# Characterizing heavy rainfall events associated with major floods in Haiti

Haïti Géosciences 2021

## **Ralph Bathelemy**

**Thesis advisor :** 

Pierre Brigode<sup>1</sup>, Emmanuel Tric<sup>1</sup>, Dominique Boisson<sup>2</sup>

**Research laboratory :** 

<sup>1</sup> Université Côte d'Azur, CNRS, OCA, IRD, Géoazur, Nice, France

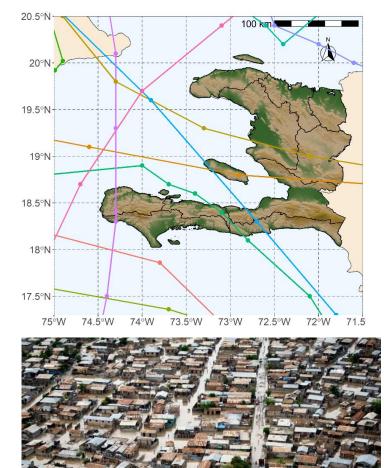
<sup>2</sup> Urgéo, LMI Carribact, Faculté des Sciences, Université d'Etat d'Haïti

#### 15 février 2022





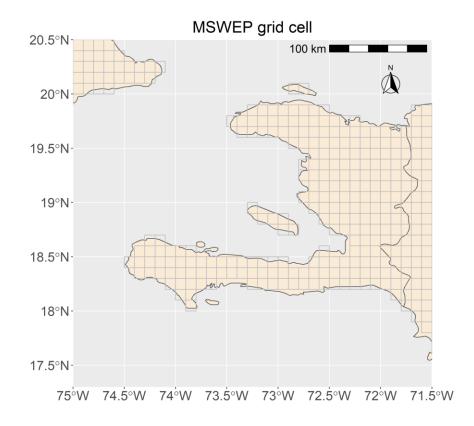




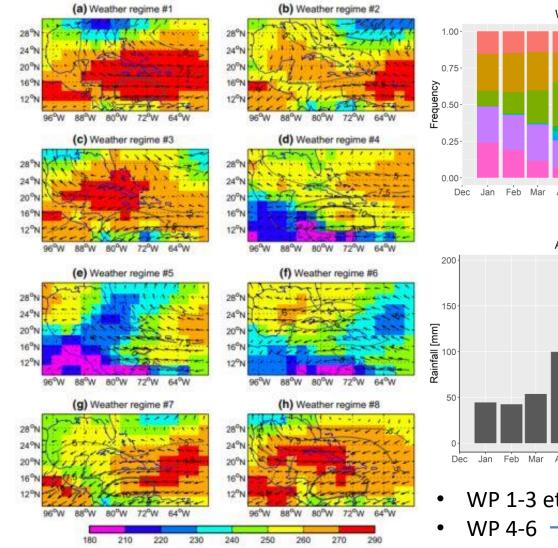


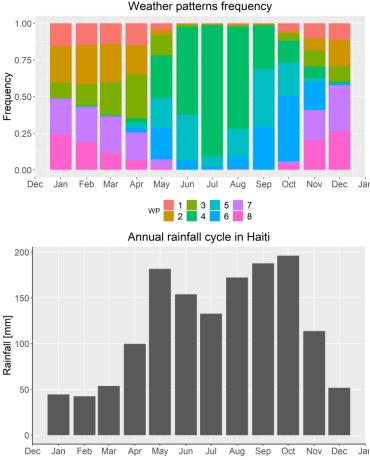



## **Study area and problematic**


- Haiti → in hurricane's path → country very exposed to hydrometeorological hazards.
- Haitian cities : in flood plains + weak economic situation → high vulnerability to these hazards.
- Lack of reference data → difficulty in characterizing the associated hazards
- But, the BRGM has listed the major floods of the last decades (Terrier et al., 2017).
- What are the characteristics of the rainfall causing these floods?
- To answer this question, we use the MSWEP gridded rainfall data (Beck *et al.* 2017).




https://lemediateurhaiti.com/haiti-inondation-la-villedes-gonaives-sous-les-eaux/

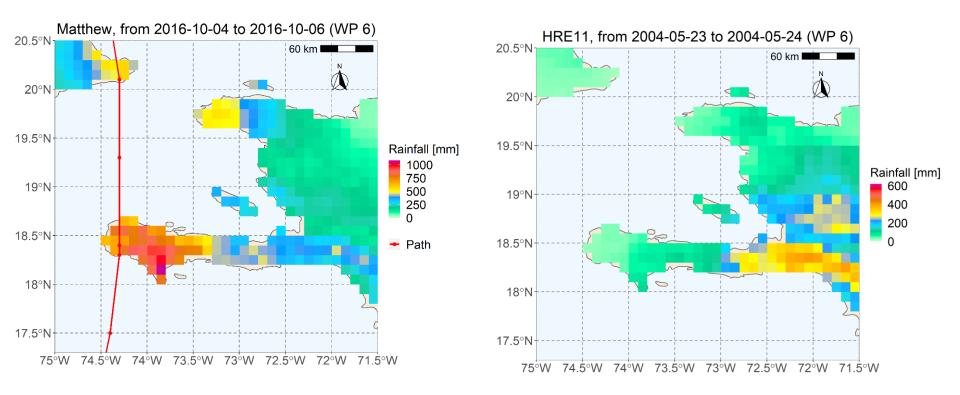

# Data used

- 13 major floods during hurricanes periods (June to November) + 20 major nonhurricanes floods across Haiti from 1979 to 2017 catalogued by BRGM (Terrier et al., 2017).
- Dates and paths of the 13 major hurricanes during 1980 to 2016 (<u>NOAA</u>)
- Eight Caribbean weather patterns (shown on the next slide ; Moron *et al.* 2016).
- MSWEP rainfall data, available from 1979 to 2017 for a spatiotemporal resolution 0.1°(11 km) / 3 h (Beck *et al.* 2017).



### Caribbean Weather Patterns (Moron et al. 2016)



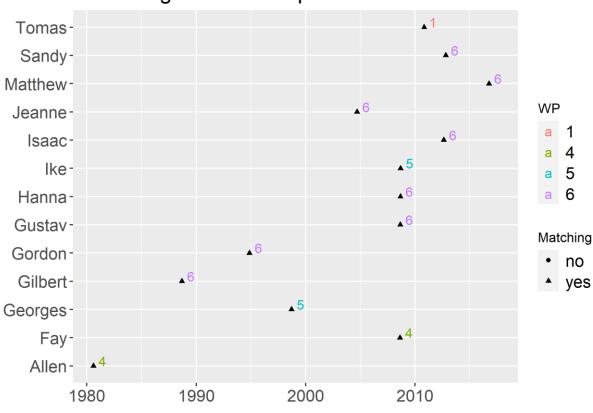



- WP 1-3 et 7-8  $\rightarrow$  low rainfall (décembre avril)
- WP 4-6 → heavy rainfall (mai juin et août nov)
- WP 4 → less heavy rainfall (juin août)

# Methodology

- Qualitative assessment of the capacity of MSWEP to identify heavy rainfall events generating the major floods catalogued by BRGM as :
  - Hurricane paths compared to MSWEP rainfall maps during hurricane season
  - Non-hurricane flooded areas compared to MSWEP rainfall maps
- Characterizing heavy rainfall events associated with major floods by studying their cumulative rainfall, spatial extent and associated atmospheric weather patterns.

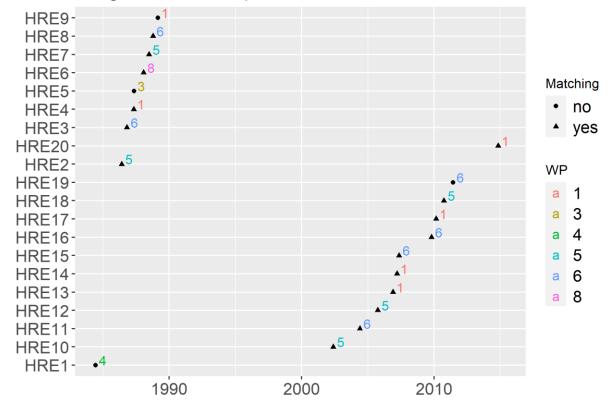
#### MSWEP rainfall maps compared to the BRGM catalog for the two highest rainfall events




- The MSWEP rainfall map during Matthew corresponds with the path of the hurricane.
- The MSWEP rainfall map during the May 24-25, 2004 floods in Southeast Haiti corresponds with the flooded area.

Study area — Data used and methodology — Results — Conclusion

### MSWEP rainfall maps compared to the BRGM catalog during hurricane


- The MSWEP rainfall maps correspond with the paths of the 13 hurricanes
- WP 6 = 60% of hurricanes
- WP 4 -5 = 30% of hurricanes
- WP 1 = 10 % of hurricanes

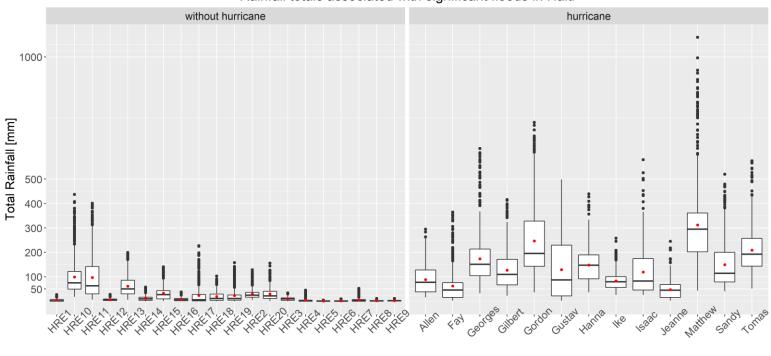


#### Matching MSWEP maps to hurricane tracks

### MSWEP rainfall maps compared to BRGM non-hurricane floods

- 80% of major nonhurricane floods are captured by MSWEP
- WP 1, 5 and 6 = 85% of non-hurricane floods
- WP 2, 4 and 8 = 25% des inondations hors cyclone




#### Matching MSWEP Maps to non-hurricane flooded areas

### Rainfall characterization associated with major floods in Haiti with MSWEP rainfall data

- Cumulative rainfall during hurricanes (top) and without hurricanes (bottom)
- Rainfall during hurricane are higher and more widespread spatially.
- Rainfall is systematically higher in the southern peninsula of Haiti



### Rainfall characterization associated with major floods in Haiti with MSWEP rainfall data



Rainfall totals associated with significant floods in Haiti

Heavy Rainfall Event (HRE)

- Rainfall totals around 100 to 300 mm for hurricanes, has a return period of 5 years (Bathelemy et al., 2021b), and generally less than 50 mm without a hurricane.
- Note that MSWEP underestimates heavy rainfall quantiles over the Greater Antilles by ~10% (Bathelemy et al., 2021a).
- Rainfall during cyclones extends over the whole country while rainfall without hurricanes are relatively more localized.

# **Conclusions and perspectives**

- MSWEP rainfall data represent rainfall fields associated with the 23 major floods listed by BRGM
- Rainfall events generating major floods during hurricane season have a return period of 5 years and less for non-hurricane floods → this highlights vulnerability of Haitian territory to flooding hazard
- In perspective, we can analyze all the heavy rainfall events in the MSWEP data to create a complete catalog and complete the BRGM list.
- We can go further, and discuss the accumulation, duration, spatial and temporal variability of heavy rainfall events in Haiti or in the Greater Antilles.

## Bibliography

- Bathelemy, R., Brigode, P., Tric, E & Boisson, D. 2021a. Rainfall in the Greater and Lesser Antilles: performance of four gridded datasets on a daily timescale. Soumis à *Journal of Hydrology: Regional Studies*.
- Bathelemy, R., Brigode, P., Boisson, D., Emmanuel, T., Balieu, O., Duffar, L., Lecossois, G., Randrianasolo, A., 2021b. Using satellite rainfall estimations for the definition of heavy rainfall statistics on two Caribbean watersheds. AGU 2021
- Beck, H.E., Wood, E.F., Pan, M., Fisher, C.K., Miralles, D.G., Dijk, A.I.J.M. van, McVicar, T.R., Adler, R.F., 2019. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 100, 473–500. <u>https://doi.org/10.1175/BAMS-D-17-0138.1</u>
- Moron, V., Gouirand, I., Taylor, M., 2016. Weather types across the Caribbean basin and their relationship with rainfall and sea surface temperature. Clim. Dyn. 47, 601–621. https://doi.org/10.1007/s00382-015-2858-9
- Terrier, M., Rançon, J.-P., Bertil, D., Chêne, F., Desprats, J.-F., Lecacheux, S., Le Roy, S., Stollsteiner, P., Bouc, O., Raynal, M., 2017. Atlas des menaces naturelles en Haïti.