𝑚𝑎𝑥
𝑒 [𝐶𝐴2,𝑃𝐸2]

𝑃𝐸3 𝑇𝑐𝑝[𝐴6] 𝑇𝑐𝑚[𝐴6]

𝑇𝑐𝑝[𝐴3] 𝑇𝑐𝑚[𝐴3] 𝑡𝑖𝑚𝑒

Fig. 10. An example of finding the maximum periods for each mapping
combination

involved actors incites to consider worst case (severe) decision
where the performance enhancement should be guaranteed
once moving the actor.

Then, the manager finds the maximum achieved total gain
among all mapping combinations and accordingly specifies the
actor to be moved and the gainer processing element.

F. Moving the actor to the gainer processor

The PE, after finishing the execution of the current running
actor, retrieves the new mapping information and sends di-
rectly a confirmation packet so that the manager processor
manages the transfer of the object code corresponding to
the new mapped actor. Before running the moved actor, the

Algorithm 4 Run-time Remapping (RR)
Step 1: Calculate the period of each PE
Step 2: Find PE with Max. period and assign it as looser
Step 3: Find the total gain (performance - migration cost)
for each move do

a- Find the performance gain
. find the period for each PE
. find the maximum period

b- Find the migration cost
c- Calculate the total gain

end for
Step4: Choose the move with Max. positive total gain

PE checks the availability of the object file corresponding
to the actor in its cache memory. Note that for the initial
mapping, the manager generates and sends packets to all PEs
in charge of executing actors. Whereas, after executing the RR
algorithm, the manager informs only the gainer and looser
processors. This procedure reduces the traffic in the network
and maintain the processing performance since the PEs that are
not affected by remapping process are not disturbed. In fact,
the manager informs first the looser processor about the new
mapping information. Then, it waits until the looser processor
confirms the well reception. The looser processor sends a
confirmation packet to the manager whenever it finishes the
execution of the moved actor. When the manager receives the
confirmation packet, it sends the new mapping information to
the gainer processor. Later, the gainer sends a confirmation
packet to the manager that directly manages the transferring
of the object code of the mapped actor from the shared
memory into the cache memory of the gainer processor by
making use of BCPs described in subsection III-D2b. This
guarantees that the actor is executed by only one PE in the
whole platform and ensure better controlling of the traffic
while migrating the binary codes. In fact, the manager sends
a CTP (subsection III-D1h) which includes the ID of the
gainer processor, the ID of the moved actor and the size of
the BCPs (capacity) as described in subsection III-C1. After
receiving the CTP, the MAM module, which is integrated into
the NI of the BCM (subsection III-C1), manages retrieving
the binary code from the shared memory and dividing it into
sections according to the capacity specified by the manager.
The generated BCPs will be transferred to gainer processor.
In our work, we consider that the gainer processor can start
executing the actor once at least 256 bytes, which construct
8 lines of the L1-I cache, are received and stored to the
gainer processor local memory. The hierarchy of the PEs’
local memories includes L1 and L2 caches. L1 cache is broken
up into to halves, instruction (L1-I) and data (L1-D) each of
32KB. L2 cache size is of 256KB and is used for instructions
and data.

G. RR Algorithm Complexity

The devised algorithm consists of several steps summarized
in Algo. 4. The complexity of each step is illustrated to
determine the overall complexity. The complexity of Step1,

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 12

the step of finding the period of each processor, is O(|P|).
Then, Step2, the step of finding the processor with maximum
period has the complexity of O(|P|). The complexity of Step3,
estimating the total gains corresponding the move of the
candidate actors to all PEs rather than the looser processor,
is O((|P| − 1).|Ac ∈ C|). The complexity of Step4, choosing
the best move, is O(|Ac ∈ C|.(|P| − 1)). If we consider a
well balanced distribution of actors among the processors at
initiation (|Ac ∈ C| ≈ |A|

|P|), the overall complexity becomes

O(|P|) + O(|A|) knowing that |P|−1
|P| ≈ 1. Note that the

algorithm is computed when all monitoring data is collected,
so the maximum rate is once per execution of the whole
data flow, and in practice can be tuned to be slower. With
respect to the complexity and the execution rates of actors,
this complexity is extremely low.

V. EXPERIMENTS AND RESULTS

A. Application Model

In this work we target the multimedia application domain.
We adopt the well-known MPEG4 part 2 Simple Profile
video decoder (MPEG4-SP). This multimedia application is
typically used in de-compression of encoded video digital
data. Fig. 11 presents the structure of decoder as described
in Reconfigurable Video Coding framework (RVC) [3] [33].

MPEG4-SP is specified with heterogeneous dataflow MoCs
and includes up to 40% of dynamic actors [34]. It is composed
of 41 actors and 70 FIFOs specified in RVC-CAL language.
The ORCC tool is utilized for compiling and software synthe-
sis [3] and we make use of the generated C-code for multi-
core platforms. We also use the structure of the software FIFO
presented in Fig. 1-b), which is generated by ORCC.

A FIFO may have several reader actors but only one writer
actor. It opts an indexing mechanism such that a specific index
is assigned to each reader or writer actor. These indexes are
used to determine the number of available tokens correspond-
ing to each reader actor and the free space in a FIFO. The
number of available tokens (Tf [Ri]) in a FIFO (f) is the
difference between the reader index (If [Ri]) and the writer
index (If [W]). The free space in a FIFO is the number of
memory addresses that contain no more needed data from
all reader actors. In other words, it is the subtraction of the
maximum available tokens from the total FIFO size (Sizef).

Each actor has its input and output ports and includes one
or several actions. An action describes a specific functionality
and is executed (fired) when a set of conditions, so-called
firing rules, are satisfied. As an example, a firing rule consists
of checking if the number of available tokens in the input
FIFO is greater than the required number for computation, and
that the output FIFO has sufficient empty room to store the
produced tokens. In MPEG4-SP, the number of reader actors
ranges from 1 (at least) to 6 (at most).

MPEG RVC defines RVC-CAL applications as dynamic
dataflow applications, where the uncertainty of computing due
to data-dependency prevents from any static scheduling. They
are based on dataflow process network (DPN) model [6].
In such model, the actor executes when at least one of its
firing rules is satisfied. For cases where several firing rules

Fig. 11. MPEG4 part 2 SP decoder [33]

are satisfied simultaneously, only one is selected according to
its priority. Consequently, its corresponding satisfied action is
fired. Each firing consumes input tokens and produces output
tokens. The number of the consumed or produced tokens may
be fixed or variable.

B. Experimental framework and setup

In order to assess the feasibility of our proposed run-
time remapping method, we developed a real-time simulator.
The simulator is described in SystemC TLM model [35].
The devised simulator models a MPSoC platform using NoC
concept for interconnecting embedded modules. The platform
incorporates heterogeneous processing elements (Table I),
memory blocks, and the manager. The simulator platform
has been designed with hierarchical modules that can work
concurrently and intercommunicate via ports using simple
or complex communication channels. SystemC features have
been exploited to mimic the accurate functionality of the
modules described in section III.

The adopted NoC-based architecture, presented in sec-
tion III, is implemented in the devised simulator platform. In
order to accurately model the adopted application, all involved
actions are functionally simulated to determine their execution-
timing features and generate the real data exchanged by actors
during video decoding. The SystemC model adopted in the
simulation platform is cycle accurate at the level of the NoC
and the network interfaces. The timing of all corresponding
action executions on PE is compensated in the simulation
according to the profiling data extracted while running the
application on a reference computer. Profiling data provides,
for each involved action, the mean value of the number of
cycles required to execute it. In this work, profiling data
has been extracted using on a desktop computer (i7-2620M
CPU@2.7 GHz and 8GB memory). We consider that the
NoC operating frequency f is 500 MHz. The clock cycle in
each PE is determined according to Table II. During SystemC
simulations, for each fired action, its corresponding execution
time determined in profiling is mapped according to the
processor frequency and used as time delay to compensate
the real execution time. In addition, several benchmark video
sequences with different formats from [36] have been encoded.
The selected video sequences have different manner in changes
between successive frames. This guarantees to evaluate the
performance of the proposed algorithm for different data-
dependent behaviors. The resultant data has been used as
input to the decoder. These same encoded videos have been

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 13

3
9

4
0

3
2

1
4

3
4

5
2

6
9

21

3
6

9
6

9
0

08
3

3
6

0
0

9
0

87
0

3
5

5
7

4
2

0

3
4

8
5

0
9

6

2
7

4
9

8
6

50

2
7

4
0

2
6

3
4

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

No
Remapping

MB
Remapping

No
Remapping

MB
Remapping

bus QCIF ForemanCIF

Total Control Packets
Total Data Packets

7
1

2
3

6
4

45

6
2

8
0

5
0

72

6
6

5
9

6
1

1
0

5

6
4

7
3

9
1

25
0

5
4

5
5

3
4

00

5
1

5
5

1
08

0

5
7

9
7

1
7

0
0

0

5
7

9
5

8
05

6
0

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E+07

1.0E+08

1.0E+09

No
Remapping

MB
Remapping

No
Remapping

MB
Remapping

bus QCIF ForemanCIF

Total Control Fits
Total Data Flits

Fig. 12. Classification of transported packets and flits

decoded on a desktop computer and the FIFO contents have
been traced over the decoding period. To verify the proper
functionality of each actor, the contents stored in the FIFOs
in the simulator have been compared to the traced FIFO data.
Also, the output data of the simulator have been reconstructed
into visual video in order to verify the functionality of the
devised simulator. The video sequences have been decoded
without applying remapping targeting the same NoC-base
architecture and the obtained results have been compared to
that obtained when the video sequences are decoded adopting
the MB remapping algorithm applying ALTD and APTD for
estimating the communication time delay while considering
an observation window of Nf = 10.

C. Experimental Results

1) Transported data: The number of packets that travel
through the network during the decoding of the video se-
quences, and their corresponding flits are recorded in the case
of applying the MB remapping and the case of decoding
the video without remapping. Fig. 12 presents the number
of transported packets and flits in logarithmic scale during
decoding the Foreman video with CIF format and Bus video
with QCIF format for the case of adopting MB remapping
algorithm and the case of ordinary decoding. The packets and
flits are classified into control and data categories. The figure
shows that the flits of control packets form about 53% of all
transported flits in the two cases.

Furthermore, investigating thoroughly the types of trans-
ported control flits illustrates that 93% of control flits belong
to FIP. This refers to the MoC adopted in dataflow applications
which requires checking the firing rules (availability of input
data and output buffer space). Fig. 13 shows in logarithmic
scale the number of each type of control flits transported while
decoding the Foreman video sequence in CIF format and Bus
video sequence in QCIF format for the case of MB remapping
and the case of ordinary decoding.

Also, Fig. 13 shows that additional flits are transported
in the network due to the remapping. In fact, applying
remapping induces additional control and data packets. In
order to evaluate the effect of applying the MB remapping
algorithm on the traffic in the network, the transported flits
are classified into two main categories. The first category
includes the flits which are used basically for dataflow. This
category encompasses the flits which occupy the payload of

8 1
2

1
6

2
41
1

3
1
8

1
1

7
5
3

7
2
9

6
2
4

1
1
0
0

6
2
4

1
3
8
0

6
4
4
3
0

1
5
6
6
6
2

5
8
3
5
9
5
0

5
7
6
4
4
9
0

4
3
3
0
8
9
0
0

4
3
1
1
5
1
0
0

6
5
3
9
9
8
6
0

5
6
9
7
4
7
1
0

6
2
2
6
5
1
5
7
0

6
0
4
1
1
6
5
9
0

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+09

No Remapping MB Remapping No Remapping MB Remapping

bus QCIF Foreman CIF

CTP MCP MRP NP MpIP MnIP DRP FIP

Fig. 13. Classification of control flits according to their types

6
3
5

1
0
5
6
5
2

6
3
5

2
1
3
1
2
0

1
2
5
7
8
9
2
1
0

1
1
4
2
5
0
5
0
0

1
2
4
5
6
7
7
4
7
0

1
2
2
6
7
5
8
6
9
0

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

1,0E+05

1,0E+06

1,0E+07

1,0E+08

1,0E+09

1,0E+10

No Remapping MB Remapping No Remapping MB Remapping

bus QCIF Foreman CIF

Total used flits for mapping/remapping

Total used flits for data flow

Fig. 14. Number of transported flits

TABLE V
PERCENTAGE OF FLITS TRANSPORTED IN BCP FROM TOTAL FLITS

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 0.0044% 0.0067%

Bus CIF 0.0008% 0.0125%
Ice 4CIF 0.0027% 0.0019%
Bus QCIF 0.0348% 0.0272%

all FIP, DRP and DFP. The second category includes the
induced flits by applying the remapping algorithm. Hence, the
second category compromises the flits listed in the payloads
of NP, MRP, MCP, MnIP, MpIP, CTP, and BCP. Note that both
categories include data and control packets. Fig. 14 illustrates
the comparison summary in terms of the number of transported
flits of both categories. In the figure, the number of transported
flits, which is obtained while processing the Foreman video
with CIF format and Bus video with QCIF format, is presented
in logarithmic scale for both cases (decoding while applying
remapping algorithm and ordinary decoding). The comparison
shows that the additional flits induced by applying the MB
algorithm forms less than 0.02% from total transported flits.
In addition, Table V shows the percentage of flits transporting
the binary code of migrated actors from the total number of
transported flits in the network while decoding several video
sequences. The presented percentages illustrate that the impact
of actor migration on the traffic is negligible.

2) Packet time-delay: The packet time-delay is recorded
while decoding the video sequences, following the procedure
explained in subsection IV-B. Fig. 15 presents the variation

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 14

4.4E+08

4.6E+08

4.8E+08

5.0E+08

5.2E+08

5.4E+08

5.6E+08

5.8E+08

6.0E+08

6.2E+08

6.4E+08

C
lo

ck
 c

yc
le

s

MB-Remapping No Remapping

35

36

37

38

39

40

41

42

43

44

45

cl
o

ck
 c

yc
le

s/
p

ac
ke

t

Frames

MB - Remapping No Remapping

Fig. 15. Sum of packet time-delays (top) and average packet time-delay
(bottom) while decoding Foreman video with CIF format [36]

of the sum of packet time-delays throughout the observing
windows during the decoding of the Foreman video sequence
with CIF format when adopting the MB remapping technique.
It is noticed that applying the MB remapping algorithm affects
the time-delay of the packets. In addition, the figure shows
the comparison with the case of ordinary decoding. The
comparison illustrates that using MB remapping decreases
gradually the total packet time-delay. Note that the task moves
occur after processing 80, 100, 160, and 270 frames. Fig. 15
shows that the total packet delay decreases after the conducted
moves. This refers to the fact that task remapping contributes
in distributing the tasks on PEs that are nearer to the memory
modules accommodating the input and output FIFOs. Also,
Fig. 15 presents a comparison in terms of average time-delay
of packets transported during the decoding of the Foreman
video with CIF format when adopting the MB remapping
technique and when using ordinary decoding. The comparison
confirms that the use of MB remapping technique contributes
significantly in reducing the time-delay.

3) Timings: Fig. 16 presents the recorded total commu-
nication time and total computational time throughout the
observing windows during the decoding of the Foreman video
with CIF format when adopting the MB remapping technique
and when using ordinary decoding. It shows that the com-
munication time represents 90% of the total execution time
in both cases. Hence, the total execution time is affected
more by the variation of the total communication time. Also,
Fig. 16(a) shows that the total communication time is almost
not changing among observation windows in the case of ordi-
nary decoding. Whereas, when MB technique is applied, the
communication time varies significantly and tends to follow
a decreasing manner as shown in Fig. 16(b). This illustrates
that reducing the time-delay achieved by MB remapping has
a direct impact on the communication time.

The communication time of each processing element is
investigated through the decoding of all video frames. It is
noticed that when applying the MB remapping technique, the
variation between communication times of all involved PEs is
reduced. The communication time values of all PEs converges
gradually to a specific interval as shown in Fig. 17.

4) Performance results: Multiple simulations have been
conducted to decode several benchmark video sequences
from [36]. Fig. 18(a) presents the achieved throughput in
terms of frames per second (FPS) when decoding Foreman
video (CIF format) and using ALTD and APTD respectively
for estimating the NoC communication time delay. The fig-
ure also shows the achieved throughput when decoding the
Foreman video (CIF format) without remapping. The letter
“M” shown on the curves represents when an actor move
occurs. Fig. 18(a) shows that using MB results in significant
performance enhancement. In addition, the figure illustrates
that adopting ALTD for estimating the NoC communication
time delay, while decoding Foreman video sequence with
CIF format, increases the achieved enhancement ratio. Other
similar simulations have been conducted targeting other video
sequences with different formats (CIF, 4CIF and QCIF). The
selected videos are of diverse characteristics to ensure that
the proposed remapping algorithm is not related to specific
formats or video content. The obtained results confirm that
adopting MB algorithm ensures enhanced performance when
compared to decoding the video without remapping. Also, the
results demonstrate that adopting ALTD rather than APTD
leads to additional performance enhancement.

D. Discussion and Comparison

In order to determine the relevancy of the devised algorithm,
it is compared to the STM method introduced in [31]. To
achieve fair comparison, the STM method has been modeled
and implemented on our devised NoC-based architecture. We
have also implemented the exact method presented in [20] for
the initial mapping, with two differences: we have used con-
straint programming instead of ILP, and the objective function
is the maximum period, Eqn. 12, as it is our optimization goal.
The workload used for the computation time of the actors is
based on the profiling of Foreman video. Simulations have
been conducted while running the MPEG4 decoder to process
real-life videos.

1) Performance enhancement of MB remapping: The
results presented in Fig. 18 show that for Foreman video
sequence with CIF format (Fig. 18(a)), the use of MB remap-
ping algorithm when adopting ALTD leads to a maximum
performance enhancement of 38.2% (frame 280) and adopting
MB-APTD leads to a maximum performance enhancement of
14.8% (frame 210) when compared to the results of processing
the video without remapping. For Ice video sequence with
4CIF format (Fig. 18(b)), maximum performance enhancement
of 56% (frame 450) and 16.5% (frame 250) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. Furthermore, the use of MB algorithm adopting
ALTD and APTD leads to a maximum performance enhance-
ment of 10.92% (frame 120) and 7.6% (frame 50) for Bus
video sequence with QCIF format (Fig. 18(c)) and Bus video
with CIF format (Fig. 18(d)). For Grandma video with QCIF
format (Fig. 18(e)), maximum performance enhancement of
33.2% (frame 170) and 23.9% (frame 190) are recorded
when applying the MB algorithm adopting ALTD and APTD
respectively. The simulation results show that the link level

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 15

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300
C

lo
ck

 c
yc

le
s

Communication Time Computational Time

0.0E+00

1.0E+08

2.0E+08

3.0E+08

4.0E+08

5.0E+08

6.0E+08

7.0E+08

 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300

C
lo

ck
 c

yc
le

s
Communication Time Computational Time

(a)

(b)

Fig. 16. Total communication and computational times recorded throughout the observing windows during the decoding of the Foreman video with CIF
format [36]; when adopting (a) ordinary decoding and (b) MB remapping

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0.0E+00

1.0E+07

2.0E+07

3.0E+07

4.0E+07

5.0E+07

6.0E+07

mapping iterations

C
lo

ck
 c

yc
le

s

PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8 PE9 PE10 PE11 PE12

Fig. 17. PE communication time in terms of FPS of decoding Foreman video with CIF format [36] using MB remapping algorithm

estimation of ALTD is more accurate and usually leads to
better performance compared to APTD. However, in some
cases APTD performs better such as for some observation
windows of Grandma video (Fig. 18(e)). This refers to the
fact that the heuristic is data-dependent and the link level
prediction depends on the monitoring information collected
during the previous data which may not match with the that
of the current processed data.

2) MB remapping in comparison to STM remapping:
Fig. 18 shows a comparison between our proposed remap-
ping and the STM algorithm in terms of throughput (FPS).
The results shows that the MB remapping outperforms STM
remapping technique when considering either APTD or ALTD
for estimating the NoC communication time delay.

Besides, the graphs in Fig. 18 show that in some cases
the STM method leads to deterioration in the performance.
In fact, the STM method selects critical task to be moved in
each observation window without estimating the resulting total
performance gain. Moving the task without determining its
effects on the whole system performance degrades the overall
performance. While in our proposed algorithm, the maximum
achieved total gain among all mapping combinations is first
determined as explained in subsection IV-E2c. Accordingly, a
task is specified to be moved if the estimated maximum total
gain is positive. It is noticed that in some observation windows
no tasks are moved when the proposed algorithm is applied. A
move is indicated by letter “M” in Fig. 18(a). In these cases,
the estimation shows that no performance enhancement will

be achieved for all mapping combinations.

3) MB remapping in comparison to optimal mapping:
Fig. 18 also shows the results obtained from the mapping
approach proposed in [20]. Note that the “optimal” mapping
corresponds to the best mapping found based on the profiling
of Foreman video after a time out of one hour (like the original
paper), and the optimality is not proven. The results show that
the MB algorithm, starting from a random mapping (without
significant initial delay), performs better that the optimal with
no remapping for Foreman video sequence in CIF format
(Fig. 18(a)). As the optimality is searched for the Foreman
profile, we used the optimal mapping as a starting point for
the MB algorithm, and the results show that it further improves
the throughput. As expected, the optimal mapping for Foreman
does not perform good for the Ice video sequence in 4CIF
format (Fig. 18(b)) and Grandma video sequence in QCIF
format (Fig. 18(e)). But surprisingly, it performs good for
the Bus video in QCIF format (Fig. 18(c)) and Bus video in
CIF format (Fig. 18(d)). The so-called optimal method cannot
be used for two reasons. First it introduces an unpractical
initialization delay without guaranty of optimality. Secondly, a
static solution is not appropriate to data-dependent applications
since a solution can be good for one data-stream and inefficient
for another one and more importantly the efficiency of a
mapping varies over time.

4) Comparison summary: Table VI summarizes the com-
parison of average FPS achieved when processing multitude
video sequencing while adopting different remapping tech-

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 16

300

350

400

450

500

550

600

650

700

750

fr
am

e
s/
s

frames

No Remapping Remapping - MB ALTD Remapping - MB APTD

Remapping - STM No Remapping Optimal

10

15

20

25

30

35

40

45

fr
am

e
s/
s

frames

No Remapping Remapping - MB ALTD Remapping MB APTD Remapping STM No Remapping Optimal

(a) Foreman with CIF format

(b) Ice with 4CIF format

(c) Bus with QCIF format

45

50

55

60

65

70

75

80

85

fr
am

e
s/
s

frames

No Remapping Remapping - MB ALTD Remapping - STM No Remapping Optimal

(d) Bus with CIF format

M

M M M

M

M

M

M

M
M

M
M

M M M

M

M

M M

M

M
M

M M

M

M

M

M M
M

M

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

fr
am

e
s/
s

frames

No Remapping Remapping MB APTD Remapping MB ALTD

Remapping STM No Remapping Optimal Remapping MB APTD Optimal

Remapping MB ALTD Optimal M M

(e) Grandma with QCIF format

 300

 320

 340

 360

 380

 400

 420

 440

 460

 480

 500

 520

fr
am

e
s/
s

frames

No Remapping Remapping - MB ALTD

Remapping - MB APTD No Remapping Optimal

Fig. 18. Throughput in terms of FPS when decoding video sequences [36] using MB and STM remapping algorithms

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 17

 250

 270

 290

 310

 330

 350

fr
am

e
s/
s

frames

No Remapping Remapping MB ALTD

 55

 60

 65

 70

 75

 80

 85

 90
fr
am

e
s/
s

frames

No Remapping Remapping MB ALTD

(a) Foreman with CIF format

(b) Bus with QCIF format

Fig. 19. Throughput in terms of FPS when decoding video sequences [36]
using MB remapping algorithms targeting 4× 6 NoC

TABLE VI
ACHIEVED RESULTS ADOPTING DIFFERENT REMAPPING TECHNIQUES

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD STM
Foreman CIF 11.4% 5% 4.1%

Bus CIF 5.4% 5.4% −17.7%
Ice 4CIF 26.1% 2% −13.04%
Bus QCIF 9% 8% −20%

Grandma QCIF 14.91% 14.11% NA

niques. The table shows that the MB algorithm achieves
the maximum average performance enhancements of 26%
and 14.11% when adopting ALTD and APTD respectively
compared to the achieved throughput of processing the frames
without remapping. Whereas, remapping using STM algorithm
achieves a maximum average enhancement of 4%.

E. Scalability and generality

The scalability of our approach relies first on a negligible
extra payload in the context of actor-level dataflow models,
which intrinsically require a large amount of small control
packets. For example, when decoding the Foreman video se-
quence the extra flits imposed by remapping (including the flits
holding the binary codes of moved actors) constitute less than
0.02% of the flits used for dataflow. The proposed remapping
method enhances the performance by exploiting the NoC
structure and the characteristics of the available resources.
The results show that our method positively impacts the NoC
performance. Table VII illustrates the reduction percentages of
packet hops when decoding different video sequences adopting
the proposed MB remapping compared to ordinary decoding
without remapping. The comparison shows that the proposed
remapping method reduces the packet hops. The percentage of
reduction is more than 20%. Secondly, the method includes the
migration cost and so limits the number of moves.

Fig. 19 shows the results obtained for a 4 × 6 NoC, for
Foreman and Bus video sequences, starting from a random
mapping. The results show that our approach can also improve
the throughout for a larger NoC. On average, the throughout
is improved by 13.5% and 4% for Bus QCIF and Foreman
CIF videos respectively.

TABLE VII
REDUCTION OF PACKET HOPS WITH MB-ALTD AND MB-APTD

Video Remapping Algorithm
Sequence Format MB-ALTD MB-APTD
Foreman CIF 20.94% 12.64%

Bus QCIF 3.24% 5.29%
Grandma QCIF 14.18% 8.33%

VI. CONCLUSION

This paper presents an original Move-based algorithm and
NoC-based architecture to map the tasks of dataflow applica-
tion during run-time. The method monitors the performance
and intercommunication, takes the proper mapping decision
and applies the required mapping configurations. The algo-
rithm and the devised architecture are thoroughly presented.
The best way to verify the effectiveness of a run-time mapping,
which is by definition data dependent, is to simultaneously
execute the target application. However such demonstrations
are complex, time consuming and so ignored in the literature.
In this paper we address this issue by conducting a SystemC
simulation of the MPEG4-SP decoder with several real-life
video sequences. The obtained results demonstrate that the
proposed algorithm significantly enhances the performance.
In addition, the proposed algorithm outperforms the available
run-time mapping technique. Future work will consider the
implementation of integrated module in the NIs and estimating
the overhead in terms of area and energy.

REFERENCES

[1] W. A. Najjar et al., “Advances in the dataflow computational model,”
Parallel Computing, vol. 25, no. 13, pp. 1907 – 1929, 1999.

[2] K. J. M. Martin et al., “Notifying memories: a case-study on data-flow
applications with NoC interfaces implementation,” in Proc. of the Design
Automation Conf. (DAC), June 2016.

[3] H. Yviquel et al., “Orcc: Multimedia development made easy,” in Proc.
of the ACM Int. Conf. on Multimedia, ser. MM ’13. New York, NY,
USA: ACM, 2013, pp. 863–866.

[4] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. of
the IEEE, vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[5] Y. Lesparre et al., “Evaluation of synchronous dataflow graph mappings
onto distributed memory architectures,” in Proc. of Euromicro Conf. on
Digital System Design (DSD), Aug. 2016, pp. 146–153.

[6] E. A. Lee and T. Parks, “Dataflow process networks,” in Proc. of the
IEEE, 1995, pp. 773–799.

[7] C. Wang et al., “Dynamic application allocation with resource
balancing on NoC based many-core embedded systems,” J. Syst.
Archit., vol. 79, no. C, pp. 59–72, Sep. 2017. [Online]. Available:
https://doi.org/10.1016/j.sysarc.2017.07.004

[8] J. Henkel et al., “Dynamic resource management for heterogeneous
many-cores,” in Proc. of the IEEE/ACM Int. Conf. on Computer-Aided
Design (ICCAD), 2018, pp. 1–6.

[9] S. Kaushik et al., “Computation and communication aware run-time
mapping for NoC-based MPSoC platforms,” in Proc. of IEEE Int. SOC
Conf., Taipei, Taiwan, 2011, pp. 185–190.

[10] T. Maqsood et al., “Dynamic task mapping for network-on-chip based
systems,” J. of Systems Architecture, vol. 61, no. 7, pp. 293 – 306, 2015.

[11] H. R. Mendis et al., “Dynamic and static task allocation for hard real-
time video stream decoding on nocs,” Leibniz Transactions on Embedded
Systems, vol. 4, no. 2, pp. 01:1–01:25, Jul. 2017.

[12] M. Rapp et al., “Neural network-based performance prediction for task
migration on S-NUCA many-cores,” IEEE Transactions on Computers,
pp. 1–1, 2020.

[13] S. Paul et al., “Adaptive task allocation and scheduling on NoC-based
multicore platforms with multitasking processors,” ACM Trans. Embed.
Comput. Syst., vol. 20, no. 1, Dec. 2020.

JOURNAL OF, VOL. XX, NO. X, MONTH YYYY 18

[14] ——, “A hybrid adaptive strategy for task allocation and scheduling
for multi-applications on NoC-based multicore systems with resource
sharing,” in Proc. of Design, Automation Test in Europe Conf. Exhibition
(DATE), 2021, pp. 1663–1666.

[15] Z. Li et al., “Chordmap: Automated mapping of streaming applications
onto CGRA,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1–1, 2021.

[16] D. Huff et al., “Clockwork: Resource-efficient static scheduling for
multi-rate image processing applications on FPGAs,” in Proc. of IEEE
Annual Int. Symposium on Field-Programmable Custom Computing
Machines (FCCM), 2021, pp. 186–194.

[17] T. D. Ngo et al., “Move based algorithm for runtime mapping of dataflow
actors on heterogeneous MPSoCs,” J. of Signal Processing Systems,
vol. 87, no. 1, pp. 63–80, Apr. 2017.

[18] A. Singh et al., “Mapping on multi/many-core systems: Survey of
current and emerging trends,” in Proc. of the Design Automation Conf.
(DAC), May 2013, pp. 1–10.

[19] P. K. Sahu and S. Chattopadhyay, “A survey on application mapping
strategies for Network-on-Chip design,” J. of Systems Architecture,
vol. 59, no. 1, pp. 60–76, 2013.

[20] K. Huang et al., “A scalable and adaptable ILP-Based approach for
task mapping on MPSoC considering load balance and communication
optimization,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 38, no. 9, pp. 1744–1757, Sep. 2019.

[21] C. Rubattu et al., “Pathtracing: Raising the level of understanding
of processing latency in heterogeneous mpsocs,” in Drone
Systems Engineering and Rapid Simulation and Performance
Evaluation: Methods and Tools, ser. DroneSE and RAPIDO
’21. NY, USA: ACM, 2021, pp. 46–50. [Online]. Available:
https://doi.org/10.1145/3444950.3447282

[22] C. Chou and R. Marculescu, “Run-time task allocation considering user
behavior in embedded multiprocessor networks-on-chip,” IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, vol. 29,
no. 1, pp. 78–91, 2010.

[23] E. L. d. S. Carvalho et al., “Dynamic task mapping for MPSoCs,” IEEE
Design Test of Computers, vol. 27, no. 5, pp. 26–35, 2010.

[24] M. Fattah et al., “Adjustable contiguity of run-time task allocation in
networked many-core systems,” in Proc. of Asia and South Pacific
Design Automation Conf. (ASP-DAC), 2014, pp. 349–354.

[25] A. K. Singh et al., “Resource and throughput aware execution trace
analysis for efficient run-time mapping on MPSoCs,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35,
no. 1, pp. 72–85, 2016.

[26] C. Ykman-Couvreur et al., “Linking run-time resource management
of embedded multi-core platforms with automated design-time explo-
ration,” IET Computers & Digital Techniques, vol. 5, pp. 123–135(12),
Mar. 2011.

[27] W. Quan and A. D. Pimentel, “A scenario-based run-time task mapping
algorithm for MPSoCs,” in Proc. of the Annual Design Automation Conf.
(DAC), New York, NY, USA, 2013.

[28] A. K. Singh et al., “Accelerating throughput-aware runtime mapping
for heterogeneous MPSoCs,” ACM Trans. Des. Autom. Electron. Syst.,
vol. 18, no. 1, Jan. 2013.

[29] S. Skalistis and A. Simalatsar, “Near-optimal deployment of dataflow
applications on many-core platforms with real-time guarantees,” in Proc.
of the IEEE Design, Automation Test in Europe Conf. Exhibition (DATE),
2017, pp. 752–757.

[30] H. Yviquel et al., “Towards run-time actor mapping of dynamic dataflow
programs onto multi-core platforms,” in Proc. of the Int. Symposium on
Image and Signal Processing and Analysis (ISPA), 2013, pp. 732–737.

[31] W. Quan and A. D. Pimentel, “A hybrid task mapping algorithm for
heterogeneous MPSoCs,” ACM Trans. on Embedded Computing Systems
(TECS), vol. 14, no. 1, pp. 14:1–14:25, Jan. 2015.

[32] J.-P. Diguet et al., “Networked power-gated MRAMs for memory-based
computing,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26,
no. 12, Dec. 2018.

[33] S. S. Bhattacharyya et al., “Overview of the MPEG reconfigurable video
coding framework,” Journal of Signal Processing Systems, vol. 63, no. 2,
Dec. 2011.

[34] M. Wipliez and M. Raulet, “Classification of dataflow actors with
satisfiability and abstract interpretation,” Int. J. of Embedded and Real-
Time Communication Systems (IJERTCS), vol. 3, no. 1, pp. 49–69, 2012.

[35] T. Grotker et al., System Design with SystemC. Springer, 2002.
[36] Xiph.org video test media. [Online]. Available:

http://media.xiph.org/video/derf/

Mostafa Rizk received his Maitrise degree in Elec-
tronics, M.Sc in Biomedical Physics, and M.Sc
in Signal, Telecom, Image, and Speech from the
Lebanese University in 2007, 2008 and 2010 respec-
tively. He received his Ph.D. degree in Sciences and
Technologies of Information and Communication
from Telecom Bretagne, France in 2014 and a Ph.D
degree in Electronics and Telecommunication from
the Lebanese University in 2015. Dr. Rizk has been
a post-doctoral researcher at UBS University and
Lab-STICC laboratory CNRS, France. Dr. Rizk has

been an associate professor at LIU, Lebanon and associate researcher at
IMT-Atlantique, France. Currently, Dr. Rizk is a researcher at Lab-STICC
laboratory CNRS, Brest, France. His general research interests include both
algorithm development and corresponding hardware/software implementations
and digital circuit design; NoC design and new MPSoC architectures based
on emerging non-volatile memory technologies; embedded machine learning;
embedded intelligence and embedded computer vision.

Kevin J. M. Martin received a M.S. degree in
electrical and computer engineering in 2004 and a
PhD in computer science in 2010 from the Université
de Rennes, France. He is since 2011 an associate
professor at Université Bretagne-Sud in Lorient,
France, in the Lab-STICC. His research interests
stand at the crossing point between architecture,
methods and tools, including but not limited to: cus-
tom processors, CGRA, multi-processor platforms,
high-level synthesis, computer-aided design tools,
compilers and software engineering.

Jean-Philippe Diguet is a CNRS director of re-
search. He has been A/Prof. at UBS University,
research visitor at IMEC/Belgium and UQ/Australia,
invited Prof. at Tohoku Univ./Japan and USP/Brasil.
At Lab-STICC he has led the team method and tools
for SoC and embedded system (MOCS) from 2008
to 2016 and then the ICT and Drones program. Since
2021 his is the director of CROSSING, an Interna-
tional CNRS Lab in Adelaide, Australia dedicated
to Human/Automous-Agents teaming. His research
work focused initially on various aspects of SoC and

embedded system design including self-adaptation and now addresses different
levels of embedded and distributed intelligence.

