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Additive manufacturing (AM) questions traditional approaches that manufacturer and metrologist have developed relative to formative or subtractive manufacturing technologies. As specific-to-AM parts, lattice structures are being investigated in many applications and efforts are focussed on modelling manufactured different-scale defects to predict the part properties before manufacturing. To date, X-ray computed tomography (XCT) is the most suited measuring instrument to reveal additively manufactured part internal defects, i.e. defects inaccessible to optical or tactile instruments. However, XCT requires surface determination tools which choice may be discussed. In this paper, a virtual volume correlation (V2C) method is proposed relying on modal decomposition. In other words, lattice structure shape defects are expressed directly from volumetric data, without any use of XCT surface determination tool. Extending previous works validated for representative lattice struts, entire lattice structure shape defect is identified by iteratively deforming a virtual volume, to minimise its least square grey level differences towards the measured volume. The proposed method particularly describes the strut form defects and the node displacements. This method allows to define at the same time and separately the shape defect of each strut but also the global geometrical defect of the structure. This approach is more relevant to assess the suitability of the structure with respect to mechanical loads than a deviation map that is difficult to handle.

Introduction

Additively manufactured lattice structures are challenging to measure [START_REF] Sperling | Challenges and approaches for metrology of additive manufactured lattice structures by industrial x-ray computed tomography[END_REF][START_REF] Echeta | Review of defects in lattice structures manufactured by powder bed fusion[END_REF]. They involve 3-dimensional repeated patterns where all surfaces are not accessible to traditional optical or tactical measuring systems. Alternatively, X-ray computed tomography (XCT) has the noteworthy advantage of being able to measure both internal and external part surfaces [START_REF] Echeta | Review of defects in lattice structures manufactured by powder bed fusion[END_REF][START_REF] Chiffre | Industrial applications of computed tomography[END_REF]. Measurement by XCT has three main steps: the measurement itself by projecting X-rays, reconstruction and surface determination. Whereas reconstruction is mainly performed by filtered backprojection algorithms, surface determination depends on the user's choice such as ISO or gradient-based methods [START_REF] Kruth | Computed tomography for dimensional metrology[END_REF][START_REF] Ding | On the canny edge detector[END_REF].

In literature, previous work has compared surface determination tools [START_REF] Kruth | Computed tomography for dimensional metrology[END_REF][START_REF] Lou | Development of 2d local searching algorithms for surface determination of x-ray computed tomography measurement[END_REF][START_REF] De Oliveira | Experimental investigation of surface determination process on multi-material components for dimensional computed tomography[END_REF]. Although ISO methods are easy to understand and to implement, gradient-based tools are mainly commercial software black boxes, where parameters can't be easily checked. That is why, there is no definitive solution about surface determination tools and discussions are still ongoing. To overcome this surface determination tool uncertainty, we propose a novel approach to estimate lattice structure geometrical deviations based on virtual volume correlation (V2C). This paper particularly extends previous work [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF], validated for elementary struts representative of a BCCz lattice structure, to the entire lattice structure, in order to identify its geometrical deviations. V2C adaptation is presented in section 2 and applied on a substructure extracted from a 2x2x2 BCCz lattice structure in section 3.

Methodology

Virtual volume correlation for lattice structure

V2C consists of identifying the displacement field embedded in measured volumetric data [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF]. This is done by successively deforming a virtual volume until it matches the measured volume, which is achieved by minimising the grey level difference between both volumes. This section presents the V2C suited for an entire lattice structure through the description of an unit BCCz cell (see Figure 1) that is repeated in three directions to form the net. An unit cell is composed of struts and a strut indexed by p is defined by two nodes: 𝑁 " # and 𝑁 $ # . 
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Where 𝑓 and 𝑔 refer respectively to the physical (stemming from XCT measurement) and virtual (numerically computed) volumes.
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𝑅𝑂𝐼 is the region of interest of the measured volume and 𝐮 refers to the displacement field that should be identified.

As the structure is made of p struts, the problem can be decomposed into p correlation problems with limit conditions on the node displacements. We focussed the correlation on struts rather than on nodes. In fact, node identification from volumetric data is challenging as the structure manufacturing itself introduces fillets and increases the node position determination uncertainty.

The V2C problem can then be written as: Correlation score that should be minimised :

Φ(𝐮) = 𝑓 𝐗 -𝑔 𝐗 + 𝐮 #|ℛ <=>> . 𝑑Ω /01 ? @ ABCDBA #EF
Limit conditions: common nodes to several struts should have the same displacement.

where 𝑁 GHIJHG is the number of struts, 𝑅𝑂𝐼 # is the region of interest defined for the p strut. 𝐮 #|ℛ <=>> refers to the displacement field applied to the p strut relative to the cell frame. More details are provided in the next section.

Shape defect basis

For lattice cells, the question of whether geometric deviations are studied on the strut scale or on the entire structure should be raised. In this approach, we propose to combine both scales by simultaneously studying struts shape defects and the overall geometric deviations of the structure. In the following equation, the displacement field is assumed to be found by modal decomposition [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF][START_REF] Homri | Tolerance analysis: Form defects modeling and simulation by modal decomposition and optimization[END_REF]. More precisely:
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where 𝜆 L # are the components of 𝝀 # and refer to the modal amplitude associated with the considered modes of the p strut, 𝒯 ℛ ? →ℛ <=>> refers to the geometric frame transformation matrix between ℛ # and ℛ UVWW frames.

In the following, modes are defined by family types:

• Rigid transformations of the struts (3 translations and 2 rotations) • Dilatation of strut diameter • Vertical defects along the struts • Plane defects described by sinusoidal descriptors. All these modes define the considered shape defect basis which can be adapted for each strut. The suitability of this shape defect basis towards cylindrical shapes has been discussed in [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF][START_REF] Homri | Tolerance analysis: Form defects modeling and simulation by modal decomposition and optimization[END_REF] and and a literature review on the modelling of shape defects is proposed in [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF]. A first order linearisation and the application of a Gauss-Newton optimisation scheme [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF] leads to:

𝑴 # 𝚫𝝀 # = 𝒃 #
Limit conditions: common nodes to several struts should have the same displacement.

with 𝚫𝝀 # the elementary modal amplitude to apply to the p strut. This iterative scheme is repeated until convergence.

Association of struts

By developing equations and taking into consideration the limit conditions, the correlation problem is transposed from the ℛ # frame to the ℛ UVWW frame by application of a variable transformation matrix 𝑸 (see equation 6). In other words, rigid transformations expressed in the local strut frame are then translated into nodal displacements in the cell frame. This allows the expression of the minimisation problem for all struts in a row and the integration of limit conditions in the problem expression.

With 𝝀 #E{F,…,@ ABCDBA } being the concatenated list of all 𝝀 # defined for all p struts, then the variable transformation is expressed as: 𝝀 = 𝑸 𝝀 * where 𝝀 * is the list of all nodal amplitudes expressed in the ℛ UVWW frame concatenated with non-rigid modal amplitudes for all struts. By integrating limit conditions, and applying equation 6 to elementary displacement, equation 5 is then simplified to:

𝑸 k 𝑴𝑸 𝚫𝝀 * = 𝑸 k 𝒃 thus, 𝚫𝝀 = 𝑸[ 𝑸 k 𝑴𝑸 mF (𝑸 k 𝒃)]
with 𝚫𝝀 being the elementary modal amplitudes to apply to all struts, resulting in an iteratively updated virtual volume. The described method can now be applied on a manufactured lattice sample.

Sample manufacturing and measurement

The sample is a 2x2x2 BCCz lattice structure where the beam radii have been set to 0.6 mm and struts have a 6 mm length, all designed in a computer-aided-design (CAD) software. The lattice structure was produced by laser powder bed fusion (PBF) on an Addup FormUp 350 using Inconel 718 powder and the printing parameters displayed in Table 1. 

Hatch space 55 µm

The manufactured sample was washed with water and dried with compressed air. It was removed from the substrate using an electrical discharge machine. The manufactured lattice structure was then measured using XCT with the measurement setups summarised in Table 2: A warmup scan of approximately 30 minutes was performed prior to the scan and data were reconstructed in the manufacturer's software, using a filtered backprojection algorithm and a beam hardening correction without specific filter. Reconstruction was saved in a .raw file format. An elementary 1x1x1 substructure was extracted from the 2x2x2 measured volumetric data; this was done to reduce the computation time and the size of data handled in this problem.

Numeric methodology

V2C was applied on the measured substructure, resulting in a V2C envelope. Vertical defects were taken as simple flexion, and plane defects were assigned to 10 sinusoidal modes. At the same time, ISO 50% [START_REF] Kruth | Computed tomography for dimensional metrology[END_REF] envelope was extracted from the substructure volumetric data. Each envelope was compared to the CAD model, and was then compared to one another. All data treatments included in this paper are summarised in the pipeline displayed in Figure 3. 

Results

Nodal displacement field was identified by V2C and is shown by each blue array in Figure 4. Associated nodal displacement norms are displayed in Figure 5. It is worth noting that V2C independently corrects nodal positions resulting in the nominal model deformation, or the structure shape defect identification. To refine the analysis of the data distributions, statistical boxplots of the distributions are displayed in Figure 7 for each of the considered comparative sets. 

Discussion

When compared to the CAD model, ISO 50% and V2C envelopes provide similar results in terms of mean values around -21 µm (see Figure 6 and7). This negative mean value may be explained by an overall material retraction during manufacturing. Standard deviation discrepancies are explained by the ISO 50% envelope embedding surface roughness which is not estimated by the V2C algorithm. As a result, the CAD/V2C distribution is narrower than the CAD/ISO 50% set. In addition, relative to the chosen shape defect basis (see section 2.2), V2C provides shape defect information and is not sensible to lower defect wavelengths. A similar observation is made in Figure 7 with CAD/V2C set showing a narrower distribution width than the CAD/ISO 50% set. The V2C/ISO 50% comparative set shows that apart from the roughness consideration, V2C and ISO 50% have common trends. As illustrated in both Figures 6 and7, the centred V2C/ISO 50% set mean value confirms that V2C is efficient in estimating the structure shape defect relative to the considered basis.

In Figure 6, signed distance plots also show that identifying nodes in a lattice structure is a challenging task when fillets between struts are introduced at the manufacturing step. Indeed, these regions have the highest discrepancies in all of the considered comparative sets. Thus, focussing on struts allows access to all the information embedded in the volumetric data rather than adding node determination and approximation steps. This choice provides an overall estimation of both orientation and deformation defects of each strut composing of the lattice structure, with node connections defined as limit conditions.

A note should be made about the resulting modal decomposition amplitude for the lattice structure. Considering the nature of the strut i.e. vertical or inclinded, modal amplitudes are similar to the modal amplitude obtained in the strut analysis performed in [START_REF] De Pastre | Shape defect analysis from volumetric data -application to lattice struts in additive manufacturing[END_REF]. In other words, modal amplitude computed in this study are in the same order as node displacement displayed in Figure 5.

Conclusion

This paper introduced the V2C method adapted to entire lattice structures. We show that V2C is a tool that can provide the CAD model with shape defect information. The main advantage of this virtual volume correlation technique is that it relies only on volumetric data, without any post-reconstruction additional step, in order to estimate lattice structure shape defects relative to a chosen shape defect basis. Previous work supports the suitability of the considered shape defect basis in this paper. Improvements to the basis could focus on introducing lower wavelength defects and integrating specificto-the-process defects such as spatters or local recesses. The latter may require to turn the proposed approach into a meshbased one to specifically address these typologies of defects. In addition, as V2C deals with volumetric data, V2C requires strong computation resources, notably RAM resources. As an illustration, this work required about 200 Gb of RAM. Future work will continue to focus on defining a strategy such as resolution adaptation, to apply V2C in a reasonable computation time.
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 1 Figure 1. Cell (left) and strut (right) wire representation with associated frames The V2C problem can be expressed by the following correlation score minimisation: Φ 𝐮 = 𝑓 𝐗 -𝑔 𝐗 + 𝐮 ./01

  𝝀 # are found by minimisation of the correlation score reduced to the p strut and equation 2 can be expressed as: Correlation score minimisation: 𝝀 𝒎𝒊𝒏 𝒑 = 𝑎𝑟𝑔𝑚𝑖𝑛 Φ M (𝒖) 𝝀 𝒑 Limit conditions: common nodes to several struts should have the same displacement.
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 2 Figure 2. Designed (left) and manufactured (right) 2x2x2 lattice structure
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 3 Figure 3. Data treatment
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 4 Figure 4. Nodal displacement vectors identified by V2C, represented on the lattice wire model. Vector amplitudes have been enhanced for more readability. Dilatation, plane and vertical defects are not represented.
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 5 Figure 5. Nodal displacement norms.
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 66 Figure 6. Signed distances between comparative sets: CAD model vs ISO50% envelope (left), CAD vs V2C (middle) and V2C vs ISO50% (right)

Figure 7 .

 7 Figure 7. Statistical boxplots for considered comparative sets (green dashed line highlights the 0 value).

Table 1 .

 1 Printing parameters

	Powder	Inconel 718
	Layer thickness	40 µm	
	Laser power	220 W	
	Scan speed	2100 mm.s	-1
	Contour scan power	210 W	
	Contour scan speed	1800 mm.s	-1

Table 2 .

 2 XCT measurement setups

	Magnification	x11.4%
	Voxel size	15 µm
	Projections	1200
	Tube voltage	180 kV
	Tube current	130 µA

Acknowledgments CT measurements at ENS Paris-Saclay have been financially supported by the French Agence Nationale de la Recherche, through the Investissements d'avenir program (ANR-10-EQPX-37 MATMECA Grant) This work was performed using HPC resources from the Mésocentre computing center of CentraleSupélec and École Normale Supérieure Paris-Saclay supported by CNRS and Région Île-de-France (http://mesocentre.centralesupelec.fr/).