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A CLASS OF PRIORS FOR COLOR IMAGE RESTORATION PARAMETRIZED BY LIE GROUPS ACTING ON PIXEL VALUES

a new prior for image restoration has been introduced. It first relies on the observation that an image and a degraded version of it can share some visual content, then on the conjecture that an image restoration model can benefit from the use of an image prior encoding this invariance property. This prior considers the restored image as a parallel section of a connection (also called covariant derivative), this latter being a critical point of an energy associated to the Lie group R + * × SO(2) acting on image pixel values. In this paper, we propose a two-fold generalization of this result. First, we consider other Lie groups acting on image pixels, yielding new optimal connections. Then, we derive a family of α-connections from the optimal connections. The corresponding parallel sections describe new invariance properties which we use as priors encoded as penalty terms in variational models for image restoration. Experiments conducted on color image deblurring show that the proposed generalization of the work of Batard et al. outperforms the original approach.

Introduction.

1.1. Invariance in vision science and computer vision. Invariance properties of objects under certain transformations are studied in various areas of mathematics, like geometry, topology, and algebra. Actually, many natural phenomena can be described as an invariance property of a system. In vision science, one of the main invariance property is the ability of the human visual system to perceive objects equally after (reasonable) spatial and lighting variations of the scene. Applications of this phenomenon in computer vision include classification, tracking, recognition, etc. The different aspects of this invariance property of the human visual system can be related to different categories of invariance in mathematics.

The first category concerns the invariance property of a mathematical object with respect to group actions. Under the correspondence between spatial/color rigid transformations and actions of Lie groups on image pixels, the perception of objects can be interpreted as independent with respect to group actions [START_REF] Lindeberg | Invariance of visual operations at the level of receptive fields[END_REF]. Then, many strategies have been proposed for the construction of image features which are invariant under Lie group actions, with the aim of performing automatic classification of objects or images/scenes. For instance, Fourier descriptors are derived from Fourier theory on Lie groups [START_REF] Gauthier | Motions and pattern analysis: Harmonic analysis on motion groups and their homogeneous spaces[END_REF], making use of invariance properties of the harmonics. More recently, machine learning methods have demonstrated their great ability to perform classification (see e.g. [START_REF] Smach | Generalized Fourier descriptors with applications to objects recognition in SVM context[END_REF] where Fourier descriptors are combined with SVM classification). State-of-the-art classifiers are currently supervised learning methods based on neural networks. In particular a lot of efforts has been made in the last few years to develop invariant/equivariant convolutional neural networks (CNNs) with respect to some group action, the group of interest depending on the application (see e.g. [START_REF] Lafarge | Roto-translation equivariant convolutional networks: Application to histopathology image analysis[END_REF] for SE [START_REF] Batard | A class of generalized Laplacians devoted to multi-channels image processing[END_REF], [START_REF] Cohen | Spherical CNNs[END_REF], [START_REF] Esteves | Learning SO(3) Equivariant Representations with Spherical CNNs[END_REF] for SO(3), [START_REF] Weiler | 3D steerable CNNs: Learning rotationally equivariant features in volumetric data[END_REF] for SE [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF]). Let us also mention that general theories of equivariant CNNs have been developed (see [START_REF] Cohen | A general theory of equivariant cnns on homogeneous spaces[END_REF] for CNNs on homogeneous spaces, and [START_REF] Kondor | On the generalization of equivariance and convolution in neural networks to the action of compact groups[END_REF] for equivariant CNNs with respect to the action of compact groups).

Another category of invariance concerns the property of a mathematical object to keep unchanged after perturbations in which symmetries are not necessarily involved. For instance, in geometry, one may study the invariance properties of an object under a metric change. Considering a degradation in imaging (noise, blur, downsampling,...) as a perturbation, one can wonder whether there exist image features that are invariant under a given degradation. Then, one can argue that knowing the features that are unchanged can facilitate the recovery of the clean image in a restoration model. Note that, in practice, invariance can be difficult to achieve, especially if the level of degradation is high. However, one can relax the problem by searching image features that are corrupted in a small extent under a given degradation. The denoising model of Bertalmío and Levine [START_REF] Bertalmío | Denoising an image by denoising its curvature image[END_REF] can be interpreted in this setting. Indeed, from the observation that the curvature of the level lines of a grey-level image is less corrupted than its pixels intensity under a degradation by additive white Gaussian noise, the authors suggested that any denoising model would recover more easily the curvature of the level lines of the clean image than the clean image itself. Then, the denoised image would be reconstructed from the denoised curvature. The moving frame approach introduced in [START_REF] Batard | Spinor Fourier transform for image processing[END_REF] and applied later on for image restoration in [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF], [START_REF] Ghimpeteanu | A decomposition framework for image denoising algorithms[END_REF], [START_REF] Wang | Color image restoration by saturation-value total variation regularization on vector bundles[END_REF] follows a similar strategy: instead of restoring the image directly, construct a moving frame in which the components of the image are less affected by the degradation than the image itself. In this case, the restored image is reconstructed in a straightforward way by applying the inverse moving frame change formula to the restored components. In both approaches, experiments corroborated that the use of image features which are less corrupted than image pixels intensity helps to get a better reconstruction of the clean image. More recently, Batard et al. [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] proposed a new strategy to take into account invariance properties with respect to the degradation operator in a restoration model. They considered variational models of the form arg min v E(Hv, u) + λR u (v), λ > 0, (1.1) where u is the input degraded image, H the degradation operator, E a data term and R u a penalty term induced by u. The authors suggested to take R u such that R u v = 0 implies that v satisfies some invariance property with respect to u. Then, this construction encourages the solution of the restoration model (1.1) to satisfy this invariance property. Note that, in practice, R u v = 0 is never reached, so the proposed model only achieves partial invariance. However, as mentioned above, this is coherent with realistic situations. The authors made use of the framework of fiber bundles in order to construct an image prior encoding an invariance property. Indeed, assimilating u to the expression of a section of an associated bundle in some particular moving frame, they constructed an optimal connection 1-form A u induced by u as a solution of a variational model (more details will be given in sect. 2). Then, they showed that the parallel sections of the covariant derivative D u induced by A u , i.e. the sections v satisfying D u v = 0, encode some invariance property with respect to u. Taking as penalty term R u (v) := D u v L 1 encourages the solutions of the variational model (1.1) to be piece-wise parallel, i.e. to satisfy locally the invariance property with respect to u. Finally, they introduced the model DIP-VBTV of the form (1.1), in which the data term is a Deep Image Prior (DIP) [START_REF] Ulyanov | Deep image prior[END_REF] and the penalty term is

V BT V (v) := D u v L 1 .
Experiments on color image deblurring showed that DIP-VBTV outperforms both DIP and DIP-VTV, a model combining DIP and the Vectorial Total Variation (VTV). Therefore, the results corroborate that image restoration can benefit from the use of invariance properties with respect to a degradation.

Contribution.

In this paper, we extend the results in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] in a four-fold way. The main results we obtain are described in what follows.

1. The optimal connection 1-form A u in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] is the unique critical point of an energy involving the group R + * × SO(2) acting on the pixel values expressed in an opponent color space. Here, we extend the construction of optimal connection 1-forms A u to a larger set of Lie groups: the groups R + * × R + * × R + * , R + * × SO(3), GL(3) acting on the pixel values expressed in the RGB color space, and the group R + * × R + * × SO [START_REF] Batard | A class of generalized Laplacians devoted to multi-channels image processing[END_REF] acting on the pixel values expressed in an opponent color space. We determine the invariance properties of the parallel sections of the covariant derivatives induced by these optimal connection 1-forms. In particular, we systematically have u ∈ ker D u (i.e. u is a parallel section of D u ) for the groups studied in this paper. It makes totally sense that u satisfies the invariance property with respect to itself, but it was actually not the case for the group R + * × SO(2) studied in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF].

2. Because the invariance properties constructed in 1. have some limitations, we construct new invariance properties derived from the ones in 1. To that purpose, we derive a family of α-connections D α u from the connections D u , following the construction of α-connections in information geometry (see e.g. [START_REF] Nielsen | An elementary introduction to information geometry[END_REF]). Note that we allow here α to be a function and that D 1 u = D u . We determine the invariance properties of the parallel sections of the α-connections, which turn out to be more accurate than the ones of the connections D u . Moreover, we show that the α-connections are flat for R + * × R + * × R + * and R + * × R + * × SO(2) in the case where α is constant.

3. One of the main limitations of the invariance properties constructed in 2. is their dependency with respect to α. Moreover, the function α providing the best result depends on both the image and the degradation. Then, we propose to select the value of α automatically through a variational model providing an optimal value α * depending on u and v, yielding the operator D α * u,v . We obtain the following result

v ∈ ker D α * u,v ⇐⇒ v ∈ α∈C 0 (Ω) ker D α u , (1.2) 
where Ω is the image domain and C 0 (Ω) the set of continuous on Ω. It shows that the new invariance property consists of the union of the invariance properties determined in 2. Because u ∈ ker D 1 u , formula (1.2) shows that the function space is not empty. 4. We consider the two models DIP-VBTV α (with VBTV α (v

) := D α u v L 1 ) and DIP-VBTV α * (with VBTV α * (v) := D α * u,v v L 1
), and test them for color image deblurring. Compared to [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF], we conduct our experiments on a larger set of images (32 images instead of 4) and with more degradation operators (we consider uniform blur besides Gaussian blur). Results of the experiments corroborate the theoretical results described in 2. and 3., which state that the new invariance properties are more relevant than the one constructed in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]. In particular, the best results are obtained for optimal value α * and G=GL(3).

In sect. 2, we remind the main results obtained in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]. Then, in sect. 3, we construct the optimal connection 1-forms and the subsequent α-connections for the different Lie groups aforementioned. In sect. 4, we study the flatness of the α-connections constructed in sect. 3 and we determine the invariance properties of their parallel sections. In sect. 5, we determine the optimal values of the parameter α and we study the invariance properties of the parallel sections of the corresponding covariant derivatives. Finally, we conduct the experiments on color image deblurring in sect. 6.

Previous work and its limits.

We refer the reader to ([2] Appendix A) for more details about the geometric and algebraic notions mentioned in this section.

2.1. The geometric and algebraic frameworks. Let M be a smooth manifold, and G be a finite-dimensional Lie group. Let (P, π, M, G) be a principal bundle over M , ρ a group representation of G on a finite-dimensional vector space V , and E the associated bundle P × (ρ,G) V .

We denote by T M resp. T P the tangent bundle of M resp. P , and by T * M the cotangent bundle of M . We also denote by G(E) the bundle of linear maps acting on the fibers of E given by matrices in the group G. We denote by g the Lie algebra of G and by g(E) the bundle of linear maps acting on the fibers of E given by matrices in the set g. Finally, given a bundle F , we denote by Γ(F ) the set of smooth sections of F and by Γ 0 (F ) the set of continuous sections of F .

Recall that there is a correspondence between sections of associated bundles and G-equivariant functions on principal bundles. Let S ∈ Γ(E) and f S be the corresponding G-equivariant function on P . Let HP be a horizontal bundle of P . Let X ∈ Γ(T M ) and X h ∈ Γ(T P ) be the horizontal lift of X with respect to HP . Then, there exists a covariant derivative D on E, also called connection, such that the following correspondence holds

d X h f S ←→ D X S, (2.1) 
where d stands for the standard differential operator.

Let ω be the connection 1-form on P induced by HP . Let s be a section of P and A be the g-valued 1-form on M given by

A = s * ω,
where * denotes the pull-back map. Then, relatively to the frame of E induced by s, the covariant derivative is given by

D = d + ρ * (-A) (2.2)
where ρ * is the Lie algebra representation induced by ρ. Note that even if A and ρ * (A) are determined by the choice of a frame, they are also called connection 1-forms (on M and E respectively). In what follows, we will sometimes omit the term ρ * , and denote by A (instead of ρ * (A)) the connection 1-form on E.

Previous work.

In this section, we summarize the results obtained in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]. Here we express them by means of group representations, which was not the case in the original paper.

Image as section of an associated bundle.

Let Ω ⊂ R 2 and u = (u 1 , u 2 , u 3 ) : Ω -→ R 3 be a color image. Let G be a Lie group acting on R 3 through a representation ρ. Let P = Ω × G and E the G-associated bundle P × (ρ,G) R 3 . The function u can be extended to a section of E or equivalently to a G-equivariant function on P of the form

u(x, g) = ρ(g -1 )u(x) ∀x ∈ Ω, ∀g ∈ G, (2.3) 
such that u = u(•, e), where e is the neutral element of G.

For ρ being the standard representation of G, pixel values are transformed as vectors under the action of ρ(g -1 ). On the other hand, for ρ being the dual of the standard representation, pixel values are transformed as covectors under ρ(g -1 ).

In [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF], the authors considered the standard representation ρ (and its dual ρ C ) of the group

R + * × SO(2) on R 3 = R ⊕ R 2 : ρ(a, θ) =   a 0 0 0 cos θ -sin θ 0 sin θ cos θ   ρ C (a, θ) =   -a 0 0 0 cos θ -sin θ 0 sin θ cos θ  
where (a, θ) is the standard coordinates system on R + * × SO [START_REF] Batard | A class of generalized Laplacians devoted to multi-channels image processing[END_REF].

Under the identification between R ⊕ R 2 and an color opponent space, the representations describe changes of luminance and hue.

2.2.2.

Optimal geometry associated to an image. Assuming that Ω is equipped with a Riemannian metric g and E with a positive definite metric h, the space T * Ω ⊗ E is then equipped with the positive definite metric g -1 ⊗ h, and the space Γ(T * Ω ⊗ E) with a L p norm denoted by L p (g -1 ⊗ h).

In the context of associated bundles, where a covariant derivative D on the vector bundle is determined by a connection 1-form ω on the principal bundle and a group representation ρ (see formula (2.2)), the energy introduced in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] can be rewritten as

X(g, h, ω, ρ) = Du 2 L 2 (g -1 ⊗h) = Ω g ij h(D ∂x i u, D ∂x j u) dg (2.4) 
where (∂ x1 , ∂ x2 ) is the frame of T Ω induced by a coordinates system (x 1 , x 2 ) on Ω, and the Einstein summation convention has been used.

Optimal Riemannian metric. Fixing ω, ρ and h, the energy (2.4) is of the form

X(g) = Du 2 L 2 (g -1 ⊗h) . (2.5)
Under the assumption that D ∂x 1 u(x) = γ D ∂x 2 u(x) ∀γ ∈ R, ∀x ∈ Ω, the authors showed that the Riemannian metric

g = h(D ∂x 1 u, D ∂x1 u) h(D ∂x 1 u, D ∂x 2 u) h(D ∂x 1 u, D ∂x 2 u) h(D ∂x 2 u, D ∂x 2 u) (2.6)
is a critical point of the energy (2.5). Actually, a more general result can be obtained:

Proposition 2.1. If D ∂x 1 u(x) = γD ∂x 2 u(x) ∀γ ∈ R, ∀x ∈ Ω,
then the critical points of the energy (2.5) are the Riemannian metrics g f defined by

g f = f h(D ∂x 1 u, D ∂x 1 u) h(D ∂x 1 u, D ∂x 2 u) h(D ∂x 1 u, D ∂x 2 u) h(D ∂x 2 u, D ∂x 2 u) (2.7)
for f ∈ C 0 (M ) such that f does not vanish.

Proof. See Appendix A.

Optimal connection 1-form and its dual. Fixing g, h, ρ, the energy (2.4) reads

X(ω) = Du 2 L 2 (g -1 ⊗h) . (2.8)
Without loss of generality, we can assume that the section u in (2.3) is expressed in a frame of E in which h = 2 . Denoting by A the pull-back of ω in the corresponding frame of P , the energy (2.8) can be rewritten as

X(A) = Du 2 L 2 (g -1 ⊗ 2) .
(2.9)

Then, the authors obtained the following result.

Proposition 2.2. The unique critical point of the energy (2.9) induced by the standard representation of

G = R + * ×SO(2) on R ⊕ R 2 is A u = du 1 u 1 ⊗ ∂/∂a + u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 ⊗ ∂/∂θ. (2.10)
It yields the following connection 1-form on the associated bundle

E := P × (ρ,G) R 3 ρ * (-A u ) =        - du 1 u 1 0 0 0 0 u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 0 - u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 0        . (2.11) 
The authors also considered the connection 1-form induced by the dual representation ρ C on the dual bundle E * := P × (ρ C ,G) R 3 , given by

ρ C * (-A u ) =        du 1 u 1 0 0 0 0 u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 0 - u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 0        .
(2.12)

2.2.3. Parallel sections and invariance. Denoting by D u the covariant derivative induced by the connection 1-form (2.11) and by D u the covariant derivative induced by the connection 1-form (2.12), the authors showed that both covariant derivatives are flat, which implies the existence of parallel sections for these covariant derivatives, i.e., sections v such that D u v = 0 or D u v = 0. Assuming that the images are expressed in an opponent color space, they obtained

D u v = 0 ⇐⇒      dv 1 v 1 = du 1 u 1 dr(v) = 0 dϕ(v) = dϕ(u) (2.13) D u v = 0 ⇐⇒      dv 1 v 1 = - du 1 u 1 dr(v) = 0 dϕ(v) = dϕ(u) (2.14)
where r is the chroma component, and ϕ the hue component.

The model DIP-VBTV for image restoration.

Let u be a degraded image seen as a section of an associated bundle, and g, h, ω be a geometric triplet. Denoting by V BT V (v) := Dv L 1 (g -1 ⊗h) , the authors in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] considered variational models for image restoration of the form

arg min v∈X E(Hv, u) + λ V BT V (v), λ > 0 (2.15)
where H is a degradation operator, E(Hv, u) measures an attachment of Hv to u, and X is some function space.

From the results presented in section 2.2.3, the authors deduced that, if D = D u or D = D u , then the minimization of V BT V encourages the solutions of the model (2.15) to be piece-wise parallel with respect to D u or D u , i.e., to satisfy locally the equalities (2.13) or (2.14).

Then, the authors introduced the model DIP-VBTV

   θ = arg min θ 1 2 H(T θ (z)) -u 2 L 2 (h) + λ V BT V (T θ (z)) λ > 0 u = T θ (z).
(2.16)

where T θ is an encoder-decoder with skip connections between the down and up layers. It corresponds to the default architecture in [START_REF] Ulyanov | Deep image prior[END_REF], which we refer to for details about the architecture. In particular, for a degraded image u of size M × N × 3 (3 represents the number of color channels), the input z of the network is a random image of size M × N × 32. Finally, u is the restored image. Experiments showed that, for an optimal Riemannian metric (2.6) and an optimal covariant derivative (2.11) or is dual (2.12), DIP-VBTV outperforms both DIP [START_REF] Ulyanov | Deep image prior[END_REF] and DIP-VTV, a vectorial generalization of DIP-TV [START_REF] Liu | Image restoration using total variation regularized deep image prior[END_REF], on deblurring tasks.

2.3.

The image priors, their limits, and some ways to improve them. The first equalities in (2.13) and (2.14) imply that the gradients of the achromatic component of v 1 and u 1 have the same orientation at each point of the domain Ω. As a consequence, these equalities seem to be good priors for solutions of a deblurring model. However, these equalities also encourage the amplitude of the gradient of the solution to satisfy some constraint with respect to the one of the degraded image. This might be a drawback because the norm of the gradient of the degraded image greatly depends on the level of degradation. Ideally, we would not have any restriction on the norm of the gradient in order to have image priors independent of the level of degradation.

Image priors (2.13) and (2.14) also impose some constraints on the chromatic components of the solution: they encourage the chroma of the solution to be piecewise constant and the gradient of the hue to be the same as the one of the degraded image. They also seem to be relevant priors for image deblurring: the first one aims at limiting the generation of chroma noise and preserving the main edges in the chroma component when deblurring the image. The second one encourages the hue of the solution to be similar (up to an additive constant) to the one of the degraded image, which is coherent because a degradation by blur does not affect much the hue.

However, better image priors for image deblurring could possibly be found. In order to generate image priors encoding new invariance properties, we propose to: 1. Construct new covariant derivatives by considering more Lie group actions on pixel values. 2. Derive a family of α-connections from the covariant derivatives constructed in 1.

3.

Optimal connection 1-forms parametrized by Lie groups and the subsequent α-connections.

3.1. α-connections on associated bundles. Similar to the construction of α-connections on statistical manifolds in information geometry (see e.g. [START_REF] Nielsen | An elementary introduction to information geometry[END_REF]), a notion of α-connection can also be defined on associated bundles by means of a group representation and its dual.

3.1.1. α-connections on vector bundles. Let E -→ M be a smooth vector bundle of rank n equipped with a connection D and a metric h. 

D 0 = D + D 2 (3.2)
is compatible with h.

Let ω, resp. ω, resp. w 0 be the connection 1-form associated to D, resp. D, resp. D 0 . It follows from 3. that

ω 0 = ω + ω 2 .
As a consequence, ω and ω can be written as

ω = ω 0 + ω ω = ω 0 -ω (3.3) 
for some w.

With respect to an orthonormal frame of E, we have ω 0 ∈ Γ(T * M ⊗ so(n)) by property of a connection compatible with the metric. Hence, ω ∈ Γ(T * M ⊗ Sym(n)), where Sym(n) denotes the set of n × n symmetric matrices, and the decompositions (3.3) write

ω ij = ω ij -ω ji 2 + ω ij + ω ji 2 (3.4) ω ij = ω ij -ω ji 2 - ω ij + ω ji 2 = -ω ji . (3.5)
Let us consider the Cartan involution on gl(n), the Lie algebra of GL(n), given by θ(X) = -X T .

(3.6)

The map (3.6) extends to an involution Θ on Γ(T * M ⊗ End(E)). Then, formula (3.5) gives ω = Θ(ω).

Definition 3.2 (α-connection). Let E -→ M be a smooth vector bundle equipped with a connection D and a metric h. Let D be the conjugate connection of D. We define a family of connections D α , α ∈ C 0 (M ), by

D α = 1 + α 2 D + 1 -α 2 D. (3.7) 
We call D α a α-connection.

We observe that D 1 = D and D -1 = D. Moreover, we have D -α = D α .

3.1.2. From connection 1-forms on principal bundles to α-connections on associated bundles. Let E -→ M be a smooth vector bundle equipped with a connection D and a metric h.

The notion of α-connection can be defined on associated bundles by means of the notion of dual connection.

Definition 3.3 (Dual connection). The dual of D is the connection D * on E * , the dual of E, satisfying d (s, t) = (s, Dt) + (D * s, t) ∀s ∈ Γ(E * ), ∀t ∈ Γ(E) (3.8) 
where (•, •) is the pairing between E * and E induced by h.

Then, from the musical isomorphisms : E * -→ E and = -1 induced by h, equality (3.8) can be rewritten

d h( s, t) = h( s, Dt) + h( D * s, t) (3.9) or d h(r, t) = h(r, Dt) + h( D * r, t) (3.10) 
where r = s. We deduce that

D = D * ,
i.e. the dual and conjugate connections are equivalent.

Let us now assume that E is equipped with an associated bundle structure E = P × (ρ,G) V (and so does its dual bundle

E * = P × (ρ C ,G) V * ).
Let ω be a connection 1-form on P . We obtain two connection 1-forms on the associated bundles E and E * given by ρ * (-ω) and ρ C * (-ω) respectively. It follows a family of α-connections D α on E whose connection 1-forms are

ω α = 1 + α 2 ρ * (-ω) + 1 -α 2 ρ C * (-ω) . (3.11)
Let t ∈ Γ(E). When applying D α to t, the construction (3.11) makes t(x), x ∈ M , behave as a vector (for α(x) = 1), a covector (for α(x) = -1) or a combination of both (α(x) ∈ R -{-1, 1}). Note that α-connections D * α in E * can be constructed in a similar manner, where the corresponding connection 1-forms are given by

ω * α = ω α = 1 + α 2 ρ * (-ω) + 1 -α 2 ρ C * (-ω) (3.12)
In particular, we have D * α = D α * .

3.2. Explicit expressions of the optimal connection 1-forms and the subsequent α-connections for different Lie groups.

Let u = (u 1 , u 2 , u 3 ) : Ω ⊂ R 2 -→ R 3 be a color image, (ρ, G) a group representation on R 3 , and the associated bundle E = (Ω × G) × (ρ,G) R 3 .
Let us assume that u is the expression of a section of E, that we will call u as well, in a moving frame in which h = 2 .

The group

G = R + * × R + * × R + * . Under the identification R 3 R⊕R⊕R, E can be decomposed as E = E 1 ⊕E 2 ⊕E 3 where E i = (Ω×R + * )× (ρi,R + * ) R for some representation ρ i of R + * on R. In this context, u = u 1 ⊕ u 2 ⊕ u 3 .
The Lie algebra of R + * is R, and a coordinates system (a) on R induces a coordinates system ϕ on R + * of the form ϕ : a -→ e a .

The standard Lie algebra representation ρ * of R on itself and its dual ρ C * are given by

ρ * (a) = a ρ C * (a) = -a. (3.13) 
The standard group representation ρ of R + * on R and its dual ρ C are then given by exponentiation of the corresponding Lie algebra representations:

ρ(a) = e a ρ C (a) = e -a . (3.14) 
Proposition 3.4. The unique critical point of the energy (2.9) on E i induced by the standard representation of R + * on R is

A ui = du i u i ⊗ ∂/∂a (3.15) Proof. See Appendix B.1.
From the optimal connection 1-form (3.15), the standard Lie algebra representation of R on itself and its dual (3.13), and formula (3.11), we obtain a family of α-connections on E i given by the following expression in the chosen moving frame

A αi ui = -α i du i u i , α i ∈ C 0 (Ω). (3.16)
Finally, by taking the direct sum of the α-connections

(3.16) on E i , i = 1, 2, 3, we obtain the family A α u , where α = (α 1 , α 2 , α 3 ) ∈ C 0 (Ω; R 3 ), of connection 1-forms on E A α u := 3 i=1 A αi ui        -α 1 du 1 u 1 0 0 0 -α 2 du 2 u 2 0 0 0 -α 3 du 3 u 3        . (3.17) 3.2.2. The group G = R + * × R + * × SO(2). Under the identification R 3 R ⊕ R 2 , the vector bundle E can be decomposed as E = E 1 ⊕ E 2 where E 1 = (Ω × R + * ) × (ρ1,R + * ) R and E 2 = (Ω × R + * × SO(2)) × (ρ2,R + * ×SO(2)) R 2 for some representation ρ 1 of R + * on R and some representation ρ 2 of R + * × SO(2) on R 2 . In this context, u = u 1 ⊕ u 2,3 where u 2,3 = (u 2 , u 3 ).
In sect. 3.2.1, we constructed a family of α-connections on E 1 , given by

A α1 u1 = -α 1 du 1 u 1 , α 1 ∈ C 0 (Ω). (3.18)
Let us construct a family of α-connections on E 2 . The Lie algebra of

R + * × SO(2) is R ⊕ so(2). A coordinates system (a, θ) on R ⊕ so(2) induces a coordinates system ϕ on R + * × SO(2) of the form ϕ : (a, θ) -→ (e a , R θ ) where R θ is the rotation of angle θ in R 2 .
The standard Lie algebra representation ρ * of R ⊕ so(2) on R 2 and its dual ρ C * are given by

ρ * (a, θ) = a -θ θ a ρ C * (a, θ) = -a -θ θ -a . ( 3.19) 
The standard group representation ρ of R + * × SO(2) on R 2 and its dual ρ C are then given by exponentiation of the corresponding Lie algebra representations:

ρ(e a , R θ ) =
e a cos θ -e a sin θ e a sin θ e a cos θ ρ C (e a , R θ ) = e -a cos θ -e -a sin θ e -a sin θ e -a cos θ .

(3.20) Proposition 3.5. The unique critical point of the energy (2.9) induced by the standard representation of

R + * ×SO(2) on R 2 is A u2,3 = u 2 du 2 + u 3 du 3 u 2 2 + u 2 3 ⊗ ∂/∂a + u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 ⊗ ∂/∂θ. (3.21) Proof. See Appendix B.2.
From the optimal connection 1-form (3.21), the standard Lie algebra representation of R ⊕ so(2) on R 2 and its dual (3.19), and formula (3.11), we obtain a family of α-connections on E 2 given by the following expression in the chosen moving frame

A α2 u2,3 =      -α 2 u 2 du 2 + u 3 du 3 u 2 2 + u 2 3 u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 - u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 -α 2 u 2 du 2 + u 3 du 3 u 2 2 + u 2 3      , α 2 ∈ C 0 (Ω). (3.22)
Finally, by taking the direct sum of the α-connections (3.18) and (3.22), we obtain the family 3), and a coordinates system (a, θ 1 , θ 2 , θ 3 ) on R⊕so(3) induces a coordinates system ϕ on R + * × SO(3) of the form ϕ : (a, θ 1 , θ 2 , θ 3 ) -→ (e a , R θ1,θ2,θ3 ) where R θ1,θ2,θ3 is the rotation in R 3 of Euler angles θ 1 , θ 2 , θ 3 .

A α u for α = (α 1 , α 2 ) ∈ C 0 (Ω; R 2 ) of connection 1-forms on E A α u := A α1 u1 ⊕ A α2 u2,3 =          -α 1 du 1 u 1 0 0 0 -α 2 u 2 du 2 + u 3 du 3 u 2 2 + u 2 3 u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 0 - u 2 du 3 -u 3 du 2 u 2 2 + u 2 3 -α 2 u 2 du 2 + u 3 du 3 u 2 2 + u 2 3          . (3.23) 3.2.3. The group G = R + * × SO(3). The Lie algebra of R + * × SO(3) is R ⊕ so(
The standard Lie algebra representation ρ * of R ⊕ so(3) on R 3 and its dual ρ C * are given by

ρ * (a, θ 1 , θ 2 , θ 3 ) =   a -θ 1 θ 2 θ 1 a -θ 3 -θ 2 θ 3 a   ρ C * (a, θ 1 , θ 2 , θ 3 ) =   -a -θ 1 θ 2 θ 1 -a -θ 3 -θ 2 θ 3 -a   .
(3.24) The standard group representation ρ of R + * × SO(3) and its dual ρ C are then given by exponentiation of the corresponding Lie algebra representations:

ρ(e a , R θ1,θ2,θ3 ) = e a M R θ 1 ,θ 2 ,θ 3 ρ C (e a , R θ1,θ2,θ3 ) = e -a M R θ 1 ,θ 2 ,θ 3 ,
where M R θ 1 ,θ 2 ,θ 3 denotes the matrix representation of R θ1,θ2,θ3 .

Proposition 3.6. The critical points of the energy (2.9) induced by the standard

representation of R + * × SO(3) on R 3 are A u,ξ = d u u ⊗ ∂/∂a + (u 1 du 2 -u 2 du 1 ) u 2 + ξ ⊗ ∂/∂θ 1 + (u 3 du 1 -u 1 du 3 ) u 2 + u 2 u 3 ξ ⊗ ∂/∂θ 2 + (u 2 du 3 -u 3 du 2 ) u 2 + u 1 u 3 ξ ⊗ ∂/∂θ 3 (3.25) for ξ ∈ Γ 0 (T * Ω). Proof. See Appendix B.3.
In what follows, we consider the case where ξ ≡ 0, and denote by A u the corresponding connection 1-form.

The connection 1-form A u together with the standard Lie algebra representation of R ⊕ so(3) on R 3 and its dual (3.24), and formula (3.11), induce a family of α-connections on E given by the following expression in the chosen moving frame

A α u =         -α d u u (u 1 du 2 -u 2 du 1 ) u 2 (u 1 du 3 -u 3 du 1 ) u 2 - (u 1 du 2 -u 2 du 1 ) u 2 -α d u u (u 2 du 3 -u 3 du 2 ) u 2 - (u 1 du 3 -u 3 du 1 ) u 2 - (u 2 du 3 -u 3 du 2 ) u 2 -α d u u         . (3.26)
3.2.4. The group G=GL [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF]. The identification between the Lie algebra gl(3) of GL(3) and End(R 3 ) corresponds to the standard representation ρ * of gl(3) on R 3 :

ρ * (a 1 , • • • , a 9 ) =   a 1 a 4 a 7 a 2 a 5 a 8 a 3 a 6 a 9   , (3.27) 
whose dual representation is given by

ρ C * (a 1 , • • • , a 9 ) =   -a 1 -a 2 -a 3 -a 4 -a 5 -a 6 -a 7 -a 8 -a 9   . (3.28)
Then, by using the matrix exponentiation, we obtain the standard and dual representations of GL(3) on R 3 .

of connection 1-forms, the covariant derivative D α u can be expressed in any moving frame. Moreover, the way the expression of the metric changes under a frame change is well-known. As a consequence, the variational model (4.1) is well-defined.

4.1. On the critical points of the energy. Let E -→ M be a smooth vector bundle where E is equipped with a covariant derivative D E and a positive definite metric h, and M is equipped with a Riemannian metric g. Let v ∈ Γ(E). We consider the following energy

X(v) = D E v 2 L 2 (g -1 ⊗h) . (4.2)
Note that the energy (4.2) has been introduced for applications to image restoration in [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF] in the case where D E is compatible with h. Here, we treat the more general case in which the covariant derivative is not necessarily compatible with the metric.

We denote by D T M the Levi-Civita connection on T M induced by g, and by D T * M the connection on T * M induced by D T M . We also denote by

D E the conju- gate of D E . The connection D T * M together with D E induce a connection D T * M ⊗E on T * M ⊗ E defined by D T * M ⊗E (ξ ⊗ ψ) = D T * M ξ ⊗ ψ + ξ ⊗ D E ψ. Its conjugate connection D T * M ⊗E is given by D T * M ⊗E (ξ ⊗ ψ) = D T * M ξ ⊗ ψ + ξ ⊗ D E ψ. Note that D T * M = D T * M is a consequence of the compatibility of D T M with g. Definition 4.1. The adjoint of D E is the operator D E satisfying D E ϕ, ψ L 2 (g -1 ⊗h) = ϕ, D E ψ L 2 (h)
for ϕ or ψ of compact support, and is given by

D E = -T r g D T * M ⊗E , (4.3) 
where T r g is the Trace with respect to g.

In particular, if D E is compatible with h, then its adjoint is given by

D E = -T r g D T * M ⊗E . (4.4)
We have the following result.

Proposition 4.2. The critical points of the energy (4.2) are the sections v satisfying

D E D E v = 0.
Proof. The Euler-Lagrange equations associated to the energy (4.2) lead to the equation

D E D E v = 0.
We deduce from Prop. 4.2 that the parallel sections of D E , if they exist, are critical points of the energy (4.2). They are actually minima as

D E v = 0 =⇒ X(v) = 0.
4.2. Flatness of the connections and invariance properties of the parallel sections. In general, it is not straightforward to determine whether a given connection possesses (non trivial) parallel sections or not. However, for flat connections, their existence is guaranteed. 

map R ∈ Γ( 2 T * M ⊗ End(E)) defined by R(X, Y ) = D X D Y -D Y D X -D [X,Y ]
for X, Y ∈ Γ(T M ). A connection is said flat if its curvature is 0. The expression of R in a given moving frame of E is determined by the matrix valued 2-form

dA + A ∧ A, (4.5) 
where A is the expression of the connection 1-form associated to D in the moving frame.

It can be shown that, for a flat connection, there exists a frame of E in which the connection 1-form A vanishes. Hence, the parallel sections of a flat connection correspond to the sections which are constant in a frame in which the connection 1-form vanishes.

In the rest of the section, we compute the curvature of the α-connections constructed in the previous section. Moreover, when it is possible, we determine their parallel sections and the invariance properties of these latter.

4.3. On the parallel sections for the group R + * × R + * × R + * . We obtain the following results. Proof. We have

d A α u + A α u ∧ A α u = 0. if α is constant.
Then, by tensoriality of R, we deduce that R = 0 with respect to any frame of E. 

dv i v i = α i du i u i , i = 1, 2, 3 (4.6)
in the given moving frame.

Proof. See Appendix C.1.

In particular, we observe that u is a parallel section of

D α u for α 1 = α 2 = α 3 = 1.
Equality (4.6) implies that the gradient orientations of v i and u i are the same all over the image Ω. On the other hand, v i and u i having the same gradient orientations all over Ω and ∀i guarantees that v is a parallel section of D α u for some α ∈ C 0 (Ω; R 3 ).

4.4. On the parallel sections for the group R + * × R + * × SO [START_REF] Batard | A class of generalized Laplacians devoted to multi-channels image processing[END_REF]. We obtain the following results. 

, α = (α 1 , α 2 ) ∈ C 0 (Ω; R 2 ), are the sections v satisfying                      dv 1 v 1 = α 1 du 1 u 1 d v 2,3 v 2,3 = α 2 d u 2,3 u 2,3 d arctan v 3 v 2 = d arctan u 3 u 2 . (4.7) Proof. See Appendix C.2.
In particular, we observe that u is a parallel section of

D α u for α 1 = α 2 = 1.
If the images are expressed in an opponent color space, equalities (4.7) imply that:

1. The gradient orientations of the achromatic components of v and u are the same all over Ω. 2. The gradient orientations of the chroma components of v and u are the same all over Ω. 3. The gradients of the hue components of v and u are the same all over Ω.

On the other hand, if a section v satisfies all these three points, then v is a parallel section of D α u for some α ∈ C 0 (Ω; R 2 ). 4.5. On the parallel sections for the group R + * × SO(3). We obtain the following results. Proof. We have

dA α u + A α u ∧ A α u = 0.
Proposition 4.9. The parallel sections of D α u , if they exist, are the sections v satisfying

       d v v = α d u u A 0 u v = A 0 v v. (4.8) Proof. See Appendix C.3.
Proof. The energy (5.1) is bounded from below, convex and coercive with respect to α, which guarantees the existence of a minimum. Then, a straightforward computation shows that the energy possesses an unique critical point given by (5.2).

In what follows, we denote by D α * u,v the operator D α * u to emphasize the dependency of α * with respect to v. Proposition 5.2. We have

v ∈ ker D α * u,v ⇐⇒ v ∈ α ker D α u .
Proof. We have

D α * u,v v = 0 ⇐⇒ D 0 u v = D 0 u v, A u v A u v 2 A u v ⇐⇒ D 0 u v = α A u v for some α ∈ C 0 (Ω) ⇐⇒ v ∈ ker D α u for some α ∈ C 0 (Ω) ⇐⇒ v ∈ ker D -α u for some α ∈ C 0 (Ω) ⇐⇒ v ∈ α ker D α u .
Note that the set α ker D α u is not empty as u ∈ ker D 1 u . 5.2. Explicit expressions for the group R + * × R + * × R + * . The optimal parameter α * in (5.2) is given by

α * i = u i v i du i , dv i du i 2 for i = 1, 2, 3. (5.3) 
Moreover, the section v satisfies that D α * u,v v = 0 if and only if there exists α = (α 1 , α 2 , α 3 ) ∈ C 0 (Ω; R 3 ) such that

dv i = α i du i ∀i.
(5.4) Equality (5.4) is equivalent to the following statement: the gradient orientations of the components u i of u and v i of v are the same all over Ω.

Explicit expressions for the group

R + * × R + * × SO(2)
. The optimal parameter α * in (5.2) is given by

           α * 1 = u 1 v 1 du 1 , dv 1 du 1 2 α * 2 = u 2,3 v 2,3 d u 2,3 , d v 2,3 d u 2,3 2 
(5.5)

Moreover, the section v satisfies that D α * u,v v = 0 if and only if there exists α

= (α 1 , α 2 ) ∈ C 0 (Ω; R 2 ) such that    dv 1 = α 1 du 1 d v 2,3 = α 2 d u 2,3 d ϕ(v 2,3 ) = d ϕ(u 2,3 ) (5.6)
The system of equalities (5.6) is equivalent to the following statements: 1. The gradient orientations of the achromatic components of v and u are the same all over Ω. 2. The gradient orientations of the chroma components of v and u are the same all over Ω. 3. The gradients of the hue components of v and u are the same all over Ω. 5.4. Explicit expressions for the group R + * × SO(3). The optimal parameter α * in (5.2) is given by

α * = u v d u , d v d u 2 .
(5.7)

Moreover, the section v satisfies that D α * u,v v = 0 if and only if there exists α ∈ C 0 (Ω) such that

d v = α d u ω 0 u v = ω 0 v v (5.8) 
The first equality in (5.8) is equivalent to the following statement: the gradient orientations of the norms of v and u are the same all over Ω.

Explicit expressions for the group GL(3).

The optimal parameter α * in (5.2) is given by α

* = α * num /α * den where α * num = -dv 1 + v 3 2 u 2 (u 1 du 3 -u 3 du 1 ) + v 2 2 u 2 (u 1 du 2 -u 2 du 1 ), -2v 1 u 1 du 1 u 2 - v 2 u 2 (u 1 du 2 + u 2 du 1 ) - v 3 u 2 (u 1 du + u 3 du 1 ) -dv 2 + v 1 2 u 2 (u 2 du 1 -u 1 du 2 ) + v 3 2 u 2 (u 2 du 3 -u 3 du 2 ), -2v 2 u 2 du 2 u 2 - v 1 u 2 (u 1 du 2 + u 2 du 1 ) - v 3 u 2 (u 2 du + u 3 du 2 ) -dv 3 + v 1 2 u 2 (u 3 du 1 -u 1 du 3 ) + v 2 2 u 2 (u 3 du 2 -u 2 du 3 ), -2v 3 u 3 du 3 u 2 - v 2 u 2 (u 2 du 3 + u 3 du 2 ) - v 1 u 2 (u 1 du + u 3 du 1 )
and

α * den = 1 u 4 1 2 v 1 (u 1 du 2 + u 2 du 1 ) + v 3 (u 2 du 3 + u 3 du 2 ) 2 + 1 2 v 1 (u 1 du 3 + u 3 du 1 ) + v 2 (u 2 du 3 + u 3 du 2 ) 2 + 1 2 v 2 (u 1 du 2 + u 2 du 1 ) + v 3 (u 1 du 3 + u 3 du 1 ) 2 + 2 ( v 1 u 1 du 1 , v 1 u 1 du 1 + v 2 (u 1 du 2 + u 2 du 1 ) + v 3 (u 1 du 3 + u 3 du 1 ) + 2 v 2 u 2 du 2 , v 2 u 2 du 2 + v 1 (u 1 du 2 + u 2 du 1 ) + v 3 (u 2 du 3 + u 3 du 2 ) + 2 v 3 u 3 du 3 , v 3 u 3 du 3 + v 1 (u 1 du 3 + u 3 du 1 ) + v 2 (u 2 du 3 + u 3 du 2 ) ) .
6. Variational models for image deblurring. Let v : Ω ⊂ R 2 -→ R 3 be a color image subjected to the following degradation model

u = Hv + n,
where H is a blur operator and n is white Gaussian noise. In this paper, we conduct the same experiments as the ones in [START_REF] Mataev | DeepRED: Deep Image Prior Powered by RED[END_REF], i.e. we consider two types of blur operators: a convolution with a 25×25 normalized Gaussian kernel of variance 1.6 (Gaussian blur) and a convolution with a 9×9 normalized constant kernel (uniform blur). Moreover, the variance of n is √ 2. In sect. 6.1-6.2, experiments are conducted on a set of 8 color images of size 256×256. We present the results for 4 of them in the main article (the fours ones tested in [START_REF] Mataev | DeepRED: Deep Image Prior Powered by RED[END_REF]: Butterfly, Leaves, Parrots, Starfish). The results for the 4 other images: Peppers, Lena, Baboon, F16 are available in the Supplementary material. However, the Tables and Figures in the Supplementary material yield the same analysis of the results. For a given Table indexed by 6.i,i> 1 in the main article, the Table describing the same experiment on the 4 other images is indexed by 0.i-1 in the Supplementary material. In sect. 6.3, experiments are conducted on the Kodak dataset (http://r0k.us/ graphics/kodak/), which contains 24 color images. We reduce the image size (384x256 or 256x384) in order to limit the number of iterations required for DIP-based models.

The model DIP-VBTV α for different Lie group representations.

Let G be one of the four Lie groups mentioned throughout the paper and α fixed and constant such that α parametrizes a representation of G on R 3 . We consider the variational model DIP-VBTV α given by

               A u = arg min A Du 2 L 2 (g -1 ⊗ 2) g = arg min g D α u T θ (z) 2 L 2 (g -1 ⊗ 2) θ = arg min θ 1 2 H(T θ (z)) -u 2 L 2 ( 2) + λ D α u T θ (z) L 1 (g -1 ⊗ 2) u = T θ (z), (6.1)
where the network T θ is the same as the one described in (2.16).

The parameters of the model (6.1) are given in Table 6.1 (left). Preliminary experiments on a small set of images showed that good results were obtained with these values, therefore we kept them for all the images and degradations tested in this paper. As in the case of standard variational models for image restoration, the parameter λ determines the level of regularization, i.e. the higher λ the smoother the output image.

Note that the models DIP-VBTV [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] described in sect. 2.2 can be viewed as particular cases of the model DIP-VBTV α for G = R + * × R + * × SO(2) and α ∈ {(-1, 0), (1, 0)}.

In practice, we approximate the first sub-problem in (6.1) by considering a critical point of the energy (2.9) instead of a solution of the variational model. The expression of the critical point A u depends on the group G involved (see sect. 3). We also approximate the second sub-problem in (6.1) by considering a critical point of the energy (2.5) of the form (2.6) instead of a solution of the variational model. Moreover, h λ diag(3000, 3000, 3000) 0.001 σ lr γ 0.001 0.01 0.001 0.99 Table 6.1 Left: Parameters of DIP-VBTV α (6.1) -Right: Parameters of the numerical scheme (6.2).

we add I 2 , for > 0 and I 2 the 2x2 Identity matrix, to the critical point in order to guarantee that the metric is Riemannian. Finally, for the third sub-problem, we consider a gradient descent with respect to θ. We also follow the approach in [START_REF] Ulyanov | Deep image prior[END_REF] by adding two techniques in order to improve the final result: regularization by noise (second and third lines in (6.2)) and averaging with an exponential sliding window (last line in (6.2)). It gives the following iterative scheme to approximate a solution of (6.1)

               A u critical point of (2.9) n k+1 ∼ N (0, σ) z k+1 = z 0 + n k+1 g k+1 = I 2 + critical point of X(g) = D α u T θ k (z k+1 ) L 2 (g -1 ⊗ 2) θ k+1 = θ k -lr∇E k (θ k ; z k+1 ) u k+1 = γ u k + (1 -γ) T θ k+1 (z k+1 ), (6.2)
where

E k (θ k , z k+1 ) = 1 2 H(T θ k (z k+1 )) -u 2 L 2 ( 2) + λ D α u T θ k (z k+1 ) L 1 (g -1 k+1 ⊗ 2)
and ∇E k (θ k ; z k+1 ) stands for the gradient of E k with respect to θ k . Here, u 0 = u, and z 0 is a fixed random image of size M × N × 32 (M × N is the dimension of u). The parameters of the numerical scheme (6.2) are given in Table 6.1 (right). Note that σ, lr, γ correspond to the default values given in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF], to which we refer for more details about the numerical scheme. Moreover, even if the convergence of (6.2) is not theoretically proved, we observed in the experiments that the energy E k decreases throughout the iterative process. Finally, the numerical scheme is stopped after a certain number of iterations k and the output image is u = u k .

6.1.1. The group R + * × R + * × R + * . We consider here that the image is expressed in the RGB color space. The action of R + * × R + * × R + * on pixel values can be assimilated to a change of lighting conditions in the scene described by the image. We test the model (6.1) with the values α = (1, 1, 1) and α = (-1, -1, -1). In the first case, the components r, g, b of the image are treated as vectors, whereas they are treated as covectors in the second case. Table 6.2 and Table 6.3 report some mean results and their standard deviations (in parenthesis) over 5 runs of the numerical scheme (6.2) stopped after 30K iterations for Gaussian blur and uniform blur respectively. In particular, for a given image, the highest PSNR among the two different values of α is written in bold type.

We observe from the two tables that the parameter α providing the best PSNR (both the highest one and the one after 30K) only depends on the image and not on the degradation operator. It means that the restoration of some images is better when their three r, g, b components are treated as vectors (Parrots, Starfish), whereas the restoration of the other images is better when their three r, g, b components are 6.3 Uniform blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × R + * × R + * . Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

treated as covectors (Butterfly, Leaves).

According to the columns indicating the average results, treating systematically r, g, b components as vectors is better than treating them systematically as covectors.

The iteration at which the highest PSNR is reached can vary significantly with the image, the parameter α and the degradation (from 9223 to 22159). On the other hand, we also observe that the average iteration over the 4 images does not vary much with the degradation and the parameter α (from 12248 to 13931).

Finally, we can notice that the standard deviations are lower in the case of uniform blur, which indicates that the numerical scheme (6.2) is more stable with uniform blur.

6.1.2. The group R + * × R + * × SO(2). We consider here that the image is expressed in the Opponent color space given by the basis

  1/ √ 3 1/ √ 2 1/ √ 6 1/ √ 3 -1/ √ 2 1/ √ 6 1/ √ 3 0 -2/ √ 6   (6.3)
in the RGB frame. The action of R + * × R + * × SO(2) on pixels values can then be assimilated to a change of luminance, saturation and hue. We test the model (6.1) for six different values of the parameter α. The value (1,-1) treats the achromatic component as a vector and the chromatic components as covectors. The value (1,1) treats all the components as vectors. The value (-1,1) treats the achromatic component as a covector and the chromatic components as vectors. The value (-1,-1) treats all the components as covectors. Finally, the values (1,0) and (-1,0) yield the optimal connection 1-form induced by the group R + * × SO(2), and its dual. In this case, the chromatic components do not have a specific algebraic 6.4 Gaussian blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × R + * × SO(2). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations). structure, while the achromatic component is a vector for (1,0) and a covector for (-1,0). Table 6.4 and Table 6.5 report some mean results and their standard deviations (in parenthesis) over 5 runs of the numerical scheme (6.2) stopped after 30K iterations for Gaussian blur and uniform blur respectively. In particular, for a given image, the highest PSNR among the six different values of α is written in bold type.

We observe from the two tables that the parameter α providing the best PSNR (both the highest one and the one after 30K) greatly depends on the image. Moreover, given an image, it can also vary with the degradation (see the images Butterfly and Starfish). Note that it was not the case for

G = R + * × R + * × R + * .
According to the columns "Average", the best results are obtained when we treat the achromatic component as a vector and the chromatic components as covectors for both degradations.

Similarly to the case G = R + * × R + * × R + * , the iteration at which the highest PSNR is reached can vary significantly with the image, the parameter α and the degradation (from 9095 to 20095). On the other hand, we also observe that the average iteration over the 4 images does not vary a lot with the degradation and the parameter α (from 12105 to 14717). We can also notice that the standard deviations are lower in the case of uniform blur, which indicates that the numerical scheme (6.2) is more stable with uniform blur. 6.1.3. The group R + * × SO(3). We consider here that the image is expressed in the RGB color space. The action of R + * × SO(3) on pixel values is hard to interpret in terms of color vision. However, as we saw in the previous sections, it generates invariance properties that can not be expressed with the previous Lie groups. We test the model (6.1) for two different values of the parameter α : 1 and -1. In the first case, the pixels are treated as vectors, whereas they are treated as covectors in the second case. 6.5 Uniform blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × R + * × S0(2). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations). Table 6.6 and Table 6.7 report some mean results and their standard deviations (in parenthesis) over 5 runs of the numerical scheme (6.2) stopped after 30K iterations for Gaussian blur and uniform blur respectively. In particular, for a given image, the highest PSNR among the two different values of α is written in bold type.

We observe from the two tables that the parameter α providing the best PSNR (both the highest one and the one after 30K) greatly depends on the image. Moreover, given an image, it can also vary with the degradation (see the images Butterfly and Parrots).

According to the columns "Average", treating image pixels as vectors or covectors yield similar results.

The iteration at which the highest PSNR is reached can vary significantly with the image, the parameter α and the degradation (from 8497 to 20975). On the other hand, we also observe that the average iteration over the 4 images varies in a very small extent with respect to the degradation and the parameter α (from 13039 to 13653).

Finally, we can notice that the standard deviations are lower in the case of uniform blur, which indicates that the numerical scheme (6.2) is more stable with uniform blur.

The group GL(3).

We consider here that the image is expressed in the RGB color space. The action of GL(3) on pixel values is also hard to interpret in terms of color vision. However, it has the advantage of containing all the linear transformations, including the ones expressed with the three Lie groups aforementioned. We test the model (6.1) for two different values of the parameter α : 1 and -1. In the first case, the pixels are treated as vectors, whereas they are treated as covectors in the second case. Table 6.8 and Table 6.9 report some mean results and their standard deviations (in parenthesis) over 5 runs of the numerical scheme (6.2) stopped after 30K iterations for Gaussian blur and uniform blur respectively. In particular, for a given image, the 6.7 Uniform blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × SO(3). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

highest PSNR among the two different values of α is written in bold type.

We observe from the two tables that the parameter α providing the best PSNR (both the highest one and the one after 30K) greatly depends on the image. Moreover, given an image, the parameter α providing the best PSNR after 30K does not depend on the degradation, but the one providing the highest PSNR can (see the image Butterfly where the highest PSNR is given by α = -1 for Gaussian blur and by α = 1 for uniform blur).

According to the columns "Average", the best PSNR after 30K is given for both degradations by α = 1, whereas the highest PSNR is given by α = 1 for uniform blur and by α = -1 for Gaussian blur.

The iteration at which the highest PSNR is reached can vary significantly with the image, the parameter α and the degradation (from 9246 to 22132). On the other hand, we observe that the average iteration over the 4 images does not vary much with the degradation and the parameter α (from 12222 to 14715).

Finally, we can notice that the standard deviations are lower in the case of uniform blur, which means that the numerical scheme (6.2) is more stable with uniform blur.

6.1.5. Comparison of the results for the different groups. By comparing the results of the different tables, we conclude that there is not a group representation which systematically gives the best results (in terms of both highest PSNR and PSNR after 30K iterations) for all the images and degradations. However, we can observe some interesting behaviors: 1. The group giving the best results for an image is invariant with respect to the degradation operator. It corresponds to GL(3) for the image Leaves, and R + * ×R + * × SO(2) for the three other images. 6.8 Gaussian blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = GL(3). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations). 6.9 Uniform blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = GL(3). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

Parameter

2. In two images of the dataset, the group representation giving the best result is also independent with respect to the degradation (GL(3) and α = -1 for the image Leaves, R + * × R + * × SO(2) and α = (1, 0) for the image Parrots).

By comparing the columns "Average" of the different tables, we observe that there is not a group representation which systematically provides the best average results in terms of highest PSNR and PSNR after 30K iterations for both degradations. Indeed, for Gaussian blur, the best mean highest PSNR is given by GL(3) and α = -1 (PSNR 34.63) but the best mean PSNR after 30K is given by R + * × R + * ×SO(2) and α = (1, -1) (PSNR 34.10). For uniform blur, the best mean highest PSNR is given by R + * × R + * ×SO(2) and α = (1, -1) (PSNR 32.28) but the best mean PSNR after 30K is given by GL(3) and α = 1 (PSNR 31.04).

By computing the average results over both degradations for each group representation, we obtain that the best score (in terms of highest PSNR and PSNR after 30K) is given by G = R + * × R + * ×SO(2) and α = (1, -1) with mean highest PSNR 33.5 and mean PSNR after 30K 32.53. We conclude that the best algebraic structure for deblurring (with respect to this dataset and the two proposed blurring operators) consists of treating the achromatic component as a vector and both chromatic components as covectors.

Finally, we would like to point out that the values of the parameter α have been chosen in order for A α u to be of the form

A α u = ρ * (A u ) or A α u = ρ C * (A u )
, where A u is one of the optimal connection 1-forms constructed in sect. 3. In particular, the α's are constant and correspond to the value -1 or 1. The case α = 0 has been considered as well because it coincides to the model in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]. However, one can then wonder if other values of α would provide better results. The purpose of the next section is to determine whether the optimal α's constructed in sect. 5 can provide better results.

6.2. The model DIP-VBTV α * for different Lie groups. Let G be one the four Lie groups mentioned throughout the paper. We consider the variational model DIP-VBTV α * , given by (6.4) where the network T θ is the same as the one described in (2.16).

                     A u = arg min A Du 2 L 2 (g -1 ⊗ 2 ) α * = arg min α D α u T θ (z) 2 L 2 (g -1 ⊗ 2 ) g = arg min g D α * u,T θ (z) T θ (z) 2 L 2 (g -1 ⊗ 2) θ = arg min θ 1 2 H(T θ (z)) -u 2 L 2 ( 2 ) + λ D α * u,T θ (z) T θ (z) L 1 (g -1 ⊗ 2) u = T θ (z),
In practice, we approximate the first sub-problem in (6.4) by considering a critical point of the energy (2.9) instead of a solution of the variational model. The expression of the critical point A u depends on the group G involved (see section 3). The second sub-problem is solved as we showed that it possesses an unique minimum whose expression is given by (5.2). We approximate the third sub-problem in (6.4) by considering a critical point of the energy (2.5) of the form (2.6) instead of a solution of the variational model. Moreover, we add I 2 , for > 0 and I 2 the 2x2 Identity matrix, to the critical point in order to guarantee that the metric is Riemannian. Finally, for the fourth sub-problem, we consider a gradient descent with respect to θ. We also follow the approach in [START_REF] Ulyanov | Deep image prior[END_REF] by adding two techniques in order to improve the final result: regularization by noise (second and third lines in (6.5)) and averaging with exponential sliding window (last line in (6.5)). It gives the following iterative scheme to approximate a solution of (6.4).

                     A u critical point of (2.9) n k+1 ∼ N (0, σ) z k+1 = z 0 + n k+1 α k+1 = arg min α D α u T θ k (z k+1 ) 2 L 2 (g -1 k ⊗ 2)
g k+1 = I 2 + critical point of X(g) = D α k+1 u,T θ k (z k+1 ) T θ k (z k+1 ) L 2 (g -1 ⊗ 2) θ k+1 = θ k -lr∇E k (θ k ; z k+1 ) u k+1 = γ u k + (1 -γ) T θ k+1 (z k+1 ). (6.5 
) where

E k (θ k , z k+1 ) = 1 2 H(T θ k (z k+1 )) -u 2 L 2 ( 2) + λ D α k+1 u,T θ k (z k+1 ) T θ k (z k+1 ) L 1 (g -1 k+1 ⊗ 2)
and ∇E k (θ k ; z k+1 ) stands for the gradient of E k with respect to θ k . Here, u 0 = u, and z 0 is a fixed random image of size M × N × 32. The parameters of the model (6.4) and the numerical scheme (6.5) are the same as the ones used for the model DIP-VBTV α and given in Table 6.1. Note that even if the convergence of (6.5) is not theoretically proved, we observed in the experiments that the energy E k decreases throughout the iterative process. Finally, the numerical scheme is stopped after a certain number of iterations k and the output image is u = u k .

6.2.1. Results of the model DIP-VBTV α * for different Lie groups. Table 6.10 and Table 6.11 report some mean results and their standard deviations (in parenthesis) over 5 runs of the numerical scheme (6.5) stopped after 30K iterations for Gaussian blur and uniform blur respectively. In particular, for a given image, the highest PSNR among the five different Lie groups is written in bold type.

We observe in the columns "Average" that the best average results among the images in the dataset (in terms of both highest PSNR and PSNR after 30K) are given by G =GL(3) for both degradations. This group actually gives the best results in 5 of the 8 cases. The improvement with respect to the second best scores (given by G = R + * × SO(3) for both degradations) is small in terms of highest PSNR (+0.05dB for Gaussian blur and +0.08dB for uniform blur). However, the improvement gets more significant when comparing the PSNR after 30K (+0.36dB for Gaussian blur and +0.16dB for uniform blur), i.e. when we get closer to the solutions of the variational models. We conclude that the best DIP-VBTV α * model is given by G =GL(3). 6.2.2. Comparison to DIP-VBTV α . Comparing the results of DIP-VBTV α * to DIP-VBTV α reported in section 6.1 leads to several observations: 1. DIP-VBTV α * for G =GL( 3) is the best model among all the models developed in this paper. 2. The columns "Average" show that only R + * × SO(3) and GL(3) benefit from the optimization of α, the biggest improvement being for GL(3). 3. The model giving the highest PSNR and the best PSNR after 30K can vary a lot with the image and the degradation (see Table 6.12). 4. The model DIP-VBTV in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF] corresponds to DIP-VBTV α for G = R + * × SO [START_REF] Batard | A class of generalized Laplacians devoted to multi-channels image processing[END_REF]. Comparing the results of this model to the ones of our best model DIP-VBTV α * for G =GL(3), we observe a small difference in favor of our model in terms of highest PSNR (+0.12 dB for Gaussian blur and +0.08 for uniform blur), but a much bigger difference, again in favor of our model, in terms of PSNR after 30K (+0.26 dB for Gaussian blur and +0.51 dB for uniform blur). We can then conclude that our model outperforms DIP-VBTV for color image deblurring according to this dataset. Actually, the results on the other dataset presented in the Supplementary material yield the same conclusion. 6.2.3. The parameter α * for G=GL [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF]. The aim of this section is to get more insight on the optimal parameter α * (5.2). Here, we limit our study to the case GL(3), which is the group providing the best results as we saw in the previous sections. The explicit expression of α * for GL(3) is given in sect. 5.5. Note that, in practice, we consider a regularized version of α * by adding a small positive constant to the denominator.

For each image and degradation, we compute the values of α * for u being the degraded image and v being the degraded image, the output of the numerical scheme (6.5) after 30K or the clean image. Fig. 6.1 and Fig. 6.2 show the results for Gaussian and uniform blur respectively. The corresponding color images are shown in Fig. 6.4 (Gaussian blur) and Fig. 6.5 (uniform blur), where top row images are the degraded ones, fourth row images are the output of the numerical scheme (6.5) after 30K and fifth row images are the clean ones. A trivial observation from Fig. 6.1 and Fig. 6.2 is that α * is related to image local features (e.g. edges, textures). It makes totally sense as the expression of α * contains the local variations of the two images (u and v). We also observe that the values of α * are diffused and small (in absolute value) for v = u, which can be related to the fact that a degradation by blur diffuses and reduce 6.11 Uniform blur: DIP-VBTV α * (6.4) for different Lie groups. Mean results over 5 runs of the numerical scheme (6.5) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

Degradation

Butterfly Leaves Parrots Starfish Gaussian blur R + * × R + * × SO(2) GL(3) R + * × SO(3) GL(3) α = (-1, 0) α = -1 α * α * Uniform blur R + * × R + * × SO(2) GL(3) R + * × R + * × SO(2) R + * × R + * × SO(2) α = (1, -1) α = -1 α = (1, 0) α = (1, 1) Degradation Butterfly Leaves Parrots Starfish Gaussian blur R + * × R + * × SO(2) GL(3) R + * × SO(3) GL(3) α = (-1, 0) α = -1 α * α * Uniform blur GL(3) R + * × SO(3) R + * × R + * × SO(2) / R + * × SO(3) GL(3) α * α * α = (1, 0) / α * α *
Table 6.12 Model giving the highest PSNR (top) and best PSNR after 30K (bottom) for each image of the dataset and each degradation operator tested. the local variations of an image. On the other hand, the values of α * are better localized and bigger (in absolute values) for v being a clean image. In particular, we observe that α * is mainly positive but can take several and large negative values, especially in the case of uniform blur. As uniform blur affects more the image, we can deduce that the value of α * determines how much the local geometry is affected by the blur. Finally, we observe that α * , for v being the output of the numerical scheme (6.5) after 30K, is visually close to α * for v being the clean image. This result is corroborated by Table 6.13 which shows some basic statistics (min, max, mean, standard deviation) of the function α * for the different images and degradations. However, some edges are better localized and enhanced in the case where v is the output of the numerical scheme, especially for uniform blur. In terms of color images, this phenomenon can be related to the classical stair-casing effect of the L 1 norm, which is clearly visible for uniform blur (compare images in the fourth and fifth rows in Fig. 6.5).

6.2.4.

Comparison of DIP-VBTV α * for G=GL(3) to DIP and DIP-VTV. In this section, we compare quantitatively and qualitatively our best model, DIP-VBTV α * for G =GL(3), to the models DIP [START_REF] Ulyanov | Deep image prior[END_REF] and DIP-VTV [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]. Table 6.14 and Table 6.15 report the mean results and their standard deviations over 5 runs of the restriction of the numerical scheme (6.2) to the models DIP (DIP-VBTV α for λ = 0) and DIP-VTV (DIP-VBTV α for A α u = 0, g = I 2 , h = I 3 ) stopped after 30K iterations for Gaussian blur and uniform blur respectively. The highest PSNR 6.13 Statistics of the parameter α * for Gaussian blur (left column) and uniform blur (right column) for different images v. From top to bottom row: v is the degraded image, v is the output of the numerical scheme (6.5) after 30K, v is the clean image.

among the two different models is written in bold type. Note that DIP-VTV has been applied with λ = 0.0001 (whereas DIP-VBTV α and DIP-VBTV α * have been applied with λ = 0.001) as preliminary experiments showed that the best results for DIP-VTV are obtained with this small parameter value.

By comparing the results on the average highest PSNR, we observe that DIP-VTV provides better results for Gaussian blur whereas DIP provides better results for uniform blur. On other hand, by comparing the average PSNR after 30K, we observe that DIP-VTV provides much better results. We can then deduce that adding a regularizer to DIP enables the solution of the variational model to not depart too much from the ground truth image. Finally, by comparing these results to the ones in Table 6.10 and Table 6.11, we observe that DIP-VBTV α * for G =GL(3) outperforms both models in terms of highest PSNR and PSNR after 30K. We deduce that including some invariance properties in the regularizer improves the results in a great extent. Fig. 6.3 shows the evolution of the mean PSNR (over 5 runs) with respect to the number of iterations for these three models. Note that this is a consequence of the subsampling of the 30K PSNR values in the horizontal axes that DIP-VTV seems to reach higher PSNR than DIP on the image Butterfly for uniform blur. The opposite holds for the image Starfish and uniform blur. Fig. 6.4 and Fig. 6.5 show the results of the three models after 30K iterations for Gaussian and uniform blur respectively. In particular, we observe that DIP has the tendency to generate a lot of noise when the number of iterations increases (second rows). This effect is reduced with DIP-VTV (third rows) thanks to the regularizer VTV, but noise is still visible. Finally, we observe that the noise is not visible anymore with DIP-VBTV α * for G =GL(3) (fourth rows). However, as mentioned in sect. 6.2.3, the stair-casing effect of the L 1 norm is visible, especially with uniform blur. It shows that there is room to improve DIP-VBTV α * . 6.3. Comparison between DIP-based and standard variational models on the Kodak dataset. According to the results of sect. 6.1-6.2, our best model is DIP-VBTV α * for G =GL(3). In this section, we test this model on the whole Kodak dataset and compare it to the following models: DIP, DIP-VTV, DIP-VBTV [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF], L2- with the geometric triplets g, h, A described in Table 6. [START_REF] Lindeberg | Invariance of visual operations at the level of receptive fields[END_REF]. Note that the model L2-SVTV slightly differs from the model [START_REF] Jia | Color image restoration by saturation-value total variation[END_REF] (the authors consider 1 2

H(v) -u 2 L 2 ( 2)
as data term whereas we consider 1 2

H(v) -u 2 L 2 (h) ).
The solutions of the models L2-VTV and L2-SVTV can be computed through the primal-dual algorithm described in Algorithm 1 (see [START_REF] Chambolle | An introduction to continuous optimization for imaging[END_REF] for more details), where F, F -1 denote, respectively, the Fourier transform and its inverse, and ∇, ∇ * the Jacobian operator and its adjoint.

In order to solve the model L2-SVTV with Algorithm 1, we first have to express u in an orthonormal basis with respect to the metric given by the matrix diag(0.3, 1, 1) in the opponent space (6.3). One possible basis is the one given by uniform blur respectively. For each model, the trade-off parameter has been manually tuned in order to provide the best average maximum PSNR over the dataset. The results reported in the tables corroborate the results of the previous sections, i.e. DIP-VBTV α * is the best model.

P =   1/ √ 0.
Based on the average iteration at which each model reaches its maximum PSNR, we determine an automatic stopping criteria for each model. Table 6.19 and Table 6.20 give the average PSNR over the dataset obtained by each model when stopped after the corresponding number of iterations. Moreover, the tables report the results of the L2-VTV and L2-SVTV models tested with λ = 0.1. Initialization: Choose τ, ν > 0 with ντ ≤ 1/ ∇ 2 2 and (v 0 , η 0 ) ∈ L 2 (Ω; R 3 ) × C ∞ (Ω; R 6 )), θ ∈ (0, 1] Iterations: For n = 0, 1, . . . until a stopping criterion is reached regularizer SVTV provides much better results than VTV on denoising (see e.g. [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF]), we observe that the improvement is limited for deblurring. Finally, the results corroborate the ones of sect. 6.1-6.2, both quantitatively (Tables 6.19-6.20) and qualitatively (Fig. 6.6), as the model DIP-VBTV α * for G =GL(3) is the one giving the best results. 

v n+1 = F -1 (τ /λ)F(u)F(K) + F(v n -τ ∇ * η n ) (τ /λ)F(K) 2 + 1 v n = 2v n+1 -v n η n+1 = η n + ν∇ v n max(1, η n + ν∇ v n 2 )

Definition 4 . 3 (

 43 Curvature and flatness). The curvature of a connection D is the

Proposition 4 . 4 .

 44 The α-connections D α u induced by A α u (3.17) are flat for α constant.

Proposition 4 . 5 .

 45 The parallel sections of D α u are the sections v satisfying

Proposition 4 . 6 .

 46 The α-connections D α u induced by A α u (3.23) are flat for α constant. Proof. Same as the proof of Prop. 4.4. Proposition 4.7. The parallel sections of D α u

Proposition 4 . 8 .

 48 The α-connections D α u induced by A α u (3.26) are not flat.

  For a given Figure indexed by 6.i, i ≥ 1 in the main article, the Figure describing the same experiment on the 4 other images is indexed by 0.i in the Supplementary material.

Fig. 6 . 1 .

 61 Fig. 6.1. Parameter α * for G=GL(3), u being the degraded image with Gaussian blur and v being different images. From top to bottom row: v = u, v is the result of the numerical scheme (6.5) stopped after 30K iterations, v is the clean image.

Fig. 6 . 2 .

 62 Fig. 6.2. Parameter α * for G=GL(3), u being the degraded image with uniform blur and v being different images. From top to bottom row: v = u, v is the result of the numerical scheme (6.5) stopped after 30K iterations, v is the clean image.

Fig. 6 . 3 .min v 1 2 H(v) -u 2 L 2

 631222 Fig. 6.3. Evolution of the mean PSNR over 5 runs with respect to the number of iterations for three different models applied on the dataset for different degradations (Top row: Gaussian blur, bottom row: uniform blur). From left to right: Butterfly, Leaves, Parrots, Starfish.)

Fig. 6 . 4 .

 64 Fig. 6.4. Gaussian blur: Comparison of the best results (in terms of PSNR) among 5 runs stopped after 30K of three different models. From top to bottom row: Degraded image, result of DIP, result of DIP-VTV, result of DIP-VBTV α * for G =GL(3), clean images.

Fig. 6 . 5 .

 65 Fig. 6.5. Uniform blur: Comparison of the best results (in terms of PSNR) among 5 runs stopped after 30K of three different models. From top to bottom row: Degraded image, result of DIP, result of DIP-VTV, result of DIP-VBTV α * for G =GL(3), clean images.

Fig. 6 .

 6 6 shows the results of L2-VTV, DIP, DIP-VTV and DIP-VBTV α * tested on the image Kodim23 degraded with uniform blur. As expected, the results show DIP-based models outperform the standard variational models L2-VTV and L2-SVTV in a great extent. Whereas the Algorithm 1 Primal-Dual Algorithm

Fig. 6 . 6 .

 66 Fig. 6.6. Deblurring (uniform) of the image Kodim23 tested with different methods. First row: original (left) and blurred (right) images. Second row: Results of L2-VTV (left, PSNR: 29.88) and DIP (right, PSNR: 30.88). Third row: Results of DIP-VTV (left, PSNR: 31.21) and DIP-VBTV α * (right, PSNR: 31.77).

7 . 2 )

 72 Conclusion. In this paper, we constructed a new class of image priors for color image restoration which encourage the solution of the inverse problem to satisfy Note that g 22 = 0 and C = 0 by positive definiteness of g and h. Substituting g 11 according to (A.2) in the second and third equations in (A.

  Gaussian blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × R + * × R + * . Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

	Parameter α	Butterfly	Leaves	Parrots	Starfish	Average
	(1,1,1)	33.54 (± 0.11)	32.14 (± 0.14) 36.44 (± 0.03) 36.17 (± 0.12)	34.57 (± 0.1)
		9223 (± 655)	10886 (± 1418) 22159 (± 3186) 12239 (± 443)	13627 (± 1425)
		32.59 (± 0.07)	31.41 (± 0.22)	36.39 (± 0.04)	35.38 (± 0.11)	33.94 (± 0.11)
	(-1,-1,-1)	33.79 (± 0.07) 32.49 (± 0.10) 35.95 (± 0.11)	35.72 (± 0.11)	34.49 (± 0.1)
		13906 (± 1386) 17459 (± 2062) 13914 (± 868)	10444 (± 755)	13931 (± 1268)
		33.40 (± 0.09)	32.35 (± 0.09)	35.12 (± 0.14)	34.15 (± 0.53)	33.75 (± 0.21)
			Table 6.2		
	Parameter α	Butterfly	Leaves	Parrots	Starfish	Average
	(1,1,1)	32.16 (± 0.08) 30.36 (± 0.08) 33.97 (± 0.09) 32.53 (± 0.07) 32.26 (± 0.08)
		10626 (± 228)	12588 (± 613)	16842 (± 485)	12322 (± 279)	13095 (± 401)
		30.40 (± 0.05)	29.27 (± 0.12)	33.51 (± 0.12)	30.99 (± 0.09)	31.03 (± 0.09)
	(-1,-1,-1)	32.16 (± 0.1) 30.73 (± 0.07) 33.70 (± 0.12)	32.26 (± 0.11)	32.21 (± 0.1)
		11531 (± 267)	13660 (± 345)	12228 (± 380)	11574 (± 256)	12248 (± 312)
		30.54 (± 0.08)	29.70 (± 0.08)	31.79 (± 0.09)	29.76 (± 0.08)	30.45 (± 0.08)
			Table		

Table 6 . 6

 66 Gaussian blur: DIP-VBTV α (6.1) for different α-connections induced by the group G = R + * × SO(3). Mean results over 5 runs of the numerical scheme (6.2) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

	Parameter α	Butterfly	Leaves	Parrots	Starfish	Average
	1	33.48 (± 0.29)	32.03(± 0.08)	36.50 (± 0.14) 36.27 (± 0.06) 34.57 (± 0.14)
		8497 (± 300)	10526 (± 454) 20975 (± 1637) 12158 (± 564)	13039 (± 739)
		32.41 (± 0.34)	31.31 (± 0.12)	36.43 (± 0.13)	35.44 (± 0.03)	33.9 (± 0.16)
	-1	33.72 (± 0.18) 32.45 (± 0.12) 36.18 (± 0.07)	35.89 (± 0.05)	34.56 (± 0.11)
		12910 (± 1066) 16650 (± 1729) 13525 (± 491)	11530 (± 314)	13653 (± 900)
		33.35 (± 0.14)	32.32 (± 0.12)	35.38 (± 0.13)	34.48 (± 0.15)	33.88 (± 0.13)
	Parameter α	Butterfly	Leaves	Parrots	Starfish	Average
	1	32.15 (± 0.1) 30.29 (± 0.11)	33.94 (± 0.08) 32.48 (± 0.07)	32.22 (± 0.09)
		10600 (± 235) 12679 (± 573)	17130 (± 315)	12421 (± 416)	13207 (± 385)
		30.42 (± 0.11)	29.14 (± 0.1)	33.53 (± 0.07)	30.89 (± 0.07)	30.99 (± 0.09)
	-1	32.11 (± 0.09) 30.36 (± 0.07) 33.98 (± 0.09) 32.46 (± 0.04)	32.23 (± 0.07)
		10340 (± 247) 13179 (± 640)	17047 (± 700)	12424 (± 190)	13247 (± 444)
		30.31 (± 0.07) 29.28 (± 0.06)	33.53 (± 0.05)	30.89 (± 0.08)	31.00 (± 0.06)
			Table		

Table 6 .

 6 [START_REF] Esteves | Learning SO(3) Equivariant Representations with Spherical CNNs[END_REF] Gaussian blur: DIP-VBTV α * (6.4) for different Lie groups. Mean results over 5 runs of the numerical scheme (6.5) stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

	Lie group	Butterfly	Leaves	Parrots	Starfish	Average
	R + * × R + * × R + *	33.17 (± 0.12)	32.00 (± 0.14)	36.15 (± 0.16)	35.98 (± 0.12)	34.33 (± 0.13)
		7105 (± 253)	8071 (± 812)	14044 (± 992)	11109 (± 570)	10082 (± 657)
		31.97 (± 0.11)	31.02 (± 0.16)	35.56 (± 0.05)	34.91 (± 0.51)	33.37 (± 0.21)
	R + * × SO(2)	33.39 (± 0.12)	32.24 (± 0.20)	36.29 (± 0.09)	36.03 (± 0.06)	34.49 (± 0.12)
		8486 (± 607)	10510 (± 845) 17276 (± 2222) 11812 (± 524)	12021 (± 1050)
		32.44 (± 0.1)	31.77 (± 0.16)	36.11 (± 0.08)	34.91 (± 0.04)	33.81 (± 0.09)
	R + * × R + * × SO(2)	33.39 (± 0.19)	31.99 (± 0.17)	36.17 (± 0.17)	36.06 (± 0.05)	34.40 (± 0.15)
		7995 (± 361)	9786 (± 931)	15692 (± 2449) 11517 (± 270)	11247 (± 1003)
		32.40 (± 0.11)	31.48 (± 0.24)	36.02 (± 0.13)	34.87 (± 0.02)	33.69 (± 0.12)
	R + * × SO(3)	33.30 (± 0.19)	32.42 (± 0.10) 36.66 (± 0.11) 36.22 (± 0.05)	34.65 (± 0.11)
		7967 (± 516)	11420 (± 980) 18470 (± 2608) 11554 (± 261)	12353 (± 1091)
		32.31 (± 0.15)	32.00 (± 0.1)	36.49 (± 0.06)	34.97 (± 0.04)	33.94 (± 0.09)
	GL(3)	33.52 (± 0.22) 32.45 (± 0.15) 36.47 (± 0.11) 36.36 (± 0.07) 34.70 (± 0.14)
		9466 (± 712)	14567 (± 1722) 21238 (± 1869) 12257 (± 555)	14382 (± 1214)
		33.05 (± 0.17)	32.25 (± 0.18)	36.41 (± 0.11)	35.5 (± 0.08)	34.30 (± 0.13)
	Lie group	Butterfly	Leaves	Parrots	Starfish	Average
	R + * × R + * × R + *	31.81 (± 0.08)	30.28 (± 0.14)	33.58 (± 0.11)	32.36 (± 0.06)	32.01 (± 0.1)
		10447 (± 265)	11884 (± 342)	13754 (± 964)	11801 (± 436)	11971 (± 502)
		30.45 (± 0.1)	29.21 (± 0.16)	32.71 (± 0.07)	30.66 (± 0.06)	30.76 (± 0.1)
	R + * × SO(2)	31.95 (± 0.13)	30.28 (± 0.07)	33.82 (± 0.09)	32.44 (± 0.06)	32.13 (± 0.08)
		11099 (± 403) 13831 (± 1438) 14900 (± 810)	12333 (± 518)	13041 (± 792)
		30.78 (± 0.09)	29.63 (± 0.03)	33.15 (± 0.04)	30.79 (± 0.1)	31.09 (± 0.06)
	R + * × R + * × SO(2) 32.06 (± 0.08) 30.28 (± 0.14)	33.87 (± 0.07)	32.40 (± 0.07)	32.15 (± 0.09)
		11223 (± 603)	13010 (± 547)	15107 (± 944)	11924 (± 404)	12816 (± 624)
		30.91 (± 0.07)	29.57 (± 0.12)	33.28 (± 0.03)	30.74 (± 0.07)	31.12 (± 0.07)
	R + * × SO(3)	31.78 (± 0.06)	30.63 (± 0.11) 34.03 (± 0.08) 32.43 (± 0.04)	32.22 (± 0.07)
		10867 (± 322)	15220 (± 498)	16016 (± 839)	12436 (± 307)	13635 (± 491)
		30.76 (± 0.02)	30.12 (± 0.17)	33.57 (± 0.09)	30.85 (± 0.04)	31.32 (± 0.08)
	GL(3)	31.98 (± 0.1)	30.68 (± 0.12) 34.01 (± 0.05) 32.54 (± 0.09) 32.30 (± 0.09)
		11420 (± 784) 14804 (± 1183) 15510 (± 742)	12605 (± 412)	13585 (± 780)
		31.04 (± 0.09)	30.10 (± 0.1)	33.52 (± 0.05)	31.27 (± 0.06)	31.48 (± 0.08)
			Table			

Table 6 .

 6 [START_REF] Kondor | On the generalization of equivariance and convolution in neural networks to the action of compact groups[END_REF] Gaussian blur: Mean results over 5 runs of DIP and DIP-VTV stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

	Model	Butterfly	Leaves	Parrots	Starfish	Average
	DIP	33.23 (± 0.17) 32.16 (± 0.11) 35.30 (± 0.17)	35.30 (± 0.12)	34.00 (± 0.14)
		9398 (± 337)	12690 (± 570)	10298 (± 276)	10109 (± 625)	10624 (± 452)
		31.74 (± 0.05)	31.51(± 0.12)	30.5 (± 0.37)	32.16 (± 0.34)	31.48 (± 0.22)
	DIP-VTV 33.31 (± 0.09) 31.80 (± 0.10) 35.91 (± 0.10) 35.86 (± 0.10) 34.22 (± 0.10)
		9360 (± 788)	9320 (± 295)	13100 (± 667)	12086 (± 283)	10967 (± 508)
		32.33 (± 0.11)	31.02 (± 0.10)	35.01 (± 0.14)	34.81 (± 0.07)	33.29 (± 0.10)
	Model	Butterfly	Leaves	Parrots	Starfish	Average
	DIP	31.89 (± 0.11) 30.39 (± 0.12) 32.96 (± 0.11) 31.91 (± 0.11)	31.79 (± 0.11)
		9771 (± 196)	12248 (± 326)	10362 (± 317)	10396 (± 341)	10694 (± 295)
		26.73 (± 0.3)	27.66 (± 0.21)	23.89 (± 0.27)	24.69 (± 0.15)	25.74 (± 0.23)
	DIP-VTV	31.83 (± 0.08)	29.75 (± 0.04)	32.67 (± 0.06) 31.94 (± 0.07)	31.55 (± 0.06)
		11579 (± 234)	13274 (± 523)	12859 (± 590)	13265 (± 527)	12744 (± 469)
		30.48 (± 0.06)	28.74 (± 0.08)	31.54 (± 0.06)	30.71 (± 0.04)	30.37 (± 0.06)

Table 6 .

 6 [START_REF] Lafarge | Roto-translation equivariant convolutional networks: Application to histopathology image analysis[END_REF] Uniform blur: : Mean results over 5 runs of DIP and DIP-VTV stopped after 30K iterations. In each box, from top to bottom row: Maximum PSNR, iterations at which the maximum PSNR is reached, PSNR after 30K (in parenthesis, the corresponding standard deviations).

Table 6 .

 6 [START_REF] Liu | Image restoration using total variation regularized deep image prior[END_REF] and Table6.18 report the average maximum PSNR and PSNR after 30K iterations of the DIP-based models tested on the Kodak dataset for Gaussian and

	1/ √ 1/ √	9 1/ 0.9 -1/ √ √ 2 2 1/ 1/ 0.9 0 -2/ √ √ √ 6 6 6	 
	in the RGB frame.		

Table 6 .

 6 17 Deblurring (Gaussian): Trade-off parameter, maximum PSNR and iteration at which it is reached, PSNR after 30K. Average values over the Kodak database for each DIP-based model.

	Name	Trade-off parameter Max PSNR (iteration) PNSR after 30K
	DIP	-	28.93 (13077)	27.08
	DIP-VTV	0.0001	29.16 (21150)	29.09
	DIP-VBTV	0.001	29.27 (25386)	29.25
	DIP-VBTV α *	0.001	29.42 (28427)	29.41

Table 6 .

 6 18 Deblurring (Uniform): Trade-off parameter, maximum PSNR and iteration at which it is reached, PSNR after 30K. Average values over the Kodak database for each DIP-based model.

	Name	Trade-off parameter Max PSNR (iteration) PNSR after 30K
	DIP	-	28.68 (10830)	23.36
	DIP-VTV	0.0001	29.14 (18261)	28.73
	DIP-VBTV	0.001	29.07 (16358)	28.74
	DIP-VBTV α *	0.001	29.22 (19166)	29.05

Table 6 .

 6 [START_REF] Mataev | DeepRED: Deep Image Prior Powered by RED[END_REF] Deblurring (Gaussian): stopping criteria and average PSNR over the Kodak database for each model.

	Name	Stopping criteria	PNSR (in dB)
	L2-VTV	MSE (v n+1 , v n ) < 0.001 in Algorithm 1	28.47
	L2-SVTV	MSE (v n+1 , v n ) < 0.001 in Algorithm 1	28.51
	DIP	13K iterations	28.84
	DIP-VTV	20K iterations	29.14
	DIP-VBTV	25K iterations	29.28
	DIP-VBTV α *	29K iterations	29.41

Table 6 .

 6 20 Deblurring (Uniform): stopping criteria and average PSNR over the Kodak database for each model.

	Name	Stopping criteria	PNSR (in dB)
	L2-VTV	MSE (v n+1 , v n ) < 0.001 in Algorithm 1	28.03
	L2-SVTV	MSE (v n+1 , v n ) < 0.001 in Algorithm 1	28.16
	DIP	11K iterations	28.58
	DIP-VTV	18K iterations	29.08
	DIP-VBTV	16K iterations	29.05
	DIP-VBTV α *	19K iterations	29.18

  These two equations are linearly dependent. Fixing g 22 , we obtain the following equation

												1) yields the system
	     	-2g 12 A + 6	g 2 12 g 22	B -4g 12	B 2 C	+ 2g 22	AB C	-2	g 3 12 g 2 22	C = 0	(A.3)
	    	-g 12 g 22 A + 3g 2 12 B -2g 12 g 22	B 2 C	+ g 2 22	AB C	-	g 3 12 g 22	C = 0.
		C g 2 22	g 3 12 -	3B g 22	g 2 12 + 2	B 2 C	+ A g 12 -g 22	AB C	= 0.	(A.4)
	By applying the formula giving the roots of a polynomial of degree 3, we find that
	equation (A.4) possesses an unique solution given by
							g 12 =	B C	g 22 .
	It follows from (A.2) that								
							g 11 =	A C	g 22 .

Proposition 3.7. The critical points of the energy (2.9) induced by the standard representation of GL(3) on R 3 are the connection 1-forms A u,ξ1,ξ2,ξ3,ξ4,ξ5,ξ6 :=

for ξ 1 , ξ 2 , ξ 3 , ξ 4 , ξ 5 , ξ 6 ∈ Γ 0 (T * Ω).

Proof. See Appendix B.4

In what follows, we consider the case where ξ i ≡ 0 for i = 1, • • • , 6, and denote by A u the corresponding connection 1-form.

The connection 1-form A u together with the expression of the standard representation (3.27) and its dual (3.28) yield connection 1-forms on the associated bundles E and E * . Their expressions are given as follows in the chosen moving frame and its dual respectively

(3.29) Then, we derive a family A α u of connection 1-forms on E according to (3.11). 4. Parallel sections of the α-connections and their invariance properties. In this section, we study the critical points of the energy

where D α u is the α-connection induced by an optimal connection 1-form constructed in the previous section. Note that the optimal connection 1-forms have been constructed in a moving frame in which h = 2 . However, by using the change frame formula Note that, for α = 1, the existence of parallel sections of D α u is guaranteed (u is a parallel section of D 1 u ).

The first equality in (4.8) implies that the gradient orientations of the norms of v and u are the same all over Ω.

On the other hand, if v satisfies that the gradient orientations of the norms of v and u are the same all over Ω, and v satisfies the second equality in (4.8), then v is a parallel section of D α u for some α ∈ C 0 (Ω). 4.6. On the parallel sections for the group GL [START_REF] Batard | On covariant derivatives and their applications to image regularization[END_REF]. We obtain the following results.

Proposition 4.10. The α-connections D α u induced by A α u described in sect. 3.2.4 are not flat.

Proof. We have

Note that, for α = 1, the existence of parallel sections of D α u is guaranteed as a straightforward computation shows that u is a parallel section of D 1 u .

Proposition 4.11. The parallel sections of D α u , if they exist, are the sections v satisfying

Optimization of the parameter α. We saw in the previous section that the invariance properties of the parallel sections of D α u for the different Lie groups depend on the value of α. Selecting the value of α providing the best result in an image restoration problem is a difficult task as it depends on both the image content and the level of degradation (see experiments in sect. 6.1). In this section, we determine α automatically and we study the invariance properties of the corresponding parallel sections by studying the minima (α * , v * ) of the energy

(5.1)

5.1. The general case. Let us consider a moving frame in which h = 2 . Let us rewrite A α u and A α u as

Assuming that v is fixed, the unique minimum of the energy (5.1) is given by

(5.2) some invariance properties with respect to the degraded image. These image priors are parametrized by Lie groups acting on pixel values. They generalize the priors constructed in [START_REF] Batard | DIP-VBTV: A color image restoration model combining a deep image prior and a vector bundle total variation[END_REF], yielding more accurate invariance properties. Experiments showed that the proposed generalization provides an improvement of the results on color image deblurring.

Because the prior providing the best result can vary with the image and the level of degradation, further work will be devoted to determine automatically the image prior through supervised learning techniques. Moreover, the stair-casing effect observed in our results suggests to construct higher-order differential invariants, in a similar way that the Total Generalized Variation prior [START_REF] Bredies | Total generalized variation[END_REF] reduces the stair-casing effect of the Total Variation prior.

Appendix A. Proof of Proposition 2.1. Denoting by A the quantity h(D ∂x 1 u, D ∂x 1 u), B the quantity h(D ∂x 1 u, D ∂x 2 u), C the quantity h(D ∂x 2 u, D ∂x 2 u), and g ij the coefficients of the matrix g, the critical points of the energy (2.5) satisfy

Reordering the terms in the first equation gives

Finally, writing g 22 = f C for f ∈ C 0 (M ) such that f does not vanish, we obtain formula (2.7).

Appendix B. Proofs of Section 3.

) with compact support. We have

for some W (A) ∈ Γ(T * Ω⊗g(E)), where F is the Frobenius norm and g the norm on g. Then, we deduce that the critical points of the energy (2.9) are the elements A satisfying

We deduce that

B.2. Proof of Proposition 3.5. Writing

We deduce that

and

Then, we obtain

and the system

The determinants of the matrix field H are 0, meaning that the system (B.1) possesses 0 or an infinite number of solutions. We observe that

is a particular solution of the system (B.1). Hence, the solutions of the system (B.1) are of the form ϕ + ψ where ψ satisfies that Hψ = 0. Those ψ's are of the form ψ 1 dx + ψ 2 dy where ψ 1 , ψ 2 are eigensections of the matrix field H associated to the eigenfunction 0. Finally, a straightforward computation shows that these eigensections are of the form

for f ∈ C 0 (Ω), from which we deduce that ψ is of the form

B.4. Proof of Proposition 3.7. We are led to solve the system

Appendix C. Proofs of Section 4.

C.1. Proof of Proposition 4.5. We have

C.2. Proof of Proposition 4.7. We have

Denoting by (a),(b),(c) the three equalities from top to bottom in (C.1), we deduce from (a) that

Then, we have that v 2 (b) + v 3 (c) yields

and consequently

C.3. Proof of Proposition 4.9. We have

Denoting by (a),(b),(c) the three equalities from top to bottom in (C.2), we have that 

On the other hand,

Together with ω 0 u v = ω 0 v v, it yields D 1 v v = D α u v. Finally, we have D α u v = 0 as D 1 v v=0.