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Abstract: We develop in this paper a partially observable Markov decision process (POMDP)
model for a maintenance planning problem and solve it with an efficient point-based value
iteration (PBVI) algorithm. We consider a single-unit system, subjected to random degradation
and failures, and for which the current degradation state can be partially observed via an
imperfect monitoring system. The system state space is finite, and we model the following
maintenance operations: i) perfect inspection, ii) preventive maintenance and iii) corrective
maintenance. The goal is to optimize the maintenance policy by taking into account the
imperfect monitoring data in order to minimize the expected discounted maintenance cost over
an infinite time horizon. We formulate the problem as a POMDP where, at each time step, it
should be decided whether or not to conduct a maintenance operation, and if so, which one.
To keep the model general and flexible, we suppose that monitoring data are collected every K
time steps (i.e. one observation epoch). The model is completed by a constraint imposing that
only one maintenance operation can be conducted per observation epoch. Eventually, we solve it
using a PBVI algorithm. The value function is approximated by interpolation of grid data points,
and new relevant points are dynamically added into the grid where they most improve the value
function. This approach is compared to a POMDP modeling based on approximate sample paths
(ASP); when evaluated in different cost scenarios, the proposed approach systematically finds
better maintenance policies for a comparable computation time. The computation of a lower
bound finally proves that we are able to get the optimal value of the problem with satisfying
precision.

Keywords: optimal maintenance planning, condition-based maintenance, imperfect monitoring,
partially observable Markov decision process, point-based value iteration.

1. INTRODUCTION

Industrial assets are complex physical systems, made up
of many components in interaction with each other. The
components are not perfect and they degrade with time,
accumulating fatigue and wear. Eventually, they are all
subjected to failure, which can occur at random times.
For various reasons (cost, reliability, availability of repair
crew, etc...), it is often preferable to replace an item
preventively, before its failure. Engineers and researchers
initially tackled the problem of maintenance planning by
optimizing the period at which a system should be pre-
ventively replaced, leading to the development of periodic
maintenance policies (examples can be found in Barlow
(1960) or Bajestani (2016)).

Yet, periodic maintenance is a rigid policy, incapable of
adapting the replacement age of the component to the
actual degradation. For example, if a maintenance oper-
ator observes that the system is in good condition when
it should theoretically be replaced, delaying a little bit
the preventive replacement would probably be more cost
? This work is funded by the Chair on Risk and Resilience of
Complex Systems (CentraleSupelec, EDF, Orange, SNCF).

effective. For that reason, condition-based maintenance
(CBM) policies, which adapt to the actual condition of
the system, have received a lot of attention in the past
years (Alaswad (2017)). CBM relies on continuous system
condition monitoring by means of physical measurements
such as temperature, pressure, vibration, noise, etc.

However, very few studies have investigated the potential
effects of imperfect condition monitoring on CBM policies
(Alaswad (2017)). de Jonge (2020) also suggested that
more research could be done on imperfect monitoring,
and especially on how to find the optimal dynamic CBM
policies for multi-item systems by taking into account
the imperfectly monitored condition of each item in the
system. We are convinced of the importance of exploring
such research direction. When perfect information is not
possible or too expensive, an efficient maintenance policy
should still be able to capture the value provided by the
imperfect condition monitoring. Yet, to the best of our
knowledge, efficient tools are still missing for tackling
the problem of maintenance planning under imperfect
monitoring information. Even on single-unit systems, as
a start.



Partially observable Markov decision processes (POMDPs)
(Sondik (1971)) are a natural extension of Markov deci-
sion processes (MDPs) and provide a fecund framework
to deal with this context of partial information. Despite
a lot of applications found in the robotics community,
POMDPs have not received much attention in the reliabil-
ity and maintenance community. Ghasemi (2007) used a
POMDP to optimize maintenance planning, but without
the possibility of field inspection and for which mainte-
nance decision could only be taken at observation time.
Papakonstantinou (2014a) and Papakonstantinou (2014b)
proposed a thorough study of maintenance planning under
imperfect information and examined a detailed POMDP
case study with a relatively large state space. However,
limitation on the maintenance resource is not explored.
Eventually, Byon (2010) proposed a POMDP case study in
which they investigated, without really saying it, a model
based on approximate sample paths (ASP). In their work,
the POMDP model is only approximated because future
(imperfect) observations are not taken into account when
computing the sample paths and the dynamic program-
ming value function, which simplifies the computations in
the infinite and continuous belief state space.

In this study, we investigate the fundamental question of
the extent to which maintenance planning problems un-
der imperfect information can be modeled and efficiently
solved by POMDPs. Through a simple case study, we
aim at 1) illustrating in practice a POMDP solving tech-
nique, the point-based value iteration (PBVI) algorithm
combined with interpolated value function; the size of
the state space is relatively modest, but the focus here
is on having a general model integrating some resource
limitations (at most one intervention can be conducted
per observation epoch, where imperfect monitoring data is
only collected at the beginning of each observation epoch),
and 2) comparing this approximate solving technique with
the approximate model proposed by Byon (2010). We
formulate the maintenance planning problem in section
2. In section 3, the PBVI algorithm is described as well
as the lower bound it provides. Eventually, we discuss the
numerical results in section 4, where our proposed method
is compared to the ASP approximation from Byon (2010).

2. MODEL DESCRIPTION

2.1 Maintenance problem

We study a single-unit system, progressively degrading
over time and subject to random failures. We suppose
that the state space S of the system is finite, with S =
{S1, S2, S3, S4, F}; S1 being the as-good-as-new state,
S4 the most degraded yet functioning state, and F the
failed state (single failure mode). The evolution of the state
of the system over time is modeled by a Markov chain.
Time is discretized (typically, one time step represents one
day) and the degradation process is modeled by random
transitions from one state s ∈ S to another s′ ∈ S
(potentially identical) between two consecutive time steps.
The transition probabilities are given by a transition
matrix, noted P . In view of common characteristics of
degradation processes in practice, we adopt the following
assumptions on the transition matrix P :

i) The state of the system cannot spontaneously im-
prove, meaning that transitions F → Si and Si → Sj
with j < i have a probability of zero.

P(F → Si) = P [F, Si] = 0, ∀Si
P(Si → Sj) = P [Si, Sj ] = 0, ∀ i > j

ii) The system can transition to failure from any func-
tioning state, but the more degraded the state, the
most likely a failure can occur at the next time step.

P(Si → F ) = P (Si, F ) > 0, ∀Si
P (Si, F ) < P (Sj , F ), ∀ i < j

When the system fails, which corresponds to a transition
Si → F , a corrective maintenance (CM) can be conducted
to replace it (the system is brought back to the as-good-as-
new state S1), with a cost noted costCM . If the system is
not replaced immediately after the failure, an opportunity
cost costOP will be incurred for each time step when the
system is left in failed state F .

As CM is typically expensive, it is possible to conduct
preventive maintenance (PM), which consists in preven-
tively replacing the system with a new one before a failure.
Such intervention also brings the system back to state S1,
at a cost costPM < costCM . Based on the knowledge of
the current state of the system, a CBM policy should then
find a tradeoff between too frequent PMs leading to high
maintenance cost and too frequent unexpected failures
leading to too many expensive CMs.

Nevertheless, considering that the decision-maker has a
perfect knowledge of the exact degradation state is a
quite strong assumption and many applications must take
into account the imperfection of a monitoring system. By
monitoring system, we refer to the set of all sensors collect-
ing physical measurements and subsequent communicative
and analytic technologies implemented to infer and track
the health condition of an industrial asset. In practice,
system health state information provided by a monitoring
system is inevitably subject to noise and modeling inac-
curacy and, therefore, is flawed. In the following work, we
suppose that the monitoring is imperfect, and we develop
a CBM strategy well adapted for this context of imperfect
information.

To complement these partial data, we add the possibility
to conduct a perfect inspection (I), with a cost costI <
costPM . When performing intervention I, the decision-
maker observes the true state of the system and, based on
the result of this inspection, may decide to conduct a PM
in the same time step (if necessary). In our maintenance
problem, perfect inspection is therefore the only way to
have access to the true degradation state of the system
with certainty.

2.2 Imperfect monitoring

For numerous reasons, it is sometimes impossible to di-
rectly access to the degradation state of a system. It can
be, for example, because the system is remote or too
difficult to inspect without shutting it down. In those
cases, the implementation of sensors may be valuable since
it provides real-time operational data at affordable costs
while the system keeps operating. It is important to note
that this remains true even if this information is only par-



tial: observing an unusual data point may not necessarily
correspond to an abnormal (e.g., degraded) state, but the
repetition of several similar measures at different times is
probably the indication of ongoing degradation.

We suppose the monitoring system has a finite set O of
possible observations, or outputs. An imperfect monitoring
system means that we do not have a deterministic rela-
tion between the observation o ∈ O and the underlying
degradation state s ∈ S; the best we can do is exploit
the stochastic dependence between o and s. We assume
that, in order to optimize our maintenance strategy, we
know the average performance of the monitoring system,
which consists in knowing P(o|s) = Q(s, o) the conditional
probability of receiving the observation o ∈ O given that
the system state is s ∈ S. The matrix Q will be called the
monitoring matrix.

In this work, we assume that failures are self-announcing,
meaning that the decision-maker has perfect knowledge
about the failed state as soon as a failure occurs (no need
for an inspection to notice a failure). This also means that
observations are not needed when the system is failed,
since this information is already known with certainty.
Consequently, the matrix Q only needs to be defined on
functioning states Si (i.e. for Q(Si, o)).

2.3 A POMDP model

Our problem typically falls in the category of POMDPs.
POMDPs are a natural extension of MDPs, where one
decision should be taken at each time step. The goal here
is to optimize the maintenance policy in order to minimize
the total discounted maintenance cost over an infinite
time horizon. In our case, the set of possible decisions
(or actions) is the following: A = {NA, I, PM, CM},
where NA (no action) is simply the situation when no
intervention is conducted on the system.

Because we optimize over an infinite time horizon, we
search for a stationary policy. However, in this context
of imperfect information, a policy cannot just map a
state s to an action a ∈ A, for the reason that we do
not have access to the true degradation state s when
taking maintenance decisions. Consequently, a policy in
this context should map our best knowledge about the
degradation state to an action a. But how do we de-
fine our best knowledge ? As our knowledge about the
system is uncertain, it can thus be described by a belief
b ∈ B = {b ∈ [0, 1]|S| :

∑
s∈S b[s] = 1}, which is nothing

more than just a probability distribution over S describing
our uncertainty about s. We note b[s] the probability that,
given the best of our knowledge, the system is in state
s. Eventually, here the best of our knowledge is all the
information the decision-maker has had access to before
taking the decision. It is basically the history of past
observations and actions since the last PM, CM or I (mo-
ment when the true state of the system was known with
certainty). In fact, as stated in Papakonstantinou (2014a),
the belief b constitutes a sufficient statistic summarizing
all the information of past observations and actions.

Each time a new observation o is acquired, the current
belief b should be updated to b′ using Bayes’ formula:

b′[s] =
Q(s, o)b[s]∑

sk∈S\{F}Q(sk, o)b[sk]
(1)

Additionally, the belief b should also take into account the
effect of random transitions between two consecutive time
steps. Let p(b) =

∑
s∈S P (s, F )b[s] be the total probability

of failure at time t + 1, conditionally to the fact that at
time t, the state of the system is distributed as b. Then,
if the unit does not fail at time t+ 1, the next belief b′ is
defined as

b′[s] =

∑
sk∈S\{F} P (sk, s)b[sk]

1− p(b)
(2)

Finally, we do not detail it here as it is quite straightfor-
ward but actions should also lead to updating the current
belief:

- NA does not change anything

- PM and CM update b to the perfect knowledge of
as-good-as-new state S1 (we allow ourselves to abuse
the notation S1 to also refer to the extreme belief
where state S1 is the true state with probability 1)

- I (not followed by a PM) should update b with the
perfect knowledge resulting from the perfect inspec-
tion

Then, such class of POMDP problem for identifying the
optimal maintenance policies can be solved by dynamic
programming, e.g., using value iteration to search for the
optimal value function. We define the value function Vπ(b)
as being the expected total discounted maintenance cost
over an infinite time horizon when applying the policy π
to a system initially in a state described by the belief b.
Our objective is to find a policy π∗ such that:

Vπ∗(b) := min
π∈Π

Vπ(b) = E
[+∞∑
t=0

γtc(st, at)
]

(3)

with at := π(bt) action taken at time t

bt : belief at time t (b0 = b)

0 < γ < 1 : discount factor

st : degradation state at time t

s0 : initial state of the system, distributed as b

c(s, a) : cost resulting from being in state s

and taking action a

2.4 Specific constraints

To model our problem, we introduce a couple of specific
constraints for maintenance planning, which usually do not
appear in classical POMDP models:

• Observation epoch. To remain generic and flexible,
we assume that data is collected from the monitoring
system every K ∈ N∗ time steps, at the beginning of
each observation epoch. In other words, observation
and decision are not necessarily synchronous.

• Limitation on the maintenance resources. In
order to pave the way for future more realistic use
cases, we explicitly limit the use of maintenance
resources. This problem might not be prominent for



single-unit systems, but we plan soon to extend this
work to multi-units systems where the maintenance
resources are limited and shared over the whole
system. Thus, here we assume that at most one
maintenance intervention could be conducted during
each observation epoch; a maintenance intervention
being either I, PM or CM.

2.5 Details on the value function

With the two additional constraints, the value function
does not uniquely depend on the current belief b, but also
on:

i) k ∈ {0, 1, 2, ..., K − 1} the current position within
the ongoing observation epoch (k = 0 being the first
time step of the observation epoch), and

ii) ξ ∈ {0, 1} indicating the number of interventions
already conducted within the ongoing observation
epoch.

For any b ∈ B, k ∈ {0, 1, ..., K − 1} and ξ ∈ {0, 1},
we define Vπ(b, k, ξ) as the expected discounted cost that
results from implementing the policy π on a system that
is initially in state s0 distributed as b, for which t = 0
corresponds to a position k within the initial observation
epoch and a situation where ξ interventions have already
been conducted. We propose the following formalism to
extend (3) and model the additional constraints previously
mentioned:

Vπ∗(b, k, ξ) := min
π∈Π

Vπ(b, k, ξ) = E
[+∞∑
t=0

γtc(st, at)
]

(4)

with at := π(bt, kt, ξt)

b0 = b

bt+1 =

{
b′(bt) if kt+1 > 0
b′(bt, ot+1) if kt+1 = 0

k0 = k

kt+1 =

{
kt + 1 if kt + 1 < K
0 otherwise.

ξ0 = ξ

ξt+1 =


ξt if at+1 = NA and kt+1 > 0
ξt + 1 if at+1 6= NA and kt+1 > 0
0 if at+1 = NA and kt+1 = 0
1 if at+1 6= NA and kt+1 = 0

ξt ≤ 1 constraint on the maintenance resource

Below are given the Bellman equations from which the
value function V is defined. Here, we use va to denote
the optimal value of taking action a at the current time
step and then acting optimally (i.e. following the optimal
policy).

Performing a PM or a CM brings the system back to
state S1:

vPM (k) = costPM + V (S1, k, 1), ∀ k (5)

vCM (k) = costCM + V (S1, k, 1), ∀ k (6)

When the system is failed and CM cannot be performed,
i.e. ξ = 1, the system remains failed and an opportunity

cost is incurred; a CM will be possible at the next time
step only if it is the start of a new observation epoch. VF (k)
will refer to the value of being in state F at the beginning
of period k within the initial observation epoch and with
no possibility of doing a CM immediately:

VF (k) = costOP + γVF (k + 1), ∀ k < K − 1 (7)

VF (K − 1) = costOP + γvCM (0) (8)

Choosing NA when k < K− 1 means that no observation
will be acquired at the next time step; the belief at the
next time step is then noted b′:

vNA(b, k, ξ = 0) = 0 + p(b)γvCM (k + 1)

+ (1− p(b))γV (b′, k + 1, 0), ∀ k < K − 1 (9)

vNA(b, k, ξ = 1) = 0 + p(b)γVF (k + 1)

+ (1− p(b))γV (b′, k + 1, 1), ∀ k < K − 1 (10)

When k = K − 1, choosing NA means that, if the unit
does not fail, an observation o ∈ O will be acquired at
the next time step; the belief at this next time step, which
should depend on the observation, is noted b′(o); moreover,
as the next time step corresponds to the start of a new
observation epoch, a CM will be possible in case of sudden
failure whatever the current value of ξ. Therefore, we have:

vNA(b, K − 1, ξ) = 0 + p(b)γvCM (0)

+ (1− p(b))γ
∑
o∈O

P(o|b′)V (b′(o), 0, 0), ∀ ξ (11)

Performing a perfect inspection I allows to choose the best
option between NA and PM while having access to the
true degradation state; the parameter ξ is not explicitly
required in vI since such inspection is only possible when
ξ = 0:

vI(b, k) = costI

+
∑
s∈S

b[s] min{vNA(s, k, 1); vPM (k)}, ∀ k (12)

Eventually, the value function V is computed as the min of
all feasible alternatives. When ξ = 1, only NA is feasible.
When ξ = 0, all actions are possible and we should choose
the best one as follows:

V (b, k, ξ = 1) = vNA(b, k, 1), ∀ k (13)

V (b, k, ξ = 0) = min{vNA(b, k, 0);

vI(b, k); vPM (k)}, ∀ k (14)

3. SOLVING TECHNIQUE BY POINT-BASED
VALUE ITERATION AND INTERPOLATED VALUE

FUNCTION

3.1 Approximation of the value function by interpolation

The problem with POMDPs is that the associated value
function is defined on an infinite and continuous space (the
belief state space B). It is a real computational challenge,
and it may explain why researchers in reliability seem to
have been reluctant to use such framework (until recently),
or use modeling approximations that bypass this issue.
Our goal with this work is also to prove that POMDP
can be a relevant framework to model CBM problems



with imperfect monitoring, and that the solving step, even
though requiring some approximations, can lead to very
good results.

In order to apply value iteration, and because it is im-
possible to compute the value function on every point of
the continuous belief state space, we need to use an ap-
proximation of V . One way to proceed, which is suggested
by Papakonstantinou (2014a), is to approximate it by
interpolation. It may not be the most effective state-of-the-
art technique used in modern POMDP solvers (Hauskrecht
(2000)), but it has the advantage of being relatively easy to
implement from scratch, with good structural properties
(cf. lower bound) and providing sufficiently precise results
for the purpose of our work. Specifically, the belief state
space B is discretized into a regular grid B̂regular, with
parameter 0 < h < 1.

B̂regular = {b ∈ B : ∀ s ∈ S, b[s] = nsh with ns ∈ N}
(15)

Value iteration is then performed on each point of the
grid. When the value of a point outside of the grid is
required in the computation, interpolation with the values
of close grid points is used as an approximation. For
example, if b /∈ B̂regular, but we have a set of points

{b1, b2, ..., bl} ⊂ B̂regular such that b can be expressed
as a convex combination of them:

b =

l∑
i=1

λibi, with 0 < λi ≤ 1 and

l∑
i=1

λi = 1 (16)

Then, we can use the following interpolation as approxi-
mation for the value function V

V (b, k, ξ) ≈
l∑
i=1

λiV (bi, k, ξ) (17)

3.2 Dynamic grid

In the proposed approach, the design of the grid is quite
crucial. If it contains too few points, the approximation
will be of poor quality, but if it contains too many
points, the computation time will increase significantly.
For constructing a suitable grid, several approaches are
possible. The most straightforward idea would be to use a
fixed and regular grid, like B̂regular, and to apply the value
iteration algorithm on all its points. However, the structure
of such grid, defined a priori, may not be very relevant
because some areas of the belief state space may require
more grid points than others in order to approximate V
with a certain precision. This is why we choose to adopt a
dynamic grid.

The dynamic grid we propose is based on the concept of
reachable belief points, developed in Kurniawati (2008). By
periodically running several simulations with the current
policy, we identify belief points b ∈ B̂regular that are most
likely to be reached by the policy, and dynamically add
them into the grid. A selection heuristic must be used
to select, among all the computed reachable belief points
(that might be numerous), which ones should be included
into the grid, but we do not detail it here.

Eventually, and in order to simplify the management of an
irregular grid, we use Delaunay triangulation to partition
the belief state space and compute interpolated values
when needed. Thereby, for a dynamic grid B̂dyn ⊂ B̂regular,
and a belief point b /∈ B̂dyn, the Delaunay triangulation is

used to identify the belief points {b1, ..., bl} ⊂ B̂dyn and
coefficients (λi)1≤i≤l such that b can be expressed as a
convex combination of the (bi)1≤i≤l, as in (16). Then, the
value function can be approximated by interpolation as in
(17).

3.3 Bounds

What is interesting with the proposed dynamic grid-based
interpolation technique is that it easily provides bounds to
estimate the quality of the approached solution.

Lower bound We know from Sondik (1971) that the value
function is concave (minimization here). As interpolation
is a convex combination of concave functions, our approxi-
mation of the value function preserves its concavity. More-
over, provided that during the value iteration algorithm,
V is initialized with a lower bound (e.g., initializing the
value function at zero for our problem), the concavity
of the value function combined with our approximation
by convex combination guarantees that each iteration of
the value iteration algorithm preserves the lower bound.
Therefore, the approximated value function obtained in
the end will provide a lower bound of the optimal value
function.

Upper bound estimation Once we have computed an
approximated value function, we propose to compute an
estimation of an upper bound by simulating the obtained
policy, since any feasible policy provides an upper bound
on the value of the problem. The only limitation is that we
cannot analytically compute the value associated with that
policy, this is why we resort to Monte-Carlo simulations.

3.4 Solving algorithm by successive value iterations &
simulations

In order to identify the reachable belief points that would
be relevant to include into the dynamic grid, we adopt a
two-phase optimization procedure. The idea is to alternate
between a phase a) of value iteration and a phase b) of
simulations. During phase a), we run the value iteration
algorithm to improve the approximation of V (b, k, ξ) on

each point b ∈ B̂dyn. Then, phase b) consists in running
several simulations, with the current policy, in order to
identify the reachable belief points not yet included into
B̂dyn. Because it would be computationally too expensive
to add them all, we need to select only a few ones. Such
selection is performed heuristically, and aims at identifying
the most promising candidates. The heuristic procedure is
not detailed here, but it basically consists in looking for
the reachable belief points that will most likely improve
the approximation of the value function, which would in
the end result in improving the lower bound.



4. NUMERICAL RESULTS

4.1 Case study

Our case study is a rather simple maintenance problem,
but we think it is a good opportunity to illustrate the gain
offered by advanced PBVI solving techniques for POMDPs
compared to the approximate model proposed by Byon
(2010). The numerical case study is very much inspired
from the magnitudes of order found in Yildirim (2017),
from the wind farms industry.

Table 1. Cost parameters

costCM costPM costI costOP

20 ke 5 ke 1 ke 1.9 ke/ failed time step

The transition matrix P is defined as follows:
0.968 0.03 0 0 0.002

0 0.92 0.06 0 0.02
0 0 0.91 0.02 0.07
0 0 0 0.87 0.13
0 0 0 0 1


Finally, we study two imperfect monitoring systems, de-
fined by their monitoring matrix Q. It enables us to
highlight the fact that the good performance and prop-
erties remain valid for different kinds of condition moni-
toring quality. As the contribution of this paper is mostly
methodological, the transition and monitoring matrices
are not derived from a specific real-world use case, but
serve the purpose of illustrating the interest of the pro-
posed framework and methods.

• Low monitoring performance

Q1 =

 0.8 0.13 0.06 0.01
0.17 0.6 0.2 0.03
0.07 0.21 0.62 0.1
0.01 0.03 0.2 0.76


• Good monitoring performance

Q2 =

0.925 0.05 0.022 0.003
0.062 0.85 0.075 0.13
0.025 0.08 0.858 0.037
0.002 0.013 0.075 0.91


For our numerical use case, we use a discount equivalent
of 20% per year, which, if we consider that one time step
represents one day, leads us to define γ ≈ 0.99939.

4.2 Approximate sample paths (ASP) model

Through this work, we want to analyze the performance of
the approximate model (ASP) proposed by Byon (2010).
To simplify the computation, the authors proposed to
approximate the Bellman equation: value function V is
expressed as if no monitoring were to be performed in the
future. Consequently, the future evolution of the belief b
is only driven by maintenance decisions and the transition
matrix P ; the computation of the value iteration algorithm
is then much easier since the value function should only
be evaluated along some specific sample paths. Said dif-
ferently, this ASP model is an approximate model in the
sense that when computing the policy, the expected cost
resulting from each decision does not take into account

future data acquisitions via the monitoring system. Nev-
ertheless, the information collected by imperfect condition
monitoring is still partially taken into account in the sim-
ulation procedure, where the current belief on the state of
the system is periodically updated.

4.3 Comparison of the two approaches

Motivation Although the proposed approach is very
much inspired from Kurniawati (2008) and the SARSOP
algorithm, it cannot be really considered state-of-the-art,
as we implemented a slightly simpler version. However, we
think the comparison with the ASP model is of interest
because it illustrates the difficult choice researchers and
practitioners often have to make between an approximate
model with exact solving and an exact model with ap-
proximate solving. If our PBVI algorithm were to outper-
form the ASP model, it would be even more true for the
SARSOP algorithm, and such work would then contribute
to illustrate the efficiency of nowadays state-of-the-art
POMDP solvers compared to approximate models such
as ASP.

Method Both approaches are evaluated on different
parameters scenarios and their performances are compared
via Monte-Carlo simulations. Because we are optimizing a
total discounted cost over infinite time horizon, we need
to simulate the maintenance policies over a sufficiently
long time horizon. We choose to run each simulation
on 15 000 time steps, which roughly corresponds to 40
years (1 time step = 1 day). It should be noted that
both methods are not comparable in terms of simulation
time. For that reason, we were able to perform 120 000
simulation samples for each scenario with PBVI, whereas
only 2 000 simulation samples (approximately) could be
computed in the same amount of time for the ASP method.
Thus, as the number of simulation samples may differ, we
computed the 95% asymptotic confidence interval in order
to compare the results.

Fig. 1. Average total cost vs. costI : PBVI model

Sensitivity to the cost of inspection costI From Fig. 1
and 2, we can observe two things. First, it was expected
but the simulation confirms it, the cheaper the inspection
cost and the lower the average total cost. It can be
easily understood because with cheaper inspections, it



Fig. 2. Average total cost vs. costI : ASP model

becomes profitable to conduct more inspections, providing
more accurate knowledge about the system condition, and
leading to more effective maintenance decisions. Second,
we observe that PBVI has a much more regular sensitivity
to costI , whereas this total cost is not even monotonic
for the ASP model. This is due to a better modeling of
future monitoring observations in the value function via
PBVI, leading to more accurate maintenance decisions.
Said differently, for cheap values of costI , the ASP model
tends to over-schedule inspections because it is myopic to
future data acquisitions.

Table 2. Sensitivity to costI (monitoring Q1)

costI (ke) 0.1 0.5 0.8 1 1.5 3

PBVI - average

total cost (ke)
365.1 410.4 427.5 438.6 461.4 466.2

95% asympt. CI ± 0.3 ± 0.3 ± 0.3 ± 0.3 ± 0.3 ± 0.3

ASP - average

total cost (ke)
366.7 428.2 428.2 441.5 467.9 486.2

95% asympt. CI ± 2.0 ± 2.0 ± 1.7 ± 1.8 ± 2.1 ± 2.3

Relative gap +0.4% +4.3% +0.2% +0.7% +1.4% +4.3%

Table 3. Sensitivity to costI (monitoring Q2)

costI (ke) 0.1 0.5 0.8 1 1.5 3

PBVI - average

total cost (ke)
359.1 391.6 405.1 410.9 413.0 413.1

95% asympt. CI ± 0.2 ± 0.3 ± 0.3 ± 0.3 ± 0.3 ± 0.3

ASP - average

total cost (ke)
361.9 425.0 405.9 411.1 416.9 419.1

95% asympt. CI ± 2.0 ± 2.0 ± 1.7 ± 1.8 ± 2.1 ± 2.2

Relative gap +0.8% +8.5% +0.2% +0.0% +0.9% +1.4%

With Tables 2 and 3, we can notice that PBVI system-
atically outperforms ASP, but with a varying gap. When
looking at the sensitivity to the cost of inspection, a thresh-
old effect around costI = 0.8ke seems to have a strong
impact on the performance of the ASP method. This is a
direct consequence of the sub-optimality of that approach,
which ignores future monitoring data when scheduling
maintenance interventions, and in particular inspections.

Sensitivity to the observation epoch K When varying the
observation epoch, it can be noted that PBVI produces,
once again, a much more regular curve (Fig. 3 vs. Fig. 4).
There seems to be a threshold effect around K = 5 (Fig.
4) in the ASP model, which can be explained by the sub-
optimality of such model in a context of small observation

Fig. 3. Average total cost vs. K: PBVI model

Fig. 4. Average total cost vs. K: ASP model

epoch. In particular, ASP will tend to even more over-
schedule inspections when the monitoring is good, which
is observed in curve Q2 of Fig. 4. This is furthermore
confirmed when looking at Tables 4 and 5, where it can be
observed that the gap between the two methods increases
both with the monitoring quality and small values of K.

Table 4. Sensitivity to K (monitoring Q1)

observation

epoch K
3 5 8 10 20

PBVI - average

total cost (ke)
392.6 415.5 430.1 438.6 492.0

95% asympt. CI ± 0.3 ± 0.3 ± 0.3 ± 0.3 ± 0.3

ASP - average

total cost (ke)
403.6 428.2 431.6 441.5 492.6

95% asympt. CI ± 2.7 ± 2.7 ± 2.1 ± 1.8 ± 2.3

Relative gap +2.8% +3.1% +0.3% +0.7% +0.1%

Table 5. Sensitivity to K (monitoring Q2)

observation

epoch K
3 5 8 10 20

PBVI - average

total cost (ke)
354.6 376.6 402.6 410.9 484.6

95% asympt. CI ± 0.2 ± 0.3 ± 0.3 ± 0.3 ± 0.3

ASP - average

total cost (ke)
400.9 395.8 405.7 411.1 486.6

95% asympt. CI ± 2.5 ± 2.6 ± 2.0 ± 1.8 ± 2.3

Relative gap +13.1% +5.1% +0.8% +0.0% +0.4%



4.4 Satisfying precision given by bounds

The advantage of our proposed PBVI method compared to
ASP is that it provides a lower bound (LB). Consequently,
in addition with the upper bound (UB) estimated from
Monte-Carlo simulations, the PBVI method can provide
an estimation of the gap between the current solution and
the optimal solution. Fig. 5 and 6 show the relative gap
between the LB and UB estimation obtained for the two
sensitivity analysis. In all the tested parameters scenarios,
the proposed method has a very good performance, pro-
viding a policy that is associated to an expected cost at
most 0.6% more expensive than the expected cost of the
optimal policy (and on average, this relative gap is about
+0.1%).

Fig. 5. Relative gap between LB and UB estimation (with
95% asympt. CI): sensitivity to costI

Fig. 6. Relative gap between LB and UB estimation (with
95% asympt. CI): sensitivity to K

5. CONCLUSION

This work applied POMDP to a very classical mainte-
nance planning problem, showing that it constitutes a
quite efficient framework to deal with imperfect moni-
toring information. Moreover, we successfully extended it
to include additional constraints limiting the frequency

of observation or restraining the availability of mainte-
nance resources. The proposed point-based value iteration
algorithm coupled with approximate interpolated value
functions gave very good results. One of the advantages
of the proposed method is that it provides a lower bound
to estimate the quality of the results. Eventually, the com-
parison with the approximate sample paths (ASP) model
proposed by Byon (2010) showed that, in a large variety
of parameters scenarios, the use of that approximation is
clearly sub-optimal and the PBVI algorithm can provide
better results with guarantees of performance. As a conclu-
sion, we estimate that efficient POMDP solving algorithms
exist now for single-item systems, and aligned with the
suggestions from de Jonge (2020), we suggest to extend
the proposed work to optimize condition-based policies for
multi-items systems imperfectly monitored.
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