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Abstract—Consider a multiple-input single-output system,
where the nonnegative, peak-limited inputs X1, . . . , XnT ∈ [0,A]
are subject to first- and second-moment sum-constraints on all
antennas. The paper characterizes all probability distributions
that can be induced for the “channel image,” which is given by
the inner product of the input vector with a given channel vector.
Key to this result is the description of input vectors that achieve
a given deterministic channel image with the smallest energy,
where “energy” of an input vector refers to a weighted sum of
its one- and two-norms. Minimum-energy input vectors have an
interesting structure: depending on the desired channel image,
some of the weakest antennas are silenced, and the remaining
antennas are chosen according to a shifted and amplitude-
constrained beamforming rule.

I. INTRODUCTION AND PROBLEM SETUP

Consider a multiple-input single-output (MISO) antenna
system of the form:

X = hTX, (1)

where h = (h1, . . . , hnT)
T is a constant channel state vec-

tor and X an nT-dimensional channel input vector X =
(X1, . . . , XnT)

T.
The channel image X in (1) is useful in describing the

input-output relation of MISO (optical or radio-frequency)
wireless channels, where the channel output is modeled as
Y = X + Z, with Z being additive noise [1]–[4]. In radio-
frequency communication, the inputs X1, . . . , XnT correspond
to the modulated electromagnetic field, and as such both
the inputs and the channel coefficients can take values over
the entire real line R. In this context, battery and power
limitations impose a second-moment constraint E

[
∥X∥22

]
≤ P,

and modulation schemes can be restricted without loss of
optimality to beamforming input-vectors [4], [5]

xbeamformer(x) =
x

∥h∥22
· h, x ∈ R, (2)

since xbeamformer(x) has the smallest two-norm ∥x∥22 among all
input vectors x inducing the same channel image x = hTx. In
particular, because X forms a sufficient statistic for X with
respect to the output Y = X+Z, the capacity-achieving input

distribution for such a channel can be restricted to taking value
only in the set of beamforming vectors like (2).

In intensity-modulated direct-detection (IM/DD) optical
communication systems, the inputs are directly proportional
to the intensity of the emitted light. They therefore cannot be
negative: X1, . . . , XnT ≥ 0. The channel coefficients are also
nonnegative in this case. To avoid degeneracy, we henceforth
assume that no two coefficients are equal, and, without loss
of generality, that they are ordered as

h1 > h2 > · · · > hnT > 0. (3)

Furthermore, optical-power limitations are captured by the
first-moment constraints E[∥X∥1] ≤ E. The input vector with
the smallest one-norm inducing a target channel image x is

xstrongest(x) =
(

x
h1
, 0, . . . , 0

)T
, x ∈ [0,∞). (4)

Therefore, modulation systems for first-moment constrained
MISO additive noise channels as well as the capacity-
achieving input distributions of these channels can be restricted
in such a way that only the first input antenna is used.

Safety considerations and technical limitations often impose
strict peak constraints A > 0 on the inputs:

X1, . . . , XnT ∈ [0,A], (5)

in which case the random channel image X takes value in the
interval X ≜ [0, hsumA], for hsum ≜

∑nT
k=1 hk. Note that for

the remainder of this paper, we will always assume that (5)
must be satisfied. Under such peak constraints, the input vector
x that induces a target channel image x with the smallest one-
norm is [6], [7]

xpeak(x) =
(
A, . . . ,A,

x−
∑i−1

k=1 Ahk

hi
, 0, . . . , 0

)T

, (6)

where the single input that is neither 0 nor A is at position
i ∈ {1, . . . , nT} if x ∈

(
A
∑i−1

k=1 hk,A
∑i

k=1 hk

]
.

In this paper, we consider both first- and second-moment
input constraints:

E[∥X∥1] ≤ α1A, (7a)
E
[
∥X∥22

]
≤ α2A

2, (7b)



as encountered, e.g., in IM/DD systems with limitations on
the optical power and the power consumed by the electronic
circuit [8]–[12]. We characterize the set of all random channel
images X that can be induced under these constraints. This
characterization allows us to reduce the capacity calculation
of an additive-noise MISO channel with input vector X under
constraints (5) and (7) to a simpler optimization problem
over the distribution of X , a technique that was also applied
in [6], [7] to channels without a second-moment constraint.
A main step in our proof is to determine the “minimum-
energy” input vectors xmin,λ(x) that, among all input vectors
inducing channel image x, minimize the weighted sum-norm
λ∥x∥1 + (1 − λ)∥x∥22 for some λ ∈ [0, 1]. For λ = 1,
xmin,1(x) = xpeak(x), as determined in [6]. A key result of the
present paper is the minimum-energy solution for λ ∈ [0, 1):
it sets a number of strongest antennas to the maximum value
A, switches off a number of the weakest antennas, and applies
“shifted beamforming” on the remaining antennas. The exact
solution is given in Lemma 9 ahead.

The above minimum-energy solution can be used to simplify
capacity calculation for additive-noise MISO channels with
nonnegative inputs that satisfy peak, first-moment, and second-
moment constraints. Capacity of such channels with peak or
first-moment constraint, or both (but without a second-moment
constraint), has been studied in many recent works [6], [7],
[11], [13]–[24].

The remainder of this paper is arranged as follows. In
Section II, we show that the problem of characterizing all
achievable X can be simplified to a class of optimization
problems for deterministic channel images x ∈ X and some
parameter λ ∈ [0, 1]. In Section III, we then present the
solution to these optimization problems. Section IV combines
these findings to present an explicit characterization of the set
of channel images X that are achievable under constraints (5)
and (7).

II. PARETO-OPTIMAL INPUTS

Since we have two power constraints, it is convenient to
think of the first and second moments of a random vector
as two utility functions, and introduce the notion of Pareto
optimality.

Definition 1: A random vector X is said to be Pareto optimal
if there exists no other random vector X′ such that hTX′ has
the same distribution as hTX, while

E[∥X′∥1] ≤ E[∥X∥1] (8a)
E
[
∥X′∥22

]
≤ E

[
∥X∥22

]
(8b)

with at least one of the two inequalities in (8) being strict.
Lemma 2 below says that we can restrict our attention

to Pareto-optimal input distributions. Lemma 3 characterizes
these Pareto-optimal distributions as solutions to a class of
optimization problems. The proofs of these two lemmas are
elementary and therefore omitted.

Lemma 2: Consider a random channel image X with a de-
sired distribution. If there exists an input vectors X satisfying

(7) and inducing X , then there must exist a Pareto-optimal
input vector X∗ satisfying (7) and inducing X .

Lemma 3: If a random vector X∗ is Pareto optimal, then
there exists a λ ∈ [0, 1] such that X∗ minimizes

λ · E[∥X∥1]
A

+ (1− λ) ·
E
[
∥X∥22

]
A2

(9)

among all X for which hTX has the same distribution as
hTX∗.

Lemma 4: Fix any λ ∈ [0, 1]. For any x ∈ X , denote

g(x, λ) ≜ min
x : hTx=x

{
λ · ∥x∥1

A
+ (1− λ) · ∥x∥

2
2

A2

}
. (10)

For any target distribution for X ,

min
X : hTX∼X

{
λ · E[∥X∥1]

A
+ (1− λ) ·

E
[
∥X∥22

]
A2

}
= E

[
g(X,λ)

]
. (11)

Proof: For any X such that hTX ∼ X , we have

λ · E[∥X∥1]
A

+ (1− λ) ·
E
[
∥X∥22

]
A2

= E
[
λ · ∥X∥1

A
+ (1− λ) · ∥X∥22

A2

]
(12)

= E
[
E
[
λ · ∥X∥1

A
+ (1− λ) · ∥X∥22

A2

∣∣∣∣hTX = X

]]
(13)

≥ E
[
g(X,λ)

]
. (14)

Equality in the above is achieved by choosing, for every x ∈
X , a corresponding input vector x that achieves g(x, λ).

Recall that our goal is to find out whether a desired
distribution for X is achievable under the constraints (7) or
not. Using Lemmas 2, 3, and 4, we see that this task can be
simplified as follows. We first determine, for every λ ∈ [0, 1]
and x ∈ X , the input vectors that achieve the minimum in
(10). (This can be done without knowing the target distribution
for X .) We refer to such input vectors as minimum-energy
signaling (with respect to parameter λ). If a target distribution
for X is achievable under (7), then there must exist some
λ ∈ [0, 1] such that an X taking values only on minimum-
energy signaling input vectors with respect to parameter λ
induces X and satisfies (7). In fact, as we shall later see,
such X is uniquely determined by X and λ. Hence, instead
of considering distributions over [0,A]nT , we only need to
examine these specific distributions for each λ.

III. CHARACTERIZATION OF MINIMUM-ENERGY
SIGNALING

In this section we characterize, for every λ ∈ [0, 1) and
x ∈ X , the solution to the following minimization problem:

min
x∈[0,A]nT : hTx=x

{
λ · ∥x∥1

A
+ (1− λ) · ∥x∥

2
2

A2

}
. (15)

(Recall that, for λ = 1, the optimization problem in (15) was
solved in [6].)



Fix a λ ∈ [0, 1) and denote

ν ≜
λ

1− λ
. (16)

We introduce some indices and threshold values.
Definition 5: Set κ0 ≜ 0. For each index ℓ ∈ {1, . . . , nT},

define the integer

κℓ ≜ max

{
j ∈ {ℓ, . . . , nT} :

ν

2

(
hℓ

hj
− 1

)
< 1

}
; (17)

define the point

tℓ ≜ A

ℓ∑
i=1

hi +A

κℓ∑
i=ℓ+1

(
h2
i

hℓ
+

ν

2

(
h2
i

hℓ
− hi

))
; (18)

and finally, for every k ∈ {κℓ−1 + 1, . . . , κℓ}, define

sk ≜ A

ℓ−1∑
i=1

hi +A

k−1∑
i=ℓ

ν

2

(
h2
i

hk
− hi

)
. (19)

Remark 6: Notice that κk, tk, and sk are all nondecreasing
in k ∈ {1, . . . , nT}. Moreover, if κℓ < κℓ+1, then

sκℓ
≤ tℓ ≤ sκℓ+1, (20)

because (
h2
i

hℓ
+

ν

2

(
h2
i

hℓ
− hi

))
− ν

2

(
h2
i

hk
− hi

)
=

h2
i

hℓ

(
1− ν

2

(
hℓ

hk
− 1

))
︸ ︷︷ ︸

≜Γ

, (21)

where Γ is positive for any k ≤ κℓ and i ∈ {1, . . . , k} and is
negative for k = κℓ + 1 and i ∈ {1, . . . , k}. Thus we have an
ordering of the form:

0 = s1 ≤ · · · ≤ sκ1
≤ t1

≤ sκ1+1 ≤ · · · ≤ sκ2
≤ t2

≤ sκ2+1 ≤ · · · ≤ sκ3
≤ t3

≤ · · · ≤ snT ≤ · · · ≤ tnT = hsumA. (22)

As will be shown later, for each k ∈ {1, . . . , nT}, sk is the
threshold on x at which the kth antenna should be switched on
(i.e., the optimal choice should have xk = 0 for x ≤ sk and
xk > 0 for x > sk); and tk is the threshold on x at which the
kth antenna should be set to the maximum value A (i.e., the
optimal choice should have xk = A for x ≥ tk). The integer
κk indicates the number of antennas that should be switched
on before the kth antenna is fixed to its maximum value A.

Definition 7: For any ℓ ∈ {1, . . . , nT} for which κℓ > κℓ−1,
and for any k ∈ {κℓ−1, . . . , κℓ}, define the subintervals

Iℓ,k ≜


[tℓ−1, sk+1] if k = κℓ−1,

[sk, sk+1] if κℓ−1 < k < κℓ,

[sk, tℓ] if k = κℓ.

(23)

For any ℓ ∈ {2, . . . , nT} for which κℓ = κℓ−1, define the
subinterval

Iℓ,∅ ≜ [tℓ−1, tℓ]. (24)

The next lemma follows immediately from Remark 6.
Lemma 8: The set of intervals

P ≜ {Iℓ,κℓ−1+1, . . . , Iℓ,κℓ
}{ℓ : κℓ−1<κℓ}

∪ {Iℓ,∅}{ℓ : κℓ−1=κℓ} (25)

overlap on a set of Lebesgue measure zero, and their union is
X .

We can now present the solution to (15).
Lemma 9: Fix λ ∈ [0, 1). For any x ∈ X , the opti-

mization problem (15) has the following unique1 solution
xmin,λ(x) = (xmin,λ,1, . . . , xmin,λ,nT)

T. If x lies in an interval
Iℓ,k as defined in (23), then the solution is given by

xmin,λ,i(x) = A, i ≤ ℓ− 1, (26a)

xmin,λ,i(x) =

(
x−A

ℓ−1∑
j=1

hj

)
· hi∑k

j=ℓ h
2
j

+
νA

2

∑k
j=ℓ hj∑k
j=ℓ

h2
j

hi

− 1

, i = ℓ, . . . , k, (26b)

xmin,λ,i(x) = 0, i ≥ k + 1, (26c)

where ν is defined in (16). Furthermore, the one- and two-
norms of xmin,λ(x) are given respectively by

∥xmin,λ(x)∥1 = m(λ, x)

≜ (ℓ− 1)A− (k − ℓ+ 1)ν
A

2

+

(
x−A

∑ℓ−1
j=1 hj + νA

2 ·
∑k

j=ℓ hj∑k
j=ℓ h

2
j

)
·

(
k∑

i=ℓ

hi

)
, (27)

and

∥xmin,λ(x)∥22 = v(λ, x)

≜ (ℓ− 1)A2 + (k − ℓ+ 1)ν2
A2

4

+

(
x−A

∑ℓ−1
j=1 hj + νA

2 ·
∑k

j=ℓ hj

)2
∑k

j=ℓ h
2
j

−

(
x−A

∑ℓ−1
j=1 hj + νA

2 ·
∑k

j=ℓ hj∑k
j=ℓ h

2
j

)
·

(
k∑

i=ℓ

hi

)
· νA.

(28)

If x lies in an interval Iℓ,∅ as defined in (24), then xmin,λ(x)
is given as in (26) with k replaced by κℓ; its one- and two-
norms are given by m(λ, x) and v(λ, x) as in (27) and (28),
again with the parameter k replaced by κℓ.

Proof: See the appendix.
Remark 10: Lemma 9 shows that xmin,λ(x) sets the

strongest ℓ−1 antennas at the maximum value A and switches
off the weakest nT − k antennas; the remaining k − ℓ + 1
antennas are used in a shifted beamforming fashion, in the
sense that the first term on the right-hand side of (26b) is

1Uniqueness relies on the strictness of the inequalities in (3).



the same as in standard beamforming subject to a second-
moment constraint [4], while the second term there is a shifting
constant that depends on the antenna index i.

For completeness, we also define m(1, ·) and v(1, ·) follow-
ing (6).

Definition 11: For i ∈ {1, . . . , nT} and for

x ∈

[
A

i−1∑
k=1

hk,A

i∑
k=1

hk

]
, (29)

we define

m(1, x) ≜
i−1∑
k=1

A+
x−A

∑i−1
k=1 hk

hi
, (30)

v(1, x) ≜
i−1∑
k=1

A2 +

(
x−A

∑i−1
k=1 hk

hi

)2

. (31)

IV. CHARACTERIZATION OF ALL ACHIEVABLE X

Theorem 12: The target random variable X can be generated
with a random input vector X satisfying (7) if, and only if,
there exists a value λ ∈ [0, 1] such that the following two
inequalities are satisfied:

EX

[
m
(
λ,X

)]
≤ α1A, (32a)

EX

[
v
(
λ,X

)]
≤ α2A

2, (32b)

where the functions m(·, ·) and v(·, ·) are defined in Lemma 9
and Definition 11.

Proof: The theorem follows immediately from Lemmas 2,
3, 4, and 9.

Example 13: Consider a MISO channel with nT = 4 input
antennas and channel vector

h = (4, 3, 2, 1)T. (33)

Figure 1 illustrates the set of (α1, α2)-pairs that permit the
uniform distribution for X ∈ X . The uniform distribution
is optimal in the high-signal-to-noise-ratio (high-SNR) limit
among all X taking values on X without other constraints; see,
e.g., [6]. Thus, we have identified the set of (α1, α2)-pairs for
which the constraints (7) do not limit the capacity in the high-
SNR limit. This set depends on the channel vector h and has a
fundamentally different shape from the corresponding set for
the single-input single-output channels, which is characterized
by α1 ≥ 1/2 and α2 ≥ 1/3 and is rectangular [11].
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APPENDIX

In this appendix we prove Lemma 9. The optimization
problem (15) is convex by the convexity of the domain set
{x ∈ [0,A]nT : hTx = x} and the convexity of the function

x 7→ λ · ∥x∥1
A

+ (1− λ) · ∥x∥
2
2

A2
. (34)

1.5 1.6 1.7
1.1

1.2

1.3

1.4

1.5

uniform distribution
feasible

α1

α
2

Fig. 1. The figure illustrates the set of all (α1, α2)-pairs that allow to induce
a uniform distribution over X under a MISO channel vector h = (4, 3, 2, 1)T.

The solution can thus be found by inspecting the Karush–
Kuhn–Tucker (KKT) conditions. The KKT conditions (after
multiplication of the objective function by the constant A

1−λ

and recalling ν = λ
1−λ ) are

ν +
2xk

A
+ λhk − vk + ρk = 0, k ∈ {1, . . . , nT}, (35a)

hTx− x = 0, (35b)
−xk ≤ 0, k ∈ {1, . . . , nT}, (35c)

xk −A ≤ 0, k ∈ {1, . . . , nT}, (35d)
vkxk = 0, k ∈ {1, . . . , nT}, (35e)

ρk(xk −A) = 0, k ∈ {1, . . . , nT}, (35f)
vk, ρk ≥ 0, k ∈ {1, . . . , nT}. (35g)

Notice first that only one of the two parameters vk or ρk can
be strictly positive, and when the solution x∗

k ∈ (0, 1), then
both vk = ρk = 0. Defining ζk ≜ vk − ρk, we can summarize
(35a) and (35e)–(35g) as:

ν +
2xk

A
+ λhk = ζk, k ∈ {1, . . . , nT}, (36)

where
1) ζk = 0 when xk ∈ (0,A);
2) ζk ≥ 0 when xk = 0; and
3) ζk ≤ 0 when xk = A.

We fix two indices 1 ≤ ℓ < k ≤ nT and resolve (36) for λ.
This yields:

xℓ =
hℓ

hk
xk +

Aν

2

(
hℓ

hk
− 1

)
︸ ︷︷ ︸

> 0

+

(
ζℓ −

hℓ

hk
ζk

)
A

2
,

1 ≤ ℓ < k ≤ nT. (37)

Now we study the implications of (37) and above state-
ments 1)–3), where we distinguish the cases xk = 0, xk = A,
and xk ∈ (0,A).
Case 1: xk = 0: In this case, ζk ≥ 0 and

xℓ ≤
Aν

2

(
hℓ

hk
− 1

)
+

Aζℓ
2

. (38)



Now, if xℓ = A then ζℓ ≤ 0, and thus xℓ ≤ Aν
2

(
hℓ

hk
−1
)
.

But since xℓ = A, this is only possible if

ν

2

(
hℓ

hk
− 1

)
≥ 1. (39)

If xℓ ∈ (0,A), then ζℓ = 0 and

xℓ ≤
Aν

2

(
hℓ

hk
− 1

)
. (40)

The case xℓ = 0 is trivially possible and its analysis does
not provide further insights.

Case 2: xk ∈ (0,A): In this case ζk = 0 and

xℓ =
hℓ

hk
xk +

Aν

2

(
hℓ

hk
− 1

)
+

Aζℓ
2

. (41)

Now, if xℓ = 0, then ζℓ ≥ 0 and

0 ≥ hℓ

hk
xk +

Aν

2

(
hℓ

hk
− 1

)
︸ ︷︷ ︸

>0

, (42)

which is not possible because ν ≤ 0 and xk ≥ 0.
If xℓ ∈ (0,A), then ζℓ = 0 and

xℓ =
hℓ

hk
xk +

Aν

2

(
hℓ

hk
− 1

)
. (43)

If xℓ = A, then ζℓ ≤ 0 and

A ≤ hℓ

hk
xk +

Aν

2

(
hℓ

hk
− 1

)
. (44)

Case 3: xk = A: In this case ζk ≤ 0 and

xℓ ≥
hℓ

hk
A+

Aν

2

(
hℓ

hk
− 1

)
+

Aζℓ
2

. (45)

Now, if xℓ ∈ [0,A), then ζℓ ≥ 0 and

xℓ ≥
hℓ

hk
A+

Aν

2

(
hℓ

hk
− 1

)
> A, (46)

where the second inequality holds because hℓ > hk and
ν > 0. Since this is not possible, we necessarily have
xℓ = A when xk = A.

We summarize our findings on the optimal solution x∗
1, . . . ,

x∗
nT

, where we include also the conditions x∗
1, . . . , x

∗
nT

∈
[0,A]. For any pair of indices 1 ≤ ℓ < k ≤ nT:

• If x∗
k = 0, then x∗

ℓ ∈
[
0,A ·min

{
1, ν

2

(
hℓ

hk
− 1
)}]

.

• If x∗
k ∈

(
0,Ahk

hℓ

(
1 − ν

2

(
hℓ

hk
− 1
))]

, then x∗
ℓ = hℓ

hk
x∗
k +

Aν
2

(
hℓ

hk
− 1
)
.

• If x∗
k ∈

[
Ahk

hℓ

(
1− ν

2

(
hℓ

hk
− 1
))
,A
]
, then x∗

ℓ = A.

Combining these findings for all antennas 1 ≤ ℓ < k ≤ nT,
we can conclude that the antennas are turned on one after the
other for increasing values of x starting from the strongest
antenna 1 until the weakest antenna nT; all active antennas
follow a shifted beamforming solution; and antennas are kept
at maximum power A for all subsequent x-values once the
beamforming solution achieves this value and this (for smaller

values of x) happens first for antennas 1, 2, . . . and finally for
the last antenna nT. We next determine the thresholds on x

s1 < · · · < snT (47)

when antennas 1, . . . , nT are switched on, and the thresholds
on x

t1 < · · · < tnT (48)

when they are fixed to the maximum value A. Trivially,

s1 = 0 and tnT = hsumA. (49)

Determining the other values is more involved. In particular,
the order of the various points depends on the specific values
of the antenna channel gains. From the orderings in (47) and
(48), we can conclude that the interval X = [0, hsumA] of
all possible x-values is divided into subintervals which are
characterized by two indices ℓ, k ∈ {1, . . . , nT} with ℓ ≤ k
in the sense that for any x in this subinterval all antennas
1, . . . , ℓ− 1 are set to the maximum value A and all antennas
k + 1, . . . , nT are set to 0. The x-values in this interval are
induced by a minimum-energy vector xmin,λ of the form

xmin,λ,1 = · · · = xmin,λ,ℓ−1 = A, (50a)

xmin,λ,i =
hi

hk
xmin,λ,k +

Aν

2

(
hi

hk
− 1

)
, i = ℓ, . . . , k,

(50b)
xmin,λ,k+1 = . . . = x∗

min,λ,nT
= 0. (50c)

By the definition of x,

x =

nT∑
i=1

hixmin,λ,i (51)

= A

ℓ−1∑
j=1

hj +

k∑
i=ℓ

(
h2
i

hk
xmin,λ,k +

Aν

2

(
h2
i

hk
− hi

))
(52)

and thus

xmin,λ,k =
x−A

∑ℓ−1
j=1 hj +

Aν
2 ·

∑k
j=ℓ hj∑k

j=ℓ

h2
j

hk

− Aν

2
(53)

and for i = ℓ, . . . , k the solution in (26b) follows. We conclude
that the minimum-energy solution xmin,λ(x) is unique for any
λ ∈ [0, 1).

We next determine the end-point of the interval. The interval
ends when either x∗

ℓ = A, in which case the ℓ-th antenna has
to be frozen to its maximum value A and the end point of the
interval is x = tℓ, or when

x∗
i =

Aν

2

(
hi

hk+1
− 1

)
, i = ℓ, . . . , k, (54)

in which case this interval ends with x = sk+1 and the (k+1)-
th antenna will be used in the next-following interval. (Notice
that by (50b), all the conditions in (54), for i = ℓ, . . . , k, are
equivalent.) Which of the two events happens first, x = tℓ or
x = sk+1, depends on whether A is smaller or larger than
Aν
2

(
hi

hk+1
− 1
)
, which leads to the definitions of indices κℓ.
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