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Highlights

Adaptation of a quantitative trait to a changing environment: new
analytical insights on the asexual and infinitesimal sexual models.

J. Garnier, O. Cotto, T. Bourgeron, E. Bouin, T. Lepoutre, O. Ronce,
V. Calvez

• Adaptation to a changing environment may generate non Normal phe-
notypic distribution.

• The phenotypic variance at equilibrium truly depends on reproduction
model;

• Selection shapes mean fitness only in sexual infinitesimal model;

• Weak selection away from the optimum leads to evolutionary tipping
points with fast changes;

• Frequent mutations with large effects reduce maladaptation and im-
prove fitness.
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Abstract

Predicting the adaptation of populations to a changing environment is crucial
to assess the impact of human activities on biodiversity. Many theoretical
studies have tackled this issue by modeling the evolution of quantitative
traits subject to stabilizing selection around an optimal phenotype, whose
value is shifted continuously through time. In this context, the population
fate results from the equilibrium distribution of the trait, relative to the
moving optimum. Such a distribution may vary with the shape of selection,
the system of reproduction, the number of loci, the mutation kernel or their
interactions. Here, we develop a methodology that provides quantitative
measures of population maladaptation and potential of survival directly from
the entire profile of the phenotypic distribution, without any a priori on its
shape. We investigate two different systems of reproduction (asexual and
infinitesimal sexual models of inheritance), with various forms of selection.
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In particular, we recover that fitness functions such that selection weakens
away from the optimum lead to evolutionary tipping points, with an abrupt
collapse of the population when the speed of environmental change is too
high. Our unified framework allows deciphering the mechanisms that lead
to this phenomenon. More generally, it allows discussing similarities and
discrepancies between the two systems of reproduction, which are ultimately
explained by different constraints on the evolution of the phenotypic variance.
We demonstrate that the mean fitness in the population crucially depends
on the shape of the selection function in the infinitesimal sexual model, in
contrast with the asexual model. In the asexual model, we also investigate the
effect of the mutation kernel and we show that kernels with higher kurtosis
tend to reduce maladaptation and improve fitness, especially in fast changing
environments.

Keywords: environmental changes, quantitative trait, maladaptation,
Infinitesimal model, Hamilton-Jacobi equations
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1. Introduction

Rapid environmental changes resulting from human activities have moti-
vated the development of a theory to understand and predict the correspond-
ing response of populations. Efforts have specially been focused on identi-
fying conditions that allow populations to adapt and survive in changing
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environments (e.g. Pease et al., 1989; Lynch et al., 1991; Lynch and Lande,
1993; Burger and Lynch, 1995, for pioneering work). To this aim, most the-
oretical studies have modeled the evolution of polygenic quantitative traits
subject to stabilizing selection around some optimal phenotype, whose value
is shifted continuously through time (see Kopp and Matuszewski, 2014; Wal-
ters et al., 2012; Alexander et al., 2014). A major prediction of these early
models is that when the optimal phenotype changes linearly with time, it
will be tracked by the mean phenotype in the population with a lag that
eventually stabilizes over time. This evolutionary lag, which quantifies the
maladaptation induced by the environmental change, is predicted to depend
on the rate of the change, on the phenotypic variance and on the strength
of stabilizing selection on the trait. The maladaptation of the population
due to the environmental change decreases the mean fitness of the popula-
tion, which is commonly defined as the lag load or evolutionary load (Lynch
and Lande, 1993; Lande and Shannon, 1996). Thus, above a critical rate of
change of the optimal phenotype with time, the evolutionary lag is so large
that the lag-load of the population will rise above the value that allows its
persistence and the population will be doomed to extinction.

These predictions have typically been derived under the assumptions of (i)
a particular form of selection, (ii) a constant genetic variance for the evolving
trait, (iii) a Gaussian distribution of phenotypes and breeding values in the
population. The selection function, describing how the Malthusian fitness
declines away from the optimum, has typically a quadratic shape in many
models (Bürger, 1999; Kopp and Matuszewski, 2014). However, the shape
of selection functions is difficult to estimate and some studies suggest that
it can strongly deviate from a quadratic shape, for example, in the case
of phenological traits involved in climate adaptation (Gauzere et al., 2020).
Although a quadratic shape may be an appropriate approximation for the
fitness function close to its optimum, it may not be the case for strongly
maladapted populations in a changing environment. Recently, (Osmond and
Klausmeier, 2017; Klausmeier et al., 2020) have shown that “evolutionary
tipping points” occur when the strength of selection weakens away from the
optimum. In this situation, the population abruptly collapses when the speed
of environmental change is too large. In this paper, we aim to investigate,
in a general setting, the effects of the shape of selection functions on the
adaptation of the population under environmental changes.

The genetic variance also plays a key role in the adaptation to chang-
ing environments and the determination of the critical rate of change. In
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many quantitative genetic models, this variance is assumed to be constant.
Although it is approximately true on a short time scale, over a longer time
scale the variance in the population is also subject to evolutionary change.
More generally, obtaining mathematical predictions for the dynamics and
the equilibrium value of the variance remains a notoriously difficult issue
for many theoretical population genetics models (Barton and Turelli, 1989;
Bürger, 2000; Barton and Keightley, 2002; Johnson and Barton, 2005; Hill,
2010). How the genetic variance evolves in a changing environment has there-
fore been explored mostly through simulations (Jones et al., 2012; Bürger,
1999; Waxman and Peck, 1999). In our paper, we overcome this problem by
modeling the evolution of the entire phenotype distribution, This allows gain-
ing some insights on the effect of maladaptation, induced by environmental
changes, on the evolution of genetic variance.

Many theoretical works assumed that the phenotype distribution is Gaus-
sian (Lynch et al., 1991). In the absence of environmental change, there are
indeed many circumstances where the phenotypic distribution in the pop-
ulation is well captured by Gaussian distributions in quantitative genetics
models. For example, in asexual populations, the distribution of a polygenic
trait is Gaussian at mutation-selection equilibrium, providing that mutation
effects are weak and selection is quadratic (Kimura, 1965; Lande, 1975;
Fleming, 1979). In the case of sexual reproduction, similar outcomes are
expected with the celebrated Fisher infinitesimal model of inheritance in-
troduced by Fisher (1918). In this model, quantitative traits are under the
control of many additive loci and each allele has a relatively small contribu-
tion on the character (Fisher, 1918). Within this framework, offspring are
normally distributed within families around the mean of the two parental
trait values, with fixed variance (Turelli and Barton, 1994; Turelli, 2017;
Barton et al., 2017, and references therein). As a result, the phenotype
distribution of the full population is well approximated by a Gaussian dis-
tribution under various assumptions on the selection function. Moreover,
the usual Gaussian approximation of phenotypic trait distribution provides
remarkably good approximation of the mean and the variance, even if dis-
ruptive selection generates strong deviations from normality (see Turelli and
Barton 1994 under truncation selection, or see (Raoul, 2021) and (Calvez
et al., 2019) for a wider class of selection functions). In the process of adap-
tation to environmental change, since the mean phenotype is lagging behind
the optimum, selection however may induce a skew in the distribution (Jones
et al., 2012). The distribution of the mutational effects can have a strong
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influence on the distribution as well, in particular when the evolutionary lag
is large (Waxman and Peck, 1999). The Gaussian approximation of the
phenotypic distribution should therefore naturally be questioned for both
models of inheritance (asexual and infinitesimal sexual).

The main objective of this work is to derive signatures of maladaptation
at equilibrium, e.g. the mean phenotype relative to the optimal pheno-
type, which allows us to quantify the evolutionary lag, the mean fitness and
the phenotypic variance, depending on some general shape of selection and
various features of trait inheritance. Those three components are linked by
two generic identities describing the demographic equilibrium and the phe-
notypic equilibrium. Would the phenotypic variance be known, it would be
possible to identify both the evolutionary lag and the mean fitness (Kopp
and Matuszewski, 2014). In the general case, a third relationship is, how-
ever, needed. To this aim, we shall compute accurate approximations of
the phenotypic distribution. Several methodological alternatives have been
developed to unravel the phenotypic distribution, without any a priori on its
shape. Previous methods attempted to derive the equations describing the
dynamics of the mean, the variance and the higher moments of the distribu-
tion (Lande, 1975; Barton and Turelli, 1987; Turelli and Barton, 1990; Frank
and Slatkin, 1990). Then, in his pioneering work, Burger (1991) derived re-
lationships between the cumulants of the distribution, which are functions
of the moments. However this system of equations is not closed, as the cu-
mulants influence each other in cascade. More recently, Martin and Roques
(2016) analyzed a large class of integro-differential models where the trait
coincides with the fitness, through the partial differential equation (PDE)
satisfied by the cumulant generating function (CGF). They applied their ap-
proach to the adaptation of asexual populations facing environmental change,
using the Fisher Geometric Model for selection and specific assumptions on
trait inheritance (diffusion approximation for the mutational effects) (Roques
et al., 2020). However, the extension of their method to different models of se-
lection or trait inheritance (general mutational kernel) seems difficult mainly
because it relies on specific algebraic identities to reduce the complexity of
the problem.

Here, we use deterministic quantitative genetics models based on integro-
differential equations to handle various shapes of stabilizing selection, and
trait inheritance mechanisms. While we deal with a large class of thin-tailed
mutational kernels in the asexual model, we restrict to the Fisher infinitesimal
model as a mechanism of trait inheritance in sexually reproducing popula-

5



tions. We assume that the environment is changing linearly with time, as
in the classical studies reviewed in (Kopp and Matuszewski, 2014). In order
to provide quantitative results, we assume that little variance in fitness is
generated at each reproduction event, through either mutation or recombi-
nation. It allows some flexibility about the trait inheritance process and the
shape of the selection function. This assumption, here referred to as the
small variance regime, enables using a mathematical framework developed
in the past two decades in order to derive analytical features in models of
quantitative genetics in asexual populations, mostly in a stationary pheno-
typic environment (Diekmann et al., 2005; Perthame and Barles, 2008; Barles
et al., 2009; Lorz et al., 2011; Mirrahimi and Roquejoffre, 2016; Mirrahimi,
2017; Calvez and Lam, 2020), but see (Iglesias and Mirrahimi, 2021) in the
case of a changing environment. This asymptotic methodology was first in-
troduced by Diekmann et al. (2005) and Perthame (2007) in the context
of evolutionary biology as an alternative formulation of adaptive dynamics,
when the phenotypical changes are supposed to be small, but relatively fre-
quent. Recently, this methodology has been also applied to the infinitesimal
model for sexual reproduction in a stationary fitness landscape (Calvez et al.,
2019; Patout, 2020). In the present paper, we apply this methodology to the
case of a moving optimum.

From a mathematical perspective, the regime of small variance is analo-
gous to some asymptotic analysis performed in mathematical physics, such
as the approximation of geometrical optics for the wave equation at high fre-
quency (Evans, 2010; Rauch, 2012), semi–classical analysis for the Schrödinger
equation in quantummechanics (Dimassi and Sjostrand, 1999; Zworski, 2012),
and also the large deviation principle for stochastic processes (Fleming, 1977;
Evans and Ishii, 1985; Freidlin and Wentzell, 1998; Feng and Kurtz, 2006).
A common feature of these seemingly different asymptotic theories is to focus
on the logarithm of the unknown function, and expand it with respect to a
small parameter. We follow this route in the present work, by expanding
the logarithm of the phenotypic density with respect to the relatively small
variance.

Conversely to previous methods focusing on the moments of the pheno-
typic distribution, our approach focuses on the entire phenotypic distribution
and it provides an accurate approximation of the phenotypic distribution
even if it deviates significantly from the Gaussian shape. As a result, our
method allows deriving analytical formulas for biologically relevant quanti-
ties, such as the relative mean phenotype and the evolutionary lag measuring
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maladaptation, the phenotypic variance within the population, the lag-load
depressing the population mean fitness associated with critical rates of envi-
ronmental changes, without solving the complete profile of the distribution.
We are consequently able to answer the following questions

• What is the effect of the shape of selection on the adaptation of a
population to a gradually changing environment?

• How does the distribution of mutational effects affect the adaptation
dynamics?

• Does the choice of a particular reproduction model influence predictions
about the dynamics of adaptation of a population?

2. Models and methodology

First, we describe in detail our general model of mutation-selection under
changing environment with two different reproduction models (asexual and
infinitesimal sexual) (Section 2.1). Then, we introduce the rescaled model
including the relative variance parameter ε2 (Section 2.2) and we describe
our methodology to investigate the regime of small variance (see Figure 1 for
a sketch of the methodology). It is based on the asymptotic analysis with
respect to this small parameter (Section 2.3). In Section 3, we provide, in
the regime of small variance, analytical formula for the different characteris-
tic quantities of the phenotypic distribution at equilibrium — mean fitness,
mean relative phenotype and phenotypic variance — for the two different
reproduction models: asexual model (Section 3.1) and infinitesimal sexual
model (Section 3.2). After scaling back our results in the original units, we
can compare the outcomes for the two systems of reproduction, and discuss
the effect of a changing environment on the lag (Section 4.1), the mean fit-
ness (Section 4.2) and the phenotypic variance (Section 4.3), respectively.
Furthermore, we discuss the conditions for persistence of the population de-
pending on the speed of the changing environment (Section 4.4) and we com-
pare our approximation with numerical simulations of the whole distribution
of the population (Section 4.5).

2.1. The general model under changing environment

We consider a population reproducing in continuous time, subject to se-
lection on the mortality rate, and to density-dependent competition. The
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Equilibrium distribution and mean fitness (λ, F)
λ F(z) − c∂zF(z) = βB(F)(z) − µ(z)F(z), z ∈ R

Changing environment Reproduction Selection

Small variance parameter – ε

ε2 := Vdiv
Vsel

Ratio between input of phenotypic variance Vdiv and stabilizing selection variance Vsel

Distribution transformation – Rescaling U

Asexual Reproduction

Standard deviation:

∼

p

"

Phenotypical trait

F(z)

U(z) = �" logF(z)

Sexual Infinitesimal Reproduction

Standard deviation:

∼ "

Phenotypical trait

F(z)

U(z) = −"
2 logF(z)

Small variance asymptotics – ε → 0

U(z) ≈ U0(z) U(z) ≈ U0(z) + ε2U1(z)

λ0 = mean fitness

z∗
0 = mean relative phenotype

|z∗
0| = evolutionary lag

var(F) = phenotypic variance.

Macroscopic properties

Global description
Full distribution

Figure 1: Schematic description of our methodology. To describe the equilibrium F we
need the following steps: (1) Identify the scaling parameter ε and rescale the equation
satisfied by the distribution F ; (2) Transform the distribution F into U. The transformed
distribution U is the logarithmic of the density F , normalized by the ratio ε in the asexual
reproduction case and by ε2 in the infinitesimal sexual reproduction case; (3) Identify the
limit equation for U as ε → 0 (orange boxes) and deduce macroscopic properties (green
box) such as the mean fitness λ0, the mean relative phenotype z∗0 in the population, the
evolutionary lag |z∗0 | or the phenotypic variance at equilibrium Var(F ).

population is structured by a one–dimensional phenotypic trait, denoted by
x ∈ R. The density of individuals with trait x is f(t,x) at time t > 0. For
the sake of simplicity, the birth rate is assumed to be constant, set to value
β > 0. Selection acts through the intrinsic mortality rate µ(t,x), by means
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of stabilizing selection around some optimal value. In order to capture the
dynamics of the population under a gradual environmental change, we as-
sume that the optimal trait is shifted at a constant speed c > 0. We define
the relative phenotype as the difference between the phenotypic value x and
the optimal value at time t: z = x − ct. It quantifies the maladaptation of
an individual of trait x in the changing environment. The intrinsic mortality
rate µ is decomposed as follows

µ(z) = µ0 +m(z) , (1)

where µ0 is the basal mortality rate at the optimum. The function m(z) =
m(x− ct) is the increment of mortality due to maladaptation and its shape
encodes the effect of selection. We assume that m ⩾ 0 attains its unique
minimum value at 0 where m(0) = 0, and it is symmetrically increasing: m
is decreasing on (−∞, 0) and increasing on (0,∞). We further assume that
β > µ0, which ensures a net growth of individuals at the optimal trait.

The dynamics of the density f(t,x) is given by the following equation:

∂tf(t,x) = βB(f(t, ·))(x)−
(
µ(x− ct) + κρ(t)

)
f(t,x) , (2)

where the term ρ(t) =
∫
R f(t,x

′)dx′ corresponds to the size of the popula-
tion, and κ > 0 is the strength of competition within the population. This
nonlinear term introduces density–dependent mortality in the model, as it
reduces the population growth rate at high density. Integrating the model (2)
over the x variable, the population size ρ(t) satisfies the following logistic
equation

∂tρ(t) =
(
β − µ(t)− κρ(t)

)
ρ(t) ,

with µ(t) =

∫
R
µ(x− ct)

f(t,x)∫
R
f(t,x′)dx′

dx. (3)

The operator B describes how new individuals with phenotype x are gen-
erated depending on the whole phenotypic density. For simplicity, we assume
no environmental effects on the expression of the phenotype, and phenotypic
values equal to breeding values. We consider the two following choices for
the reproduction operator B.
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Asexual model of reproduction with mutations. We first consider the case of
asexual reproduction where the phenotype of an offspring x is drawn ran-
domly around the phenotype of its single parent x′. We restrict to the case
where the changes depend only on the trait difference x′−x, described by the
kernel Kdiv. The reproduction operator has then the following expression:

B(f)(x) =
∫
R
Kdiv(x− x′)f(x′) dx′ ,

where Kdiv(x− x′) =
1

V
1/2
div

K

(
x− x′

V
1/2
div

)
(4)

where K is a symmetrical probability density function with unit variance.
Hence, Vdiv is the variance of the phenotypic changes at each reproduction
event. We assume thatK decays faster than some exponential function. This
is usually called a thin–tailed kernel. This corresponds to the scenario where
the mutations with large effect on phenotypic traits are rare.

The extremal case corresponding to accumulation of infinitesimal changes
is referred to as the diffusion approximation. This translates into the follow-
ing formula

B(f)(x) = f(x) +
Vdiv

2
∂2
xf(x) , (5)

In this case, the shape of the kernel does not matter and only the variance
remains.

The general form (4) encompasses the decomposition of the kernel Kdiv

into Kdiv = (1 − η)δ0 + ηKmut, where η ∈ [0, 1] is the probability of a
mutation, δ0 is the Dirac mass at 0 and Kmut is the probability distribution
of mutational effects. In such case, Vdiv = ηVmut, where Vmut is the variance
associated with the mutational effects.

Infinitesimal model of sexual reproduction. Secondly, we consider the case
where the phenotype of the offspring x is drawn randomly around the mean
trait of its parents (x1,x2), following a Gaussian distribution GLE. This is
known as the Fisher infinitesimal model (Fisher, 1918; Bulmer, 1980; Turelli
and Barton, 1994; Tufto, 2000; Barton et al., 2017). The reproduction oper-
ator has then the following expression:

B(f)(x) =
∫∫

R2

GLE

(
x− x1 + x2

2

)
f(x1)

(
f(x2)∫

R f(x
′
2) dx

′
2

)
dx1dx2 , (6)
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where GLE denotes the centered Gaussian distribution with variance VLE/2.
Here the parameter VLE corresponds to the genetic variance at linkage equi-
librium in the absence of selection (Bulmer, 1971; Lange, 1978; Bulmer, 1974;
Santiago, 1998; Turelli and Barton, 1994). For comparison with the asexual
case we shall use the same notation Vdiv for VLE, as it scales the input
of phenotypic variance in the population for each reproduction event (see
discussion below).

Input of phenotypic variance through reproduction. In the absence of selec-
tion (m(z) = 0) and random drift, the input of phenotypic variance per
reproduction event is scaled in both model by Vdiv. Indeed, we can show us-
ing equation (2) that, in this situation, the dynamics of phenotypic variance
are

∂tVar(f)(t) = β

{
Vdiv (asexual)
1

2
(Vdiv − Var(f)) (infinitesimal sexual)

(7)

where the variance Var(f) and the mean trait z are defined by

Var(f)(t) =

∫
R

(
z− z(t)

)2 f(t, z)∫
R f(t, z

′)dz′
dz and z(t) =

∫
R
z

f(t, z)∫
R f(t, z

′)dz′
dz

Even if the variance in the offspring distribution in the infinitesimal sexual
model and in the asexual model are conceptually different, they both scale
with the input of phenotypic variance per reproduction event, that is why
we use the same notation Vdiv.

However, the impact of diversity depends on the model of reproduction.
In the asexual case, the variance of the phenotypic distribution increases
indefinitely in the absence of selection (7). Thus, the asexual model does not
impose any strong constraint on the variance of the phenotypic distribution
of the population. Conversely, in the absence of selection, the infinitesimal
sexual model generates a finite phenotypic variance at equilibrium, equal to
Vdiv. Thus the dynamics of the phenotypic variance are more constrained in
the infinitesimal model than in the asexual model.

Equilibrium in a changing environment. In this paper, we focus on the asymp-
totic behavior of the model, studying whether the population will persist or
go extinct in the long term. In order to mathematically address the problem,
we seek special solutions of the form f(t,x) = F(x − ct). These solutions
correspond to a situation where the phenotypic distribution F has reached
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an equilibrium, which is shifted at the same speed c as the environmental
change. This distribution of relative phenotype z := x − ct quantifies
maladaptation within the population. One can observe from equation (2)
that the trivial solution, which corresponds to F = 0, always exists. Our
aim is first to decipher when non trivial equilibrium F exists. Secondly, we
characterize in detail the distribution F when it exists.

Using the property of invariance by translation verified by the reproduc-
tion operator B, we obtain that a non trivial, non-negative, equilibrium F
solves the following eigenvalue problem,

λF(z)− c∂zF(z) = βB(F)(z)− µ(z)F(z) (8)

where the eigenvalue λ is expected to be positive λ > 0, since it must satisfy

λ = κρ = κ

∫
R
F(z′)dz′. (9)

The transport term −c∂zF corresponds to the effect of the moving optimum
on the phenotypic distribution F at equilibrium. Moreover, since F is the
density at equilibrium, the population size ρ is an equilibrium of (3), which
provides the following relationship

λ =

∫
R
(β − µ(z))

F(z)∫
R F(z

′)dz′
dz.

The eigenvalue λ can thus be interpreted as a measure of the mean fitness
of the population, or its mean intrinsic rate of increase, where β − µ(z) is
the contribution of an individual with relative phenotype z to the growth
rate of the population at low density. Thus, an analytical description of λ
will provide a formula for the critical speed of environmental change above
which extinction is predicted, corresponding to the case where the eigenvalue
λ is negative. The value λ also informs us on the size of the population at
equilibrium in presence of a changing environment, ρ (see equation (9)).

Our aim is to describe accurately the couple (λ,F) in presence of a mov-
ing optimum with constant speed c in both reproduction scenarios. To do
so, we compute formal asymptotics of (λ,F) at a weak selection or slow evo-
lution limit when little variance in fitness is generated by mutation or sexual
reproduction per generation. Note that the shape of F is not prescribed
a priori and the methodology presented here can handle significantly large
deviations from Gaussian distributions.
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Noteworthy, the equation (8) with asexual reproduction operators defined
by (4) or (5) admits solutions under suitable conditions. Cloez and Gabriel
(2020) proved that solutions exist for any speed c if the mortality function
µ goes to ∞ when |z| → ∞. Furthermore, Coville and Hamel (2019) proved
that solutions also exist for more general mortality functions µ as soon as the
speed c remains below a critical threshold. For the infinitesimal operator (6),
Calvez et al. (2019) proved the existence of solutions without changing en-
vironment and in the special regime of small variance described below. The
existence of a pair (λ,F) for positive speed c will be the topic of a future
mathematical paper.

2.2. Adimensionalization

In order to compute asymptotics of the solution of our model, we first
need to rescale the model with dimensionless parameters (see Table 1 for the
relationship between original variables and their values after rescaling and
Supplementary Information SI B for mathematical details).

Time scale. We introduce the relative time coordinate t = βt, to scale the
model according to the generation time. Hence, the dimensionless fecun-
dity rate equals one, and the increment of mortality is m = m/β, which
corresponds to the selection function. The effect of stabilizing selection is
captured by Vsel, which is inversely proportional to the strength of selection
around the optimum:

1

Vsel

=
1

β
m′′(0) > 0 . (10)

Note that Vsel scales as a variance parameter.

Phenotypic scale. All measures depending on phenotypic units are expressed

in unit V
1/2
sel , and we change variables accordingly, z = z/

(
V

1/2
sel

)
. As such,

the strength of selection in the rescaled system is equal to unity:

m′′(0) = Vsel
m′′(0)

β
= 1 . (11)

Phenotypic variance parameter. Similarly, in both asexual and infinitesimal
sexual models, the dimensionless parameter describing how much phenotypic

variance is introduced in the population at each generation is ε2 =
Vdiv

Vsel

.

Accordingly, we have the following expression in dimensionless variables,
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Parameters Description Rescaled parameters

z relative phenotype z =
z

V
1/2
sel

F (z) phenotypic density F (z) = F (z)

β fecundity rate 1

m(z) increment of mortality rate m(z) =
m(z)

β
(selection function)

λ mean fitness λ = (λ+ µ0)/β

c speed of environmental change c =


c

βV
1/2
div

(asexual)

cV
1/2
sel

βVdiv

(infinitesimal sexual)

Vsel variance of stabilizing selection 1

Vdiv input of phenotypic variance ε2 =
Vdiv

Vsel

≪ 1

Table 1: Biological parameters and their formula after rescaling for both the asexual and
infinitesimal sexual model. Our methodology relies on the assumption that the dimen-
sionless parameter ε is small, ε ≪ 1, while the other rescaled parameters are of order 1.
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Asexual reproduction

B(F )(z) =
1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′ (12)

Infinitesimal sexual reproduction

B(F )(z) =

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 (13)

Speed of environmental change. The rescaling of the speed of environmental
change differs in the asexual and infinitesimal sexual versions of our model.
In both models, the ability to evolve fast enough to track the moving op-
timum depends critically on the input of phenotypic variation fueling evo-
lutionary change. Since this input is of a different nature between the
models, we have to adjust the scale of the speed differently in each context
to observe non-trivial behaviours. We define accordingly the speed of change

c = c/
(
βV

1/2
div

)
in the asexual case, but c = cV

1/2
sel /

(
βVdiv

)
in the case of

the infinitesimal model (see Table 1).
As a consequence, the transport term −c∂zF which carries the effect of

environmental change in (8), inherits respectively a factor ε (asexual) and ε2

(infinitesimal), see SI SI B.3. A mismatch in this expression (e.g. involving
any other power of ε) would result in a severe unbalance between the various
contributions in the models, leading either to a dramatic collapse of the
population if the effective speed is too large, or to no significant effect of the
change if the effective speed is too small.

In addition, the discrepancy between these scaling formula reveals a
strong difference on the effect of the selection between the models. Indeed,
the strength of selection is involved in the infinitesimal sexual model, whereas
it does not appear in the asexual model. Our analysis is aimed to enlighten
and explain those differences (see section 4).

Rescaled model. Using these rescaled variables, we obtain the following equa-
tions:

Asexual reproduction

λF (z)− εc∂zF (z) +m(z)F (z) =
1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′ . (14)
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Infinitesimal sexual reproduction

λF (z)− ε2c∂zF (z) +m(z)F (z) =

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 . (15)

2.3. Small variance asymptotics

In the following, we further assume that the parameter ε is small, which
means that little variance in fitness is introduced in the population through
either mutation or recombination during reproduction. This is what we call
the small variance regime. This situation may happen either when the input
of phenotypic variation is small or because stabilizing selection is weak.

In the asexual model, we also assume that mutations are reasonably fre-
quent, that is the probability of mutation η is of order one. Under the small
variance regime (ε ≪ 1), this assumption of frequent mutations prevents
the mutation kernel K to degenerate in our scaling regime, which is a key
assumption in the mathematical framework introduced by Diekmann et al.
(2005) (see SI D.4 for mathematical details).

Moreover, our regime of small variance (ε ≪ 1 ∼ η) is usually referred
to as the strong mutation and weak selection regime, which is linked to the
Gaussian approximation regime when Vmut ≪ ηVsel (Kimura, 1965; Lande,
1975; Fleming, 1979; Bürger, 2000). This regime of frequent mutations con-
trasts with the House-of-Cards (HC) regime where mutations are rare with
large effects when ηVsel ≪ Vmut (Turelli, 1984; Turelli and Barton, 1990;
Bürger, 2000). In the HC regime, the mutation rate η is smaller than our ε
parameter (η ≪ ε ≪ 1). Our analysis would thus fail in this regime, because
the asymptotic limits are conceptually different.

In the small variance regime (ε ≪ 1), we expect the equilibrium F to be
concentrated around a mean value z∗ of the relative phenotype, that we name
the mean relative phenotype, see Fig. 1. The evolutionary lag |z∗| is defined
here as the distance between the mean phenotypic trait in the population
and the optimal trait. Note that, in previous literature the evolutionary lag
is sometimes defined as we do here (e.g. Gomulkiewicz and Houle, 2009),
sometimes as the difference between the mean trait value and the optimum,
referred as the mean relative phenotype here (e.g. Burger and Lynch, 1995)
or the opposite difference (e.g. Lande and Shannon, 1996).

The core of our approach consists in the accurate description of the phe-
notypic distribution F when ε ≪ 1. This is made possible after a suitable
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transformation of the phenotypic distribution F . The Cole-Hopf transfor-
mation is an appropriate mathematical tool to provide approximations of
singular distributions with respect to a small parameter, for instance the
wavelength in wave propagation (geometric optics) or the Planck constant in
quantum mechanics (semi–classical analysis), and also the phenotypic vari-
ance in our theoretical biology setting. It is defined as the logarithm of the
density F , multiplied by a small parameter related to the order of magnitude
of the phenotypic variance. In our problem, we need to introduce different
quantities depending on the modeling choice:{

U = −ε logF (asexual)

U = −ε2 logF (infinitesimal sexual)
(16)

We emphasize that the discrepancy between the two scenarios is an outcome
of our analysis. The scaling has been carefully tuned to induce a non trivial
limit in the regime ε ≪ 1. We discuss this scaling in details in the Discussion
section. In order to describe U asymptotically, we expand it with respect
to ε as follows:{

U(z) = U0(z)+εγU1(z) + o(εγ)
λ = λ0+εγλ1 + o(εγ)

where γ =

{
1 (asexual)
2 (infinitesimal sexual)

(17)

and (λ0, U0) is the limit shape as ε → 0, and (λ1, U1) is the correction for
small ε > 0. In the next sections 3.1 and 3.2, we show, by formal arguments,
that the function U and the mean fitness λ converge towards some non trivial
function U0 and some value λ0 as ε → 0.

In the following section Results, we compute relevant quantitative fea-
tures, such as the mean fitness λ0, the mean relative phenotype z∗0 , and
the phenotypic variance Var(F ). The latter is related to U0 by the following
formula (derived in SI C):

Var(F ) =
εγ

∂2
zU0(z∗0)

+ o(εγ) . (18)

Remarkably, our methodology is able to compute those quantities directly,
bypassing the resolution of the limit equation solved by (λ0, U0) (which may
have non-explicit solutions).
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3. Results in the regime of small variance

3.1. The asexual model

Using the logarithmic transformation (16) to reformulate our problem (14)
and the Taylor expansion of the pair (λ, U) with γ = 1, we show that the
limit shape (λ0, U0) satisfies the following problem (see SI D.1):

λ0 + c∂zU0(z) = 1 +H (∂zU0(z))−m(z) , (19)

where the Hamiltonian function H is the two-sided Laplace transform of the
mutation kernel K up to a unit constant:

H(p) =

∫
R
K (y) exp (yp) dy − 1 . (20)

It is a convex function that satisfies H(0) = H ′(0) = 0, and H ′′(0) = 1
from hypothesis (4) on the mutation kernel K. Moreover, thanks to our
assumption on the mutation probability η, the function H is not singular
(see SI D.4 for more details).

We can remark that the shape of the equation (19) also contains the diffu-
sion approximation model where the reproduction operator is approximated
by a diffusion operator (5). For the diffusion approximation, we find that the
Hamiltonian function is given by H(p) = p2/2 (see SI D.1.1)

Computation of the mean fitness λ0. We find that (see SI D.1.3 for details)

λ0 = 1− L(c) , (21)

where the Lagrangian function L, also known as the Legendre transform of
the Hamiltonian function H, is defined as:

L(c) = max
p∈R

(pc−H(p)) . (22)

It is a convex function satisfying L(0) = L′(0) = 0, and L′′(0) = 1. Moreover,
we always have L(c) ⩽ |c|2/2 where L(c) = |c|2/2 corresponds to the diffusion
approximation case.

Since the mean fitness is λ0 = 1 in the absence of environmental change,
the quantity L(c) represents the lag-load in the rescaled units, which is in-
duced by the moving optimum (Lynch and Lande, 1993; Lande and Shannon,
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1996). Moreover, if we push the expansion to the higher order we are able
to compute the following mean fitness (see SI D.6 for mathematical details)

λ = 1− L(c)−ε

2

(
1

L′′(c)

)1/2

+ o(ε) (23)

The new term of order ε can be seen as the standing load, i.e. a reduction in
mean fitness due to segregating variance for the trait in the population (Lynch
and Lande, 1993; Burger and Lynch, 1995; Kopp and Matuszewski, 2014).

Computation of the mean relative phenotype z∗0. We obtain from the main
equation (19), evaluated at z = z∗0 , that λ0 + m(z∗0) = 1. Thus, combining
with equation (21), we deduce that z∗0 is a root of

m(z∗0) = L(c) (24)

with the appropriate sign, that is m′(z∗0) and c have opposite signs: z∗0 < 0
if c > 0 and vice-versa.

Computation of the phenotypic variance. From equation (18), we need to
compute the second derivative of U0 at the mean relative phenotype z∗0 . We
can derive it from the differentiation of equation (19) evaluated at z∗0 (recall
that H ′(0) = 0 by symmetry of the mutation kernel K):

∂2
zU0(z

∗
0) +

m′(z∗0)

c
= 0 . (25)

We deduce the following first order approximation of the phenotypic variance:

Var(F ) = − εc

m′(z∗0)
+ o(ε) . (26)

Remark 1. The expressions obtained in this section are still valid when
c = 0. A direct evaluation gives that λ0 = 1 and z∗0 = 0. Moreover, we show
in Supplementary Information SI D.5 that in the limit c → 0, the previous
formula (25) becomes

∂2
zU0(0) = 1 . (27)

We will discuss the biological implications of these predictions after ex-
pressing them in the original units in the section 4.
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3.2. The infinitesimal model of sexual reproduction in the regime of small
variance

The limiting problem formulation. Remarkably enough, a similar mathemati-
cal analysis can be performed when the convolution operator (12) is replaced
with the infinitesimal model for reproduction (13). However, the calcula-
tions are slightly more involved than the former case, but the final result
is somewhat simpler. Here, the suitable logarithmic transformation of the
phenotypic distribution F is U = −ε2 log(F ). The equation for the new
unknown function U is:

λ+ c∂zU(z) +m(z) =

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

[(
z − z1 + z2

2

)2

+ U(z1) + U(z2)− U(z)−minU

])
dz1dz2∫

R
exp

(
−U(z′)−minU

ε2

)
dz′

,

(28)
where minU has been subtracted both in the numerator and the denomi-
nator. The specific form of the right-hand-side characterizes the shape of
U . Indeed, the quantity between brackets must remain non negative, unless
the integral takes arbitrarily large values as ε → 0. Moreover, its minimum
value over (z1, z2) ∈ R2 must be zero, unless the integral vanishes. As a con-
sequence, the function U must be a quadratic function of the form 1

2
(z−z∗0)

2

where the mean relative phenotype of the distribution, z∗0 , can be determined
aside (see SI F.1 for details). To describe z∗0 , we expand the pair (λ, U), in a
power series with respect to ε2:U(z) =

1

2
(z − z∗0)

2 + ε2U1(z)+ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1+ε4λ2 + o(ε4)
(29)

Plugging this expansion into (28), we obtain the following equation on the
corrector U1:

λ0 + c(z − z∗0) +m(z) = exp

(
U1(z

∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z)

)
, (30)

which contains as a by–product the value of some quantities of interest, such
as the mean fitness λ0, and the mean relative phenotype z∗0 . Moreover, we

20



can solve this equation if, and only if λ0 and z∗0 take specific values that we
identify below.

The mid-point (z + z∗0)/2 which appears in the right-hand-side of (30)
has a direct interpretation in terms of the conditional distribution of parental
traits. It means that an individual of trait z is very likely to be issued from
a pair of parents having both traits close to the mid-value between z and the
mean phenotype z∗0 (and equal to (z + z∗0)/2 in the limit ε → 0). This is the
result of the following trade-off: on the one hand parents with traits close to
the mean trait value z∗0 are frequent but the chance of producing offspring
with relative phenotype z ̸= z∗0 is too small; on the other hand, parents with
traits evenly distributed around z would likely produce offspring with relative
phenotype z, but they are not frequent enough. As a compromise, the most
likely configuration is when both parents have their relative traits close to
(z + z∗0)/2, see Figure S2 and SI F.2.1.

Computation of macroscopic quantities. Let us first observe that equation
(30) is equivalent to the following one:

log (λ0 + c(z − z∗0) +m(z)) = U1(z
∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z) . (31)

The key observation is that the expression on the right hand side vanishes
at z = z∗0 , and so does its first derivative with respect to z at z = z∗0 . This
provides two equations for the two unknowns λ0, z

∗
0 , without computing the

exact form of U1: λ0 +m(z∗0) = 1

c+m′(z∗0) = 0 .
(32)

These two relationships are necessary and sufficient conditions, meaning that
they guarantee that equation (30) admits at least one solution U1 (see SI F.1
for mathematical details, and (Calvez et al., 2019)). In addition, we can
push the expansion further and we can gain access to the higher order of
approximation for the quantities of interest (see SI F.2).
Mean relative phenotype

z∗ = z∗0−ε2
(
m′′′(z∗0)

2m′′(z∗0)
+ 2c

)
+ o(ε2) , such that m′(z∗0) = −c

Mean fitness

λ = 1−m(z∗0)−ε2
(
2c2 + c

m′′′(z∗0)

2m′′(z∗0)
+

1

2
m′′(z∗0)

)
+ o(ε2)
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Phenotypic variance

Var(F ) =
ε2

1+2ε2m′′(z∗0) + o(ε2)

4. Comparison of predictions of the asexual and infinitesimal mod-
els

To discuss our mathematical results from a biological perspective, we
need to scale back the results in the original units (see Table 1 for the link
between the scaled parameters and the parameters in the original units).
Our general predictions for macroscopic quantities in the original units are
shown in Table 2. For ease of comparison with previous literature, which has
generally assumed a quadratic form for the selection function, we present our
predictions in Table 3 under this special assumption and with the diffusion
approximation.

Numerical simulations. To illustrate our discussion, we also perform numer-
ical simulations. The simulated stationary distribution is obtained through
long time simulations of a suitable numerical scheme for (2) (details in SI SI
G). Using this numerical expression, we compute the lag, the mean fitness
and the phenotypic variance of the distribution. In the asexual model, the
function U0 is obtained from the direct resolution of the ordinary differential
equation (19) using classical integration methods – see SI D.7. In the in-
finitesimal model, the correction U1 is computed directly from its analytical
expression given in SI F.2.4. The macroscopic quantities in the regime of
small variance are directly computed from their analytical expressions given
in the Table 2 and 3. We also compare our analytical expression with the
outcome of a stochastic model, which considers an evolving population with
a finite number of individuals (see SI H).
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Macroscopic
quantities

Asexual model Infinitesimal sexual model

Mean relative
phenotype

z∗ ≈ z∗0

with m(z∗0) = βL

(
c

βV
1/2
div

) z∗ ≈ z∗0−Vdiv
m′′′(z∗0)

2m′′(z∗0)
− 2

c

β

with m′(z∗0) = − c

Vdiv

Mean fitness

λ ≈ β − µ0 − βL

(
c

βV
1/2
div

)

−β

2

 Vdiv
Vsel

L′′

(
c

βV
1/2
div

)


1/2

λ ≈ β − µ0 −m(z∗0)

−
(

2c2

βVdiv

+ c
m′′′(z∗0)

2m′′(z∗0)
+

Vdivm
′′(z∗0)

2

)

Phenotypic
variance

Var(F) ≈ − c

m′(z∗0)
Var(F) ≈ Vdiv

1+2Vdiv
m′′(z∗0)

β

Table 2: Analytical predictions for the mean relative phenotype z∗, the mean fitness λ
and the phenotypic variance Var(F) for both the asexual and infinitesimal sexual model
in the original variables. Black terms correspond to first order approximations, while
gray terms correspond to second order approximations. In the asexual model, L is the
Lagrangian defined by (22) and it is associated to the mutation kernel K by a two-sided
Laplace transformation.

23



Macroscopic
quantities

Asexual model
(quadratic selection / diffusive ap-
prox)

Infinitesimal sexual model
(quadratic selection)

Mean relative
phenotype

z∗ = − c

β

(
Vsel

Vdiv

)1/2

z∗ ≈ − c

β

(
Vsel

Vdiv

)
−2

c

β

Mean fitness λ = β−µ0−
c2

2βVdiv

−β

2

(
Vdiv

Vsel

)1/2

λ ≈ β−µ0−
c2Vsel

2βV2
div

−
(

2c2

βVdiv

+
βVdiv

2Vsel

)

Phenotypic
variance

Var(F) = (VdivVsel)
1/2 Var(F) ≈ Vdiv

1+2Vdiv

Vsel

Table 3: Analytical predictions for the mean relative phenotype z∗, the mean fitness λ and
the phenotypic variance Var(F) for both the asexual and infinitesimal sexual model in the
original variable when assuming a quadratic form of selection m(z) = z2/2 (corresponding
tom(z)/β = z2/(2Vsel) in original units). In the asexual model, we are under the diffusion
approximation: L(v) = v2/2. Black terms correspond to first order approximations, while
gray terms correspond to second order approximations.
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4.1. Mean relative phenotype and evolutionary lag

The mean relative phenotype z∗ is here defined as the difference between
the mean phenotypic trait in the population x∗ and the optimal trait ct.
In our study, for numerical illustration, we used c > 0. So a negative mean
relative phenotype z∗ indicates that the distribution of phenotype lags behind
the optimal trait. The maladaptation of the population is generally measured
by the evolutionary lag, which is defined as the distance between the mean
phenotypic trait and the optimal trait. In our study, the evolutionary lag
corresponds to the absolute value of the mean relative phenotype, |z∗| =
|x∗ − ct|, which is positive.

The lag increases with the speed of environmental change. In both the asexual
model and infinitesimal model, we recover the classic result that the lag |z∗0|
is an increasing function of c (as illustrated by Fig. 2 and Fig. 3).

In the asexual model, the evolutionary lag at equilibrium is such that

the mortality rate equals βL

(
c

βV
1/2
div

)
(see Table 2). The latter quantity

increases with the rate of environmental change. As the mortality rate m
increases when we move away from the optimal trait, the lag |z∗0| must also
increase with respect to c.

In the infinitesimal model of sexual reproduction, the evolutionary lag
at equilibrium is found where the gradient of selection (m′) equals − c

Vdiv
,

which increases in absolute value with the rate of environmental change c
(see Table 2). In the convex neighborhood of the optimal trait, the gradient
of selection (m′) is increasing with deviation from the optimum, hence the lag
|z∗0| is increasing with respect to c. However, if the fitness function has both
a convex and a concave part (as in the yellow curves in Fig. 3), there may be
multiple equilibria fulfilling the condition in Table 2 (see Fig. 4(b)). In the
concave part of the fitness function, the selection gradient is decreasing when
c increases, and so would the lag (see dashed curve in Fig. 5(b)). However,
heuristic argument and numerical simulations suggest that equilibrium points
in the concave part of the fitness function are unstable (see Fig. 5(b) and more
detailed discussion of this scenario below).

The lag increases faster or slower than the speed of environmental change.
Our analytical predictions suggest that a linear relationship between the rate
of environmental change and the evolutionary lag is expected only under
special circumstances. We indeed show that the rate of increase of the lag

25



-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

5

10

15

(a)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

-0.5

0

0.5

1

1.5

2

(b)

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1

1.5

2

2.5

3

3.5

(c)

0 0.1 0.2 0.3 0.4 0.5

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(d)

Figure 2: Influence of the mutational kernel K, described in panel (a), on (b) the mean
fitness λ, (c) the evolutionary lag |z∗| and (d) the phenotypic variance Var(F) at equilib-
rium in an environment changing at rate c ranging in (0, 0.5) for the asexual model with
quadratic selection function m(z) = z2/2. We compare the diffusion approximation (blue
curves) with four different mutation kernels with the same variance Vdiv = 0.01, while
the variance of selection is Vsel = 1: the Uniform distribution (red curves), the Gaussian
distribution (orange curves), Exponential distribution (purple curves) and Gamma distri-
bution (green curves). For each case we compare our analytical results (dashed lines) with
the simulation results (marked symbol).

according to the speed of change c crucially depends on the shape of the
selection in both the infinitesimal and asexual models (Fig. 3).

In addition, in the asexual model, this rate of increase will depend on the
shape of the mutation kernel through the Lagrangian function L. Indeed, we
can show from our formula in Table 2 that the lag increases linearly with the
speed of change as soon as the function c 7→ m−1(L(c)) is linear. Thus, both
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Figure 3: Influence of the speed of environmental change c for three different shapes of the
selection function: quadratic functionm(z) = z2/2 (blue curves), super–quadratic function
m(z) = z2/2 + z6/64 (red curves) or bounded function m(z) = m∞(1− exp(−z2/(2m∞))
(orange curves). Other parameters are: β = 1, Vsel = 1 and Vdiv = 0.01 and m∞ = 0.5
in the asexual model and Vdiv = 0.1 and m∞ = 1 in the infinitesimal sexual model. In
the asexual model, the mutation kernel is Gaussian. We compare our analytical results
(first approximation dashed lines and second approximation plain lines) with the numer-
ical simulations of the stationary distribution of (8) (marked symbols) for both asexual
and sexual infinitesimal model. The vertical lines correspond to the critical speeds for
persistence cc, defined by (37) and the critical speed of tipping point ctip, defined by (35).
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(a) Determination of the mean relative
phenotype z∗ in the asexual model

(b) Determination of two possible evolu-
tionary lags z∗s and z∗u in the infinitesimal
sexual model

Figure 4: Graphical illustration of the two ways to characterize the mean relative pheno-
type z∗ (in original units). (a) In the asexual model, the mean relative phenotype is found

where the mortality rate m equals a specific value βL

(
c

βV
1/2
div

)
. In this case we only have

one possible lag z∗ because m′(z∗) and c should have opposite signs. (b) In the sexual
infinitesimal model, the mean relative phenotype z∗ is found where the selection gradient
m′ equals a specific value −c

Vdiv
. In this case, we may obtain two possible values, a stable

point z∗s in the convex part of m and an unstable point z∗u in its concave part.

the shape of selection and that of the mutation kernel interact to determine
how the evolutionary lag responds to faster environmental change. If the
selection function is quadratic (i.e. m(z) = z2/2), we can show from the
convexity of the Lagrangian function L that the lag increases linearly with
the speed only in the diffusion approximation L(c) = c2/2 (see Table 3 and
blue curve in Fig. 2), while it increases sub–linearly for any other mutation
kernels (see red, orange, purple and green curves in Fig. 2). We can further
show that the lag in this scenario increases more slowly with the speed of
environmental change when the kurtosis of the mutation kernel is higher
(see SI D.4 for mathematical details). In Fig. 2, we compare four different
mutation kernels with increasing kurtosis: uniform distribution kernel (red),
Gaussian kernel (orange), double exponential kernel (purple) and Gamma
kernel (green). In the asexual model, a fat tail of the mutation kernel thus
tends to reduce the lag, even though this effect is most visible when the
environment changes fast (Fig. 2) .

To examine the effect of the shape of the selection function on how the
evolutionary lag increases in faster changing environment, we now focus on
the case of diffusion approximation in the asexual model (L(c) = c2/2), for
the sake of simplicity, and compare it to the results in the infinitesimal model.
In both cases, we can exhibit a simple criteria to decipher the nature of this
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(a) Asexual model (b) Infinitesimal sexual model

Figure 5: Effect of the initial lag on the persistence of the population with various rates
of environmental change c. We compute numerically, the solutions of the time–dependent
problem (2) with Gaussian initial conditions centered on various mean relative phenotypes
z∗init inducing an initial evolutionary lag |z∗init| (left axes). We repeated this exploration
for various speeds c ranging in (0, 1.5 ctip). For each case, we plot the evolutionary lag
|z∗| at the final time of computations (red circles on right axes). We also compare with
the analytical evolutionary lags given by the first line of Table 2 (red lines right axes): the
plain lines corresponds to the stable trait (|z∗| in asexual model and |z∗s | in infinitesimal
sexual model) while the dashed lines corresponds to the unstable trait |z∗u| occurring in
the infinitesimal sexual model. The grey region corresponds to initial data such that the
final evolutionary lag diverges (black dots), while the blue region corresponds to initial
data such that the final evolutionary lag converges (blue dots). In the asexual simulations,
the mutation kernel is Gaussian.

increase. Let us first observe that, in those cases, the lag increases linearly
with the speed if the selection function is quadratic (see Table 3 and the
blue curves in Fig. 3). The lag however accelerates with the speed if m is
sub-quadratic in the following senses (see orange curves in Fig. 3):

m′′m

(m′)2
<

1

2
(asexual) , m′′′ > 0 (infinitesimal sexual) . (33)

Conversely, the lag decelerates with the speed if m is super-quadratic in the
following senses (see red curves in Fig. 3):

m′′m

(m′)2
>

1

2
(asexual) , m′′′ < 0 (infinitesimal sexual) . (34)

The criteria are of different nature depending on the model of reproduc-
tion (asexual versus infinitesimal). However, they coincide in the case of a
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homogeneous selection function m(z) = |z|p (p > 1). Indeed, selection is
super-quadratic in both cases if and only if p > 2. More generally, the lag
is reduced when the selection function has a stronger convexity in the sense
of (34). This behavior is illustrated in Fig. 3.

The lag can diverge for a fast speed of environmental change. As observed
by Osmond and Klausmeier (2017), we also find that the lag may diverge,
i.e. grow infinite, when the selection function is too weak away from the
optimum, and when the speed of environmental change exceeds some critical
threshold. Interestingly, both the infinitesimal model and the asexual model
exhibit such ”evolutionary tipping point”, corresponding to a critical level of
an external condition where a system shifts to an alternative state (van Nes
et al., 2016). The underlying mechanisms are however qualitatively different
in the two models, as explained below.

In order to illustrate this phenomenon, we consider a bounded selec-
tion function depicted in Fig. 3 (orange curve). We restrict to the diffusion
approximation in the asexual case for the sake of simplicity. We find the
following critical speed ctip,

ctip =

(
2βVdiv

(
max

z∈(−∞,0)
m(z)

))1/2

(asexual)

ctip = Vdiv

(
max

z∈(−∞,0)
|m′(z)|

)
(infinitesimal sexual)

(35)

so that the lag is finite if and only if c < ctip, while the lag diverges if c > ctip
and the population cannot keep pace with the environmental change. The
difference between the two formulas can be understood through graphical
arguments (see Fig. 4). In the asexual model, the lag at equilibrium is found
where the mortality rate equals a specific value, which increases with the
speed of change c. This point is found where the selection function inter-
sects an horizontal line, of higher elevation as c increases in Fig. 4. With a
bounded mortality function, there is thus a finite value of c for which this
critical quantity equals the maximal mortality rate, the latter being reached
for an infinitely large lag. In the infinitesimal model, the evolutionary lag is
found where the selection gradient equals a specific value increasing with c,
see the graphical construction in (Osmond and Klausmeier, 2017, Fig.1B).
With a bounded mortality function such as in Fig. 4, there are in general two
equilibrium points characterized by such local slope, one stable in the convex

30



part and one unstable in the concave part. As the speed of environmental
change increases, so does the local slope at the two equilibria, which gradu-
ally converge towards the inflection point of the mortality function with the
maximal slope. This point characterizes the maximal speed of environmental
change for which there is a finite evolutionary lag. Above that critical speed
of change, the lag grows without limit. We illustrate this phenomenon of
severe maladaptation in Fig. 3 (see the orange curves).

Despite the existence of tipping points in both cases, the transition from
moderate (c < ctip) to severe maladaptation (c > ctip) have different bi-
furcation signatures depending on the reproduction model. In the asexual
model, the lag becomes arbitrarily large as the speed c becomes close to the
maximal sustainable speed ctip. At the transition, the stable equilibrium
state reaches infinity, which corresponds to a peculiar state where all indi-
viduals have the same fitness, and selection is not effective, reminiscent of
a transcritical bifurcation. In contrast, in the infinitesimal model, the lag
remains uniformly bounded up to ctip. At the transition, the stable equilib-
rium state merges with the unstable equilibrium state, through a saddle-node
bifurcation.

We can also see a major difference between the two reproduction models
when we look at the time dynamics (Fig. 5). We run simulations of equa-
tion (2) starting from various initial data centered at different traits (see
crosses in Fig. 5). In the infinitesimal model, when the initial lag is beyond
the unstable point z∗u, defined in Fig. 4(b), the lag diverges, whereas it con-
verges to the stable point z∗s , also defined in Fig. 4(b), if the lag is initially
moderate. We see that the long term adaptation of the population to a
changing environment does not only depend on the speed of change, but also
on the initial state of the population. In the asexual model, the initial con-
figuration of the population does not play a significant role in the long term
dynamics of adaptation: we observe that the population can adapt whatever
the initial lag is, if the speed of change is below ctip (see Fig. 5). We can
expect such difference because the lag at equilibrium is uniquely defined in
the asexual model while it can take multiple values in the infinitesimal model
if the function has an inflection point, a signature of bistability (see Fig 4).

4.2. The mean fitness

We now investigate the effect of the changing environment on the mean
fitness of the population.
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The mean fitness decreases with increasing speed of environmental change.
In both scenarios the lag load △λ, defined as the difference between the
mean fitness in a constant environment (λ = β−µ0, for a perfectly adapted
population without standing load and c = 0) and the mean fitness under
changing environment, is (unsurprisingly) given by the increment of mortality
at the mean relative phenotype m(z∗0)

△λ = β − µ0 − λ = m(z∗0).

Sincem is symmetrically increasing and the lag |z∗0| is increasing with respect
to c, we deduce that the mean fitness decreases with respect to c. It is
illustrated in Fig. 3 for different selection functions.

In the asexual model, the lag-load takes the following form

△λ = βL

(
c

βV
1/2
div

)
.

which is exactly the expression (22) in the original units with a speed c.
Since L increases with the kurtosis of the mutation kernel, we deduce that
higher kurtosis of the mutation kernel increases the mean fitness (see Fig. 2
and SI D.4). Thus the lag-load is maximal for the diffusion approximation.

The shape of selection affects the lag load in the infinitesimal model, but not
in the asexual model. In the asexual model, the lag load only depends, at
the leading order, on the speed of environmental change and the mutation
kernel through the Lagrangian function L (20)-(22) and the variance Vdiv

(see Table 2). It does not depend on the selection, as illustrated in Fig. 6(a)
(dashed line). At the next order of approximation, the mean fitness however
depends on the local shape of the selection function around the optimal trait
through Vsel (10). The mean fitness is then predicted to decline as the
strength of stabilizing selection around the optimum 1/Vsel increases, due to
increasing standing load. These predictions are confirmed by our numerical
simulations see Fig. 3(a) and 6(a).

In contrast, the influence of the selection pattern is more intricate in the
case of the infinitesimal model of reproduction. The lag load depends strongly
on the global shape of m (see Fig. 3(b) and 6(b)). In particular, we see that
for low strength of selection 1/Vsel, the mean fitness crucially depends on
the shape of selection. Mean fitness is higher in the scenario with super–
quadratic selection than with quadratic selection, and lowest when selection
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is sub-quadratic in Fig. 3(b) and 6(b)). Moreover, the mean fitness increases
with increasing strength of selection in the quadratic case, while it initially
decreases for the super–quadratic case. However, for stronger strength of
selection, the shape of selection has less importance. Our approximation al-
lows us to capture those differences. For instance, in the quadratic case (blue
curves in Fig. 6 and 3), we can see from Table 3 that the mean fitness in-
creases with the strength of selection at the leading order, which corresponds
to large value of Vsel. However, when the strength of selection becomes
stronger, antagonistic effects occur at the next order so that the fitness may
decrease due to standing load, defined in (23) (Lynch and Lande, 1993; Lande
and Shannon, 1996; Kopp and Matuszewski, 2014). This effect is illustrated
in Fig. 6(b).

4.3. The phenotypic variance

In both asexual diffusion approximation and the infinitesimal model, the
phenotypic variance does not depend on the speed of change c when the
selection function is quadratic (see blue curves in Fig. 2(d) for asexual model
and Fig. 3(f) for infinitesimal model). The phenotypic variance however
increases with c if the selection function is sub-quadratic in the sense of (33)
(see orange curves in Fig. 3). Conversely, the phenotypic variance decreases
with c if the selection function is super-quadratic in the sense of (34) (see
red curves in Fig. 3) – see details in SI E.

The phenotypic variance is less variable in the infinitesimal model than
in the asexual model. It was expected from our analysis (see formula of Ta-
ble 2) because the infinitesimal model tends to constrain the variance of the
phenotypic distribution. Indeed, we know from previous analysis (Mirrahimi
and Raoul, 2013; Barton et al., 2017), that in the absence of selection, the
infinitesimal model generates a Gaussian equilibrium distribution with vari-
ance Vdiv. Our analysis shows that under the small variance assumption, the
phenotypic variance is close to this variance Vdiv and our numerical analy-
sis shows that phenotypic variance slowly deviates from the genetic variance
without selection Vdiv, when either the speed of change increases or the
strength of selection increases. This pattern is observed whatever the shape
of selection. We can thus conclude that for the infinitesimal model under the
small variance hypothesis, the phenotypic variance is not very sensitive to
either selection (strength of selection or shape of selection) or the speed of
environmental change.
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Figure 6: Influence of the strength of selection 1/Vsel on the mean fitness λ, the evo-
lutionary lag |z∗| and the phenotypic variance Var(F) at equilibrium in an environment
changing at rate c = 0.05 and with three different selection patterns: quadratic (blue
curves), super–quadratic (red curves) or bounded (orange curves). Other parameters are:
β = 1, Vdiv = 0.01 for the asexual case and Vdiv = 0.1 for the sexual infinitesimal case
and the intensity of selection 1/Vsel ranges from 10−2 to 4. We compare our analytical
results (first approximation dashed lines and second approximation plain lines) with the
numerical simulations of the stationary distribution of (2) (marked symbol) for both asex-
ual and sexual infinitesimal model. In the asexual model, we only consider a Gaussian
mutation kernel.
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Conversely, in the asexual model, the phenotypic variance is quite sensi-
tive to the selection function. This is emphasized in the case of a bounded
selection function. The phenotypic variance dramatically increases as the
speed of change becomes close to the critical speed ctip because the selection
gradient becomes flat (see Table 2).

In the asexual model, the phenotypic variance is moreover sensitive to
the shape of the mutation kernel. We see from Fig. 2(c) that the phenotypic
variance generally increases with a fatter tail of the mutation kernel. There
are however exceptions to this pattern (see for instance the Gamma mutation
kernel at low speed of environmental change, green curves in Fig. 2). This
situation, unexpected by our approximation, might be due to the fact that
when the speed of change is low, the mutations with large effects are quickly
eliminated by selection, which in turn reduces the phenotypic variance. This
detrimental effect of large mutations when the environmental change rate is
low has been also observed by Kopp and Hermisson (2009) and Collins et al.
(2007).

4.4. Persistence of the population: the critical speed cc

The final outcome of our analysis is the computation of the speed cc be-
yond which the population cannot keep pace with the environmental change
(λ < 0). In the general case, we can obtain the following approximation
formula: cc = βV

1/2
div L

−1

(
β − µ0

β

)
(asexual)

cc = Vdivm
′ (m−1(β − µ0)) (infinitesimal sexual)

(36)

We can first observe that, in the small variance regime, the critical speed in
the asexual model does not depend on the shape of the selection m, but on
the mutation kernel through the Lagrangian L and the variance Vdiv. Thus,
for any selection function, the critical speed is the same (see Fig. 7(a)).
Conversely, for the infinitesimal model, the critical speed crucially depends
on the shape of the selection (see Fig. 7(b)). Moreover, we can mention that
the discussion of the dependency of λ with respect to various parameters
also holds naturally for cc.

When we consider the diffusion approximation for the asexual model
(L(v) = v2/2) and the quadratic selection function m(z) = z2/(2Vsel), we
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Figure 7: Critical speeds cc and ctip as the function of the selection strength 1/Vsel for: (a)
the asexual model and (b) the sexual infinitesimal model. In panel (a), the plain curve cor-
responds to the critical speed cc with different mutation kernel: Diffusion approximation
(blue), Uniform distribution (red), Gaussian distribution (orange), Exponential distribu-
tion (purple curve) and Gamma distribution (green). The dashed line is the critical speed
ctip. In panel (b), the curves correspond to different selection functions: quadratic (blue),
super-quadratic (red) and v-shape (orange). The plain curves corresponds to the critical
speed cc while the dashed curve to the critical speed ctip.

obtain the following formula, including the next order term:

cc =
√
2βV

1/2
div

(
β − µ0

β
−1

2

(
Vdiv

Vsel

)1/2
)1/2

(asexual)

cc =
√
2β

Vdiv

V
1/2
sel

(
β − µ0

β
− Vdiv

2Vsel

)1/2

(
1+4Vdiv

Vsel

)1/2 (infinitesimal sexual)

(37)

In the asexual case, the formula (37) is in agreement with previous results
where it was assumed that the relative phenotype z is normally distributed
in the population, which corresponds in our framework to assuming that the
equilibrium distribution F is Gaussian (see Lynch et al., 1991; Lynch and
Lande, 1993).

Moreover, in the asexual case with µ0 = 0, our formula (37) is consistent
with the classical formula given with the phenotypic variance as a parameter:

cc ≈
√
2β

Var(F)

V
1/2
sel

(38)
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see for instance Eq. [A6] in (Kopp and Matuszewski, 2014). This ap-
proximation (38) also holds true in the sexual infinitesimal case. Although
this simple formula is a good approximation in a general setting, it might
be misleading, as it omits some possible compensation, such as the selection
strength 1/Vsel, which disappears in the case of asexual reproduction because
it also affects Var(F).

Numerical approximations for finite population

Here, we compare our approximation formula described in Table 2, with
the outcomes of the stochastic model, defined in SI H, when the number of
individuals N is small (N is equal to 102 or 103) and the selection scenario
varies as in Fig. 3.

When the speed of change is slow compared to the critical speeds, our ap-
proximations seem accurate in the sense that the approximation error usually
falls on our confidence intervals (see Fig. S4-S6). In the infinitesimal sexual
model, our approximations also do well when the speed is close to the critical
threshold. In this model, we know that the population adapt thanks to the
bulk of the population, which moves forward. Thus, even if the size of the
population decreases, many individuals remains at the dominant trait. The
size of the population does not have a critical influence on the adaptation
response.

However for the asexual model, when the speed of change increases, our
approximations become less accurate. In this model, only the individuals
near the optimal trait help the population to adapt. Thus when the speed
increases, the proportion of individuals near the optimal trait decreases be-
cause the lag increases. Moreover, when the population size decreases, the
actual number of individuals at the optimal trait may be zero, which may
lead to an additional burden, and possibly the extinction of the population
before the critical value cc is reached (Calvez et al., 2023). In particular, we
see in Figures S4-S6 (a) that the mean fitness of the population drops below
0 for fifty percent of the simulations when the speed is close to the critical
speed. Thus the effect of the population size is stronger for the asexual model
than for the infinitesimal sexual model.

4.5. Numerical predictions for the whole distribution of phenotypes

Quality of the approximation. For the asexual model, we only compare the
simulation results with our first order approximation stated in Table 2 (black
colored), except for the variation of the mean fitness with respect to the
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strength of selection, where it is preferable to take into account the standing
load that appears at the second order of approximation (see gray colored for-
mula in Table 2). We can first observe from Fig. 6 that our approximations

are accurate when ε = (Vdiv/Vsel)
1/2 is small (see value of 1/Vsel < 0.5 in

Fig. 6). The scale of Fig. 6(a) is of order ε, which is why the first order ap-
proximation seems less accurate than the second order approximation. This
was expected since the standing load, which increases with the strength of
selection, occurs at the second order of the approximation. The approxima-
tions of z∗ and λ remain efficient even when ε increases (see Fig. 2 and 3
for small value of c). However, we see that the approximations deviate from
the simulations when the speed of change increases and reaches the critical
value cc (see Fig. 2 and 3) or when the mutation kernel becomes leptokurtic
(see green curves of Fig. 2). The approximation of the phenotypic variance
is more sensitive to the parameter ε. When c and ε are small it is accurate
(see Fig. 2). However, when the speed increases, the approximation diverges
from the simulations even if ε is small (see Fig. 2 and 3).

For the infinitesimal model, we have compared our simulations to our
first order approximation, as well as the second order approximation stated
in Table 2 (first order approximation is black colored and second order ap-
proximation is gray colored). The first order approximation of z∗ and λ are
efficient only when ε is really small, while the first order approximation of
the phenotypic variance may deviate from the simulation value even for small
ε (see red curve Fig. 6(f)). However, the second approximations are really
precise for small value of ε (see Fig. 6) and they remain accurate when ε
increases and c increases (see Fig. 6 and 3).

Comparing simulations to the approximation for the entire distribution. We
compare the simulated equilibrium distribution F with our analytical ap-
proximations (Fig. 8): the first order approximation corresponds to F0 =
exp(−U0/ε

γ), where U0 satisfies respectively the differential equation (19)
(asexual model) or U0(z) = (z− z∗0)

2/2 (infinitesimal sexual model), and γ is
respectively equal to 1 in the asexual model and 2 in the infinitesimal case;
and the second order approximation F1 = exp(−U0/ε

γ−U1), where U1 satis-
fies respectively equation (D.12) (asexual model) or the non–local functional
equation (30) (infinitesimal model). Our simulations are performed with an
εγ = 0.1, which is not that small.

In the asexual model, we can observe that the first order analytical ap-
proximation is really efficient at tracking the shape of the entire distribution
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for both super-quadratic and quadratic selection, even if ε is not so small
(Fig. 8). For the bounded selection, our first order approximation fails to fit
the left tail of the distribution, mainly because the speed of environmental
change is close to the critical speed.

In the infinitesimal model, we can observe that the first order Gaussian
approximation is not precise enough to track the entire distribution (Fig. 8).
We need the second order approximation to fit the distribution. This is a
direct consequence of our analysis, where we observe that we need the second
order approximation to define the first order approximation of the lag z∗ and
the mean fitness λ.

We also compare our approximations of the phenotypic distribution with
the empirical distribution of the IBM model, described in SI H, for the sce-
narios described in Fig. 8. When the size of the population is large (of order
N = 104), our approximations are accurate and fit with the empirical distri-
bution of the stochastic model (see Fig. S3).

The skewness and the kurtosis of the phenotypic distribution. To go further
in understanding the effect of a changing environment, we looked at the
skewness and the kurtosis of the distributions. Those two indicators allow us
to test whether the distribution F can be well approximated by the Gaussian
distribution.

In the asexual model, with a Gaussian kernel K, we can observe from
Fig. 9 that, even for quadratic selection, the distributions differ from a Gaus-
sian distribution: they are skewed and leptokurtic, which means that their
kurtosis are higher than the kurtosis of the Gaussian distribution with same
mean and variance. So the Gaussian distribution fails to track the exact
distribution of the trait around the mean trait of the population in a chang-
ing environment. This phenomenon is enhanced when the selection function
differs from the quadratic function (see Fig. 9 diamond curves and Fig. 8).
In addition, we see that, when the selection function is super–quadratic, the
distribution has a positive skew, while, for a bounded selection function, it
has a negative skew.

Conversely, in the infinitesimal case, the Gaussian distribution well ap-
proximates the equilibrium distribution in general. This was already de-
scribed by our approximation formula (29) in Section 3.2. We can see that
the kurtosis of the equilibrium distribution remains close to zero for any
speeds of change and any selection functions. However, when the selection
function is either super-quadratic or bounded, we can observe from Fig. 8
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and 9 that the distribution of phenotypes in the infinitesimal model also
becomes skewed as the speed increases. The skew of the distribution cor-
responds to regions where the gradient of selection is low, with the same
pattern as in the asexual model.

5. Discussion

We have pushed further a recent methodology aimed at describing the
dynamics of quantitative genetics models in the regime of small variance,
without any a priori knowledge on the shape of the phenotype distribution.
This methodology combines an appropriate rescaling of the equation with
Taylor expansions on the logarithmic distribution.

Small variance asymptotics. Our approach differs from the previous stud-
ies based on the cumulant generating function (CGF), which is the log-
arithm of the Laplace transform of the trait distribution, here C(t, p) =
log
(∫

epzf(t, z) dz
)
. In his pioneering work, Burger (1991) derived equations

for the so-called cumulants, which are the coefficients of the Taylor series of
the CGF C(t, p) at p = 0. However this system of equations is not closed,
as the cumulants influence each other in cascade. This analysis was revisited
in (Martin and Roques, 2016) in the asexual model, using PDE methods.
They derived an analytical formula for the CGF itself, but restricted it to
a directional selection, when the trait represents the fitness itself. This was
further extended to a moving optimum in (Roques et al., 2020). However,
they made the crucial assumption of the Fisher Geometric Model for selec-
tion, which is analogous to our quadratic case, and diffusion for mutations,
for which it is known that Gaussian distributions are particular solutions.
The common feature with our present methodology is the PDE framework.
Nevertheless, we focus our analysis on the logarithm of the trait distribution
itself, as it is commonly done in theoretical physics to reformulate the wave-
function in terms of its action (see SI D.3 for heuristics on this approach).
This strategy is well-suited to provide precise approximations with respect
to a small parameter, for instance the wavelength in wave propagation (geo-
metric optics) and the Planck constant in quantum mechanics (semi-classical
analysis), and the phenotypic variance in our theoretical biology setting.

Here, the small variance regime corresponds to relatively small effect
of mutations compared to the strength of stabilizing selection. Under this
regime, little variance in fitness is introduced in the population through either
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Figure 8: Mutation-selection equilibria F in changing environment with three different
shapes of selection: (a)-(b) quadratic function m(z) = z2/2 (blue circled marked curves);
(c)-(d) super-quadratic function m(z) = z2/2 + z6/64 (blue star marked curves); (e)-(f)
bounded function m(z) = m∞(1 − exp(−z2/(2m∞)) (orange diamond marked curves).
The speed of environment change is c = 0.09 in the asexual model while it is c = 0.05
in the infinitesimal sexual model so that it remains below the critical speeds cc and ctip
and the distribution deviates significantly from the Gaussian distribution approximation.
Other parameters are: β = 1, Vsel = 1 and Vdiv = 0.01 and m∞ = 0.5 in the asexual
model and Vdiv = 0.1 and m∞ = 1 in the infinitesimal sexual model. We compare
simulated equilibria distribution F (marked curves) with our analytical results (first order
results dashed curves and second order results plain curves). For the asexual scenario, we
used the Gaussian kernel.
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Figure 9: Influence of the speed of environmental change c on the skewness and the
kurtosis of the distribution F for three different shapes of selection: quadratic function
m(z) = z2/2 (blue circles), super-quadratic function m(z) = z2/2 + z6/64 (red stars) or
bounded functionm(z) = m∞(1−exp(−z2/(2m∞)) (orange diamonds). Other parameters
are: β = 1, Vsel = 1 and Vdiv = 0.01 and m∞ = 0.5 in the asexual model and Vdiv = 0.1
and m∞ = 1 in the infinitesimal sexual model. In the asexual model, the mutation kernel
is Gaussian.
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mutation or recombination events during reproduction. And the strength
of selection acting on mutations arising in well-adapted population is weak.
This regime is usually referred to as the ”weak selection – strong mutation”
regime. However, population suffering from maladaptation due for instance
to a changing environment, can experience strong effect of selection that may
drive the population to extinction.

Under the small variance regime, we could describe analytically the phe-
notype distribution (see Fig. 8), and assess the possible deviation from the
Gaussian shape. We further gave analytical approximations of the three
main descriptors of the steady state: the mean relative phenotype, the mean
fitness, and the phenotypic variance (see Table 2). We also compared our de-
terministic approximations with the outcomes of stochastic simulations with
a finite number of individuals (see SI H). Stochastic simulations are in good
agreement when the number of individuals is large enough, or when the speed
of change is not too close to the critical speed cc in the asexual case. Fur-
thermore, in the infinitesimal sexual model, our approximations seems really
precise even when the size of the population shrinks as the speed of change
increases. In this case, the variance is constrained to remain nearly constant,
which forces the bulk of the population to adapt and prevent random drift to
drive the population towards extinction. However, in the asexual model, we
observe large discrepancies when the speed of change approaches the critical
threshold. More precisely, in the asexual model, the dynamics of adaptation
relies upon those individuals which are the fittest, as can be illustrated by
the ancestral lineages (Patout et al., 2020; Calvez et al., 2022b). In an in-
finite population, the fittest individuals are certainly at the optimal trait.
This actually explains why the lag load does not depend on selection at the
leading order. However, in finite populations, when the speed of change in-
creases, the lag increases, thus reducing the chance to find individuals with
an optimal trait. This sampling effect induces an additional burden to the
population, resulting in an increase of maladaptation, which may lead to
extinction of the population, not predicted by the deterministic model of in-
finite population size (Calvez et al., 2023). This negative feedback between
maladaptation and phenotypic variance, called ”mutational meltdown” by
Lynch and Gabriel (1990) in the context of the evolution of small population
by mutation-selection, has already been observed numerically for small sex-
ual populations subject to fast environmental change by Burger and Lynch
(1995).

Noticeably, the two different models of reproduction, assuming either
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asexual reproduction, or infinitesimal sexual reproduction with an infinite
number of freely recombining loci (the infinitesimal model), could be han-
dled in a unified framework. This allows discussing similarities and differ-
ences between the two models, which are frequently used in analytical models
of adaptation to changing and/or heterogeneous environments. However,
the two models are subject to different scaling regimes, as exemplified by
the differences in the phenotypic variance at equilibrium (see Tables 2 and
3), or by the different formulas of the critical speed (36). This discrep-
ancy is an outcome of our mathematical analysis, which aims to capture
the shape of the equilibrium phenotypic density in the regime of small vari-
ance ε ≪ 1. However, it is interesting to note that this result is consistent
with previous predictions of the literature about the phenotypic variance
at equilibrium in a constant environment in the asexual and infinitesimal
model (Bürger, 2000; Barton et al., 2017). Those predictions were derived
under the assumption that the phenotypic distribution is well approximated
by a Gaussian distribution, an assumption that we here have relaxed. More
precisely, under mutation-selection balance, the phenotypic variance of an
haploid asexual population is well approximated under the Gaussian regime

by Var(F) =
(
VdivVsel

)1/2
= εVsel (see Bürger, 2000, and Table 3). While

the phenotypic variance of a population following the infinitesimal model is
approximately Var(F) = Vdiv = ε2Vsel (Barton et al., 2017). As a result,
we see that the phenotypic variance in the asexual model is of order ε, while
it is of order ε2 for the infinitesimal sexual model. However, we here deal
with changing environment with general selection functions and various mu-
tation kernels in the asexual case, for which analytical approximations are
unknown, up to our knowledge. Without a priori estimates to justify our
scaling, we looked for characteristic scales from a mathematical analysis (see
section 2.2 and SI SI B). Noteworthy, our analysis shows that, despite the
fact that the phenotypic distribution can deviate significantly from a Gaus-
sian shape (see Fig. 8), the phenotypic variance scale remains of the same
ε order in our analysis, in line with (Diekmann et al., 2005; Barles et al.,
2009; Lorz et al., 2011) for the asexual case, and (Calvez et al., 2019) for the
infinitesimal sexual case.

Relaxing the Gaussian distribution assumption. Our analytical framework
allows us to relax the assumption of a Gaussian distribution of phenotypic
values, commonly made by several quantitative genetics models of adapta-
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tion to a changing environment with a moving optimum, both in the case
of sexually (e.g. Burger and Lynch, 1995; Osmond and Klausmeier, 2017)
and asexually reproducing organisms (e.g. Lynch et al., 1991). Consistently
with previous simulations and analytical results (Turelli and Barton, 1994;
Bürger, 1999; Jones et al., 2012), our results show that we expect stronger
deviations from a Gaussian distribution of phenotypes if the selection func-
tion departs from a quadratic shape, if the mutation model departs from a
simple diffusion, if reproduction is asexual rather than well described by the
infinitesimal model, and/or if the environment changes relatively fast. We in
particular recover the observation made by Jones et al. (2012) in their sim-
ulations that the skew of the phenotypic distribution is greater in absolute
value in faster changing environments, but we further predict that the sign of
this skew critically depends on the shape of the selection function away from
the optimum, an observation that could not be made by their simulations
that only considered quadratic selection.

Universal relationships. Interestingly, despite deviations from the Gaussian
distribution, our predictions in the regime of small variance for the mean
relative phenotype, or the critical rate of environmental change, are consis-
tent with predictions of past quantitative genetics models that have assumed
a constant phenotypic variance and a Gaussian distribution of phenotypes.
We discuss below the links between the present results and those past predic-
tions and how they provide new insights. As a direct consequence of the small
variance assumption, the two following relationships, linking the three main
descriptors of the population (the mean relative phenotype, mean fitness and
phenotypic variance), hold true, whatever the model of reproduction (either
asexual or infinitesimal):λ ≈ (β − µ0)−m(z∗0)

Var(F) ≈ − c

m′(z∗0)

(39)

The first relationship corresponds to the demographic equilibrium, when the
mean fitness is the balance between (constant) fecundity and mortality at the
mean relative phenotype. The second one corresponds to the evolutionary
equilibrium, when the speed of evolutionary change (as predicted by the
product of phenotypic variance and the selection gradient) equals the speed
of change in the environment. Note that our model assumes for simplicity
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that the phenotypic variance is fully heritable. Those relationships can be
deduced directly from equations in dimensionless units (14)-(15)

λ ≈ 1−m(z∗)

Var(F ) ≈ − εγc

m′(z∗)

Although the reproduction model does not affect the demographic relation-
ship, it influences the evolutionary relationship through the scaling exponent
γ (γ = 1 for asexual reproduction and γ = 2 for infinitesimal sexual repro-
duction). Similar equations appear in quantitative genetics models assum-
ing a Gaussian phenotypic distribution and a constant phenotypic variance.
In particular, with quadratic selection, the second relationship allows us to
recover the following results of Burger and Lynch (1995) and Kopp and
Matuszewski (2014):

|z∗| ≈ βc
Vsel

Var(F)
. (40)

However, the two relationships (39) are not enough to compute the three
descriptors, if one does not consider the phenotypic variance Var(F ) as a fixed
parameter, as previous studies often did. Our small variance approximations
allows us to predict the value of the phenotypic variance in a changing en-
vironment in the two models, where previous studies have generally used
simulations (e.g. Bürger, 1999) to examine how the evolution of the phe-
notypic variance affects the adaptation of sexual and asexual organisms in
a changing environment. Many of our results are ultimately explained by
the fact that the evolution of the phenotypic variance is under very different
constraints under the asexual model and the infinitesimal model.

In the asexual model, the evolution of the phenotypic variance is not
strongly constrained and has in particular no upper bound. The mean fit-
ness λ does not depend on the shape of the selection function at the leading
order (see (21) and Table 2), but only on the speed of environmental change
and on the mutation kernel. Once the mean fitness is determined, the mean
relative phenotype z∗ and the phenotypic variance Var(F ) are deduced from
respectively the first and the second relationship in (39). The phenotypic
variance then strongly depends on the shape of the selection in the asexual
model. In contrast, in the sexual infinitesimal model, we found that the
phenotypic variance Var(F ) does not depend on the shape of the selection
function at the leading order (see (29) and Table 2). The mechanism of
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inheritance in the infinitesimal model indeed constrains the value of the phe-
notypic variance at equilibrium. Then, the mean relative phenotype z∗ and
the mean fitness λ are deduced from respectively the second and the first re-
lationship (39). Most of our predictions (discussed below) are a consequence
of this core discrepancy between the two models.

Mean fitness weakly depends on selection in the asexual model, but not in
the infinitesimal model. In the asexual model, λ depends on m only at
the second order through the strength of selection around the optimal trait
1/Vsel = m′′(0) (10). Hence, up to a reasonable accuracy, the mean fitness
depends (weakly) on the local shape of the selection pattern around the op-
timal trait, even if the population can be localized around a mean relative
phenotype far from the optimal trait. This happens because, in a gradu-
ally moving environment, the asexual population is constantly regenerated
by the fittest individuals. This phenomena is apparent when tracing back
lineages in the population at steady state: it was proven independently by
Patout et al. (2020) and Calvez et al. (2022b) that the typical trajectories
of ancestors of individuals sampled uniformly in the population converge to
the optimal trait backward in time. In contrast, the mean fitness strongly
depends on the shape of the selection function in the infinitesimal sexual
model. It appears clearly in the quadratic case where Vsel enters into the
formula for the mean fitness at the leading order (Table 3). In particular, we
recover the previous finding that weak selection represents a ”slippery slope”
in a changing environment, leading to a lower mean fitness, when effects of
selection on the evolution of phenotypic variance are neglected (Kopp and
Matuszewski, 2014). Again, it is interesting to link this finding to the be-
havior of the typical trajectories of the ancestors in the infinitesimal model,
which converge to the mean relative phenotype backward in time (Patout,
2019, Chapter 5).

The shape of selection has strong effects on the evolution of the mean relative
phenotype and phenotypic variance under both the asexual and infinitesimal
models. In both models, however, the exact shape of the selection function
away from the optimum has noticeable consequences for the evolution of the
lag between the mean phenotype in the population and the moving optimum,
and for the evolution of the phenotypic variance, especially in fast changing
environments. There is unfortunately very scarce empirical evidence about
the exact shape of fitness landscapes and how much they deviate from a
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quadratic, due to the difficulty to estimate precisely the shape of such fit-
ness functions. However, some empirical studies reviewed in (Agrawal and
Whitlock, 2010) suggest strong deviations from a quadratic shape. For in-
stance, selection can become weaker with increasing maladaptation, due to
lower bound on fitness (Agrawal and Whitlock, 2010). The effect of such
selection can only be observed when the population is really maladapted,
which might be the case for populations facing rapid environmental change.
Under this scenario, Osmond and Klausmeier (2017) have shown that selec-
tion can constrain evolution, by limiting the ability of population to evolve
and persist in a directional environmental change. Most models however
assume, for mathematical convenience and in the absence of strong empirical
support for an alternative, a quadratic selection function. Our analysis allows
considering a broad diversity of selection functions and also to draw general
conclusions about how their shape may affect the evolution of the phenotypic
distribution. In both asexual and infinitesimal models, we found, consistently
with previous predictions (reviewed in Kopp and Matuszewski, 2014), that
the lag increases with the speed of environmental change: however there is
a linear relationship between the two only when assuming a quadratic selec-
tion function. When the selection function is super-quadratic (and selection
much stronger away from the optimum), this puts a brake on maladaptation
and the evolutionary lag does not increase as fast when the environment
changes more rapidly. For the same reason, the phenotypic variance then de-
clines when the environment changes faster in the super-quadratic selection
scenarios. Conversely, with a sub-quadratic selection function, the weaken-
ing of selection away from the optimum results in larger lags, accelerating
maladaptation with increasing speed of environmental change and increasing
phenotypic variance. There has been little discussion yet in the theoretical
literature of the consequences of the exact shape of selection in changing en-
vironments (see however (Osmond and Klausmeier, 2017; Klausmeier et al.,
2020) and discussion of tipping-points below). In a constant or stationary en-
vironment with weak fluctuations, the mean phenotype value is never very far
from the optimum and the quadratic selection is an adequate approximation.
However, the present results suggest that further empirical investigation of
the shape of the fitness landscape far from the optimum is critically needed to
understand how much populations may depart from the optimal phenotypic
value.

48



Evolutionary tipping points. The case of sub-quadratic selection functions
has recently attracted some interest, since it was discovered that the weak-
ening of selection away from the optimum could lead to evolutionary tipping
points: above some critical speed of environmental change, the evolutionary
lag grows without limit and the population abruptly collapses without much
warning signal (Osmond and Klausmeier, 2017; Klausmeier et al., 2020).
This behaviour is very different from the dynamics of the lag under classic
models of quadratic selection on moving optimum. Osmond and Klausmeier
(2017) assumed a Gaussian distribution of phenotypes and a constant phe-
notypic variance and compared their analytical results to simulations of a
sexually reproducting population. Klausmeier et al. (2020) went on to show
that non quadratic fitness function with inflection points, leading to such tip-
ping points, could emerge from various realistic ecological feedbacks involving
density-dependence or interactions with other species. Our analytical results
allow us to predict the critical speed at which the evolutionary tipping points
occur. In particular, we show that the infinitesimal tipping points occurs at
the maximal rate of evolution, which corresponds to the product of the phe-
notypic variance and the maximal selection gradient. This relationship was
already derived in a particular case by Osmond and Klausmeier (2017). We
furthermore show that evolutionary tipping points also emerge in the asexual
model, but with a different signature. In the asexual model, there is only
one possible equilibrium for each value of the speed of environmental change.
Again, ultimately, this unique equilibrium is due to the fact that the variance
evolves more freely in the asexual model, which allows any variant close to
the optimal trait to become dominant in the population (Patout et al., 2020).
As the speed increases towards the critical value ctip, the lag diverges (Figure
4(a)-5(a)). As a result, the variance gets arbitrarily large and the skewness
becomes negative, which shows that more individuals lag behind the mean
relative phenotype. Conversely, in the infinitesimal model, the variance is
constrained to remain nearly constant , which forces the bulk of the popula-
tion to adapt. As a result, multiple equilibria exist, which determine several
basins of stability, up to the critical value ctip. The lag remains bounded
in the vicinity of the tipping point, determining a characteristic range for
the basin of attraction of the origin (Figure 4(b)-5(b)). The lag can diverge,
even if c < ctip, for maladapted initial distributions concentrated far from
the origin. This corresponds to a population that cannot keep pace with the
environmental change because they are initially maladapted, possibly due to
some transient change in the environment of major effect.
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Effect of the mutation kernel. In the asexual model, our results also give
analytical insights on the effect of the shape of the mutation kernel on the
adaptation to a changing environment. Empirical data on the exact distribu-
tion of mutational effects on phenotypic traits are hard to get (even though
there is more data on the fitness effects of mutations) (see e.g. Halligan and
Keightley, 2009; Nei, 2014). Most models therefore assume for mathematical
convenience a Gaussian distribution of mutational effects. A few simulation
studies have however explored marginally the consequences of a different, lep-
tokurtic, mutation kernel (Keightley and Hill, 1988; Bürger, 1999; Waxman
and Peck, 1999) : they found that a fatter tail for the distribution of muta-
tional effects led to higher phenotypic variance, smaller evolutionary lag and
greater fitness. The present analytical results are consistent with these past
simulation results and show that we may expect in general distributions of
mutations with higher kurtosis to reduce maladaptation and improve fitness,
especially in fast changing environments.

The advantage of sex in changing environments. Previous studies (Charlesworth,
1993; Bürger, 1999; Waxman and Peck, 1999) have used the Gaussian as-
sumption and/or simulations to compare the dynamics of adaptation to a
changing environment in sexual and asexual organisms. They all reached the
conclusion that sex should provide a net advantage in a directionally changing
environment, with a lower lag and greater fitness, which was ultimately due
to the greater phenotypic variance evolving in a sexually reproducing popu-
lations. More precisely, Bürger (1999) and Waxman and Peck (1999) found
that the phenotypic variance in sexual organisms would increase significantly
with the speed of environmental change, while it would have only moderate
effects on the variance in the asexual population. These findings seem to
contrast with our comparison of the asexual model and sexual infinitesimal
model, with more constraints on the evolution of the phenotypic variance for
the latter. However, we would warn against interpreting our comparison of
the infinitesimal and asexual model as informing about the advantage of sex
in a changing environment. We rather see this comparison as informing us
about the consequences of some modeling choices, with various constraints
on the evolution of the phenotypic variance. First, for the ease of comparison
between models, we used the same notation Vdiv to determine the amount
of new variation introduced through reproduction in the progeny of parents
in both models: in the asexual model it describes the amount of variance
introduced by mutation, while it describes variation due to segregation in
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the infinitesimal model. It is unclear whether these quantities would be com-
parable with an explicit genetic model, including mutation and segregation
at a finite set of loci. Second, we note that both Bürger (1999) and Waxman
and Peck (1999) used in their simulations parameter values for mutation and
selection corresponding well to the regime of the House-of-Cards approxima-
tion (Turelli, 1984; Turelli and Barton, 1990; Bürger, 2000), with rare mu-
tations of large effects on fitness. Our study focused on a different regime
of frequent mutations with small effects. Even if the equilibrium variance is
small in both cases, the effect of a changing environment is different.

Conclusions and perspectives. One of the main conclusion of our study is that
the phenotypic variance at equilibrium truly depends on the modelling choice
of the mode of reproduction. To understand this relationship, the approx-
imation of the phenotype distribution appeared necessary. This approach
is indeed robust, as shown by several studies following the same methodol-
ogy in spatial structured population models: discrete patches ((Mirrahimi,
2017) with an asexual model and (Dekens, 2020) with the infinitesimal sexual
model); dispersal evolution ((Perthame and Souganidis, 2016; Lam and Lou,
2017; Lam, 2017; W Hao, 2021; Calvez et al., 2022a; Lam et al., 2022) in the
asexual case and (Dekens and Lavigne, 2021) in the infinitesimal sexual case).
Moreover, this methodology is expected to be efficient to investigate other
structured population models. Our next step will be to study the adaptation
of an age–structured population to a changing environment, following (Cotto
and Ronce, 2014). Other modes of reproduction with a more complicated
genetic underlying architecture are also under investigation, (see for instance
Dekens and Mirrahimi, 2021; Dekens et al., 2021).
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modèles d’évolution et de dynamique des populations. Theses. Université
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Supplementary Information

The following subsections gather mathematical analysis supporting the
dimensionless scaling, numerical methods, Taylor expansions and formula de-
rived in the main text. Although some parts are standard methods (rescaling,
numerics), some parts are original contributions (dedicated Taylor expansions
and formula involving the Lagrangian function), extending the literature in
multiple ways. Hence, this supplementary material can be read as the com-
panion mathematical paper of the main text.

Before we enter into the technical details, let us highlight some important
observations about the Taylor expansions:

• These expansions are more than moment closure methods, where one
usually tries to guess the higher moments of the distribution in order
to derive a close system of equations on some scalar quantities (first
moments of the distribution, e.g. population size, mean relative phe-
notype value, etc). Here, the whole distribution is approximated, then
scalar quantities are deduced without any a priori assumptions on the
shape of the distribution.

• In contrast to classical expansions of the distribution F which are lin-
ear, e.g. F = F0 + εF1 + . . . , we perform here a multiplicative Taylor
expansion, meaning a linear expansion of the logarithm of the den-
sity: U = U0 + εU1 + . . . . We claim this is the natural expansion
in the regime of small variance in order to discard the variance from
the asymptotic calculations. Nonetheless, intermediate computations
may appear heavy because of the nonlinear nature of the multiplicative
expansion.

• We believe all these approximations can be theoretically justified, and
error terms can be controlled quantitatively up to some extent. Results
in the literature so far cover the case without environmental change (c
= 0), see (Perthame and Barles, 2008; Barles et al., 2009; Mirrahimi
and Raoul, 2013) for the asexual model, and the more recent (Calvez
et al., 2019; Patout, 2020) for the infinitesimal sexual model.

SI A. Derivation of generic formula (39)

Let us consider the equilibrium of our model:

λF (z)− εγc∂zF (z) +m(z)F (z) = B(F )(z) , γ ∈ {1, 2} (A.1)
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By integration over R, we find:

λρ+

∫
R
m(z)F (z) dz = ρ , ρ =

∫
R
F (z) dz . (A.2)

In the regime of small variance, we expect F to concentrate around the mean
relative phenotype z∗, so as to get the following relationship

λ ≈ 1−m(z∗) , (A.3)

which corresponds to the demographic equilibrium. Next, we multiply by
(z−z∗), where z∗ is the mean value of the distribution F . Then, we integrate
over R to find:

εγcρ+

∫
R
(z − z∗)m(z)F (z) dz =

∫
R
(z − z∗)B(F )(z) dz . (A.4)

For any operator B defined by (12) or (13), we find that the right-hand-
side vanishes by definition of z∗. The concentration of the distribution F
motivates the Taylor expansion of the selection function: m(z) ≈ m(z∗) +
(z − z∗)m′(z∗) which implies the following:

εγc ≈ −m′(z∗)(Var(F )) . (A.5)

SI B. Dimensionless scaling

We present in this section the details of the scaling procedure which
leads to equations (14) and (15) in dimensionless form. By convention, the
variables and parameters in original units are written in bold, whereas di-
mensionless quantity are in normal font.

The stationary state (λ,F) satisfies

λF(z)− c∂zF(z) + µ(z)F(z) = βB(F)(z) .

Dividing by the fecundity rate β, (trait-independent) it becomes

λ+ µ0

β
F(z)− c

β
∂zF(z) +

m(z)

β
F(z) = B(F)(z) . (B.1)

Around the optimum trait z = 0, the mortality per individual per generation
m/β is equivalent to

m(z)

β
=

1

2

m′′(0)

β
z2 + o(z2) =

z2

2Vsel

+ o(z2)
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This, it is natural to measure traits at the selection scale:

Zsel = V
1/2
sel .

The mean fitness and the phenotypic distribution becomes in the scaled trait
variable z = z/Zsel:

λ =
λ+ µ0

β
, and F (z) = F(Zselz) .

The mortality rate per individual becomes

m(z) =
m (Zselz)

β
,

so that the selection strength around the optimum is scaled to a unit value:

m′′(0) = 1 .

Our main assumption is that there is a small variability with respect to the
selection scale Zsel. Denoting by Zdiv the standard deviation of offspring
traits from the parental traits, Zdiv = V

1/2
div , we define ε the scaling ratio:

ε =
Zdiv

Zsel

.

Then, our main assumption can be summarized as ε ≪ 1, paving the way
to suitable Taylor expansions. Both models share the same notation for the
standard deviation Zdiv = V

1/2
div in the original units. However, we emphasize

that it corresponds to mechanisms of variability associated with very different
genetical background.

The reproduction operators B are transformed as follows:

SI B.1. Asexual reproduction operator in scaled variables.

B(F)(Zselz) =
1

Zdiv

∫
R
K

(
Zsel

Zdiv

(
z − z′

Zsel

))
F(z′) dz′.

Using the change of variable z′ = z′/Zsel in the integral and the definition of
ε = Zdiv/Zsel, we obtain

B(F)(Zselz) =
Zsel

Zdiv

∫
R
K

(
Zsel

Zdiv

(z − z′)

)
F(Zselz

′) dz′ =
1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′.
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SI B.2. Sexual reproduction operator in scaled trait.

B(F)(Zselz)

=
1√

πVdiv

∫∫
R2

exp

(
− 1

Vdiv

(
Zselz −

z1 + z2
2

)2
)
F(z1)

F(z2)∫
R F(z

′
2) dz

′
2

dz1dz2

=
1√
π

1

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − 1

2

(
z1
Zsel

+
z2
Zsel

))2
)
F(z1)

F(z2)∫
R F(z

′
2) dz

′
2

dz1dz2 .

Using the change of variable z1 = z1/Zsel, z2 = z2/Zsel, and z′2 = z′2/Zsel, in
the integrals and the definition of ε = Zdiv/Zsel, we obtain

B(F)(Zselz)

=
1√
π

1

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F(Zselz1)

F(Zselz2)

Zsel

∫
R F(Zselz′2) dz

′
2

Z2
seldz1dz2

=
1√
π

Zsel

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2

=
1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 .

SI B.3. The dimensionless speed.

It remains to express the dimensionless speed c = c/C with different
choices of the typical speed C. This choice depends on the mode of repro-
duction as follows:

C =


βV

1/2
div (asexual model)

β
Vdiv

V
1/2
sel

(infinitesimal sexual model)
. (B.2)
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We thus deduce the dimensionless expression of the advection term:

− c

β
∂zF(z) = −c

C

βZsel

∂zF (z)

=


−c

Zdiv

Zsel

∂zF (z) = −εc∂zF (z) (asexual model)

−c
Z2

div

Z2
sel

∂zF (z) = −ε2c∂zF (z) (infinitesimal sexual model)

. (B.3)

We obtain eventually the two rescaled problems as shown in (14) and (15).
To conclude, let us mention that the discrepancy between the two values of
C (B.2) is due to the very last step (B.3), where the dimensionless speed
must be of order ε in the asexual model, resp. of order ε2 in the infinitesimal
sexual model, in order to balance the other contributions. A mismatch at this
step (e.g. any other power of ε) would result in a severe unbalance between
the contributions, namely dramatic collapse of the population if the effective
speed is too large, or no clear effect of the change if the effective speed is too
small.

SI C. Derivation of the variance

We compute below the formula of the phenotypic variance Var(F ) in
terms of U = −εγ logF ,

Var(F ) =

(∫
R
((z − z∗)2 exp

(
−U(z)

εγ

)
dz

)/(∫
R
exp

(
−U(z)

εγ

)
dz

)
(C.1)

We assume that U reaches a non-degenerate minimum point at a unique z∗,
such that U(z) = U(z∗) + 1

2
(z − z∗)2∂2

zU(z∗) + o((z − z∗)2) as z → z∗. The
denominator is equivalent to

εγ/2
√
2π√

∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
(C.2)

whereas the numerator is equivalent to

εγ

∂2
zU(z∗)

εγ/2
√
2π√

∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
. (C.3)

Thus, the ratio is equivalent to (18):

Var(F ) ∼ εγ

∂2
zU(z∗)

. (C.4)
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SI D. Asexual type of reproduction (Details of Section 3.1)

This long section is devoted to the details of the Taylor expansion of U
defined by (16). The equations verified by the successive terms U0 and U1

are derived. The meaningful formula are computed.
We can formally expand the pair (λ, U) with respect to ε as follows,{

U(z) = U0(z)+εU1(z) + o(ε)

λ = λ0+ελ1 + o(ε)
(D.1)

where (λ0, U0) gives the limit shape as ε → 0, and (λ1, U1) is the correction
for small ε > 0. We focus on the leading order contribution in this work.
The corrector is required to refine our approximation in some part of the
discussion.

SI D.1. Equations for (λ, U), (λ0, U0) and (λ1, U1)

We begin with the diffusion approximation for the sake of simplicity. This
enables to present the main ingredient, namely the completion of the square
in the equation, that will be generalized next for a general mutation kernel.

SI D.1.1. The diffusion approximation

The equation for F (14), together with the logarithmic transformation
F (z) = exp(−U(z)/ε), is equivalent to the following one:

λ+ c∂zU(z) +m(z) = 1 +
1

2
(∂zU(z))2 +

ε

2
∂2
zU(z) . (D.2)

Clearly, the limiting problem for (λ0, U0) is

λ0 + c∂zU0(z) +m(z) = 1 +
1

2
(∂zU0(z))

2 . (D.3)

It is instructive to gather all the ∂zU0 in the right hand side, then to complete
the square:

m(z) +

[
λ0 − 1 +

c2

2

]
=

1

2
(∂zU0(z)− c)2 . (D.4)

The key point is that there exist admissible solutions of this ODE if, and
only if, the value between brackets vanishes, i.e. λ0 = 1− c2

2
. The argument

is as follows.
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Completion of the square. On the one hand, evaluating (D.4) at z = 0, we
find that λ0 − 1 + c2

2
⩾ 0 since m(0) = 0. On the other hand, if λ0 − 1 + c2

2

is positive, then ∂zU0 − c does not change sign. Assuming without loss of
generality that it is everywhere positive, we find that U0(z) ⩾ cz +U0(0) for
z ⩾ 0 and U0(z) ⩽ cz+U0(0) for z ⩽ 0. In particular, we have U0(z) → −∞
as z → −∞, and U0(z) → +∞ as z → +∞, which is clearly not admissible
because F is a population density. Therefore, λ0 − 1 + c2

2
= 0.

Next, we can deduce the lag by evaluating (D.3) at z∗0 such that ∂zU0(z
∗
0) =

0,

m(z∗0) =
c2

2
, (D.5)

and also the value of the second derivative by differentiating once and eval-
uating at z∗0 :

c∂2
zU0(z

∗
0) + ∂zm(z∗0) = 0. (D.6)

Finally, we deduce the variance from (18)

Var(F ) = − εc

∂zm(z∗0)
+ o(ε) (D.7)

consistently with (39).
We can even provide a formula for the profile U0 by solving the ODE

(D.4):

U0(z) = cz +

∣∣∣∣∫ z

0

(2m(z′))
1/2

dz′
∣∣∣∣ . (D.8)

Notice that the environmental change acts here as a linear correction of the
equilibrium profile obtained in the case c = 0. However, this is a peculiarity
of the diffusion approximation.

It is another peculiarity that a quadratic selection function m(z) = z2

2

results in a quadratic profile U0(z) = cz + z2

2
(D.8), which corresponds to a

Gaussian distribution function F with variance ε.

SI D.1.2. The case of a mutation kernel

Again, we can reformulate the problem (14) in an equivalent form:

(λ+ c∂zU(z) +m(z)) exp

(
−U(z)

ε

)
=

1

ε

∫
R
K

(
z − z′

ε

)
exp

(
−U(z′)

ε

)
dz′ (D.9)
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After the change of variables z′ = z − εy in the integral term, we obtain:

λ+ c∂zU(z) +m(z)

=

∫
R
K (y) exp

(
U(z)− U(z − εy)

ε

)
dy

=

∫
R
K (y) exp

(
y∂zU(z)− ε

2
y2∂2

zU(z) + o(ε)
)
dy .

Injecting (D.1) into (14), but dropping terms of order higher than ε, we get

λ0 + ελ1 + c∂z (U0(z) + εU1(z)) +m(z)

=

∫
R
K (y) exp

(
y∂z (U0(z) + εU1(z))−

ε

2
y2∂2

zU0(z) + o(ε)
)
dy

=

∫
R
K (y) exp (y∂zU0(z))

(
1 + εy∂zU1(z)−

ε

2
y2∂2

zU0(z)
)
dy + o(ε) .

(D.10)

By identification of the contributions having the same order in ε in equa-
tion (D.10), we obtain the following equations for the pairs (λ0, U0) and
(λ1, U1)
Limit problem:

λ0 + c∂zU0(z) +m(z) = 1 +H (∂zU0(z)) , (D.11)

First correction problem:

λ1 + (c− ∂pH(∂zU0(z))) ∂zU1(z) = −1

2
∂2
pH(∂zU0(z))∂

2
zU0(z) , (D.12)

where the Hamiltonian function H is the two-sided Laplace transform of K
up to an additive constant:

H(p) =

∫
R
K (y) exp (yp) dy − 1 ,

∂pH(p) =

∫
R
yK (y) exp (yp) dy ,

∂2
pH(p) =

∫
R
y2K (y) exp (yp) dy .
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SI D.1.3. Computation of the mean fitness

The argument of Section SI D.1.1 for computing λ0 can be extended to
the general case. Quadratic functions are replaced by convex ones, but the
argument is essentially the same.

Again, let us reorganize (19) as follows, gathering the ∂zU0 in the right
hand side,

m(z) + λ0 − 1 = H(∂zU0(z))− c∂zU0(z) . (D.13)

The function p 7→ cp −H(p) reaches a maximum value, denoted as L(c) by
definition (22). Adding this value on each side, we find

m(z) + [λ0 − 1 + L(c)] = H(∂zU0(z))− c∂zU0(z) + L(c) . (D.14)

Completion of the generalized square. As in (D.4), the function p 7→ H(p)−
cp + L(c) in the right-hand-side is convex, nonnegative and touches zero.
This is the analogous computation of the completion of the square by means
of adding L(c). The same reasoning as above implies that the constant
between brackets must vanish, i.e λ0 = 1 − L(c). Otherwise, the quantity
H(∂zU0(z)) − c∂zU0(z) + L(c) would take positive values for z ∈ R, hence
the function ∂zU0(z) could take values only on one of the two branches of
the function p 7→ H(p) − cp + L(c), as depicted in Fig S1. As the function
p 7→ H(p)−cp+L(c) is invertible on each separate branch, we could determine
unambiguously the value of ∂zU0(z) for z ∈ R. In particular, it would have
the same limiting value (possibly infinite) as z → −∞ and z → +∞ since
s(−∞) = s(+∞). This would preclude the asymptotic behavior U0(±∞) =
+∞ which is equivalent to vanishing population density at infinity. Hence,
λ0 = 1− L(c) is the only possible value.

SI D.2. Summary

So far we have obtained an analytical formula for the mean fitness,

λ0 = 1− L(c) , (D.15)

by means of the Lagrangian function which is the Legendre transform of the
Hamiltonian function,

L(c) = max
p

(pc−H(p)) , (D.16)

where H is the Laplace transform of the mutation kernel K.
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H(p)− cp + L(c)

p

λ0 − 1 + L(c)

H(@zU0(z))− c@zU0(z) + L(c)

Figure S1: Sketch of the resolution of the main equation (19). The key function p 7→
H(p) − cp + L(c) is plotted. It is H(p) − cp + L(c) = 1

2 (p
2 − 2cp + c2) = 1

2 (p − c)2 in
the case of the diffusion approximation. More generally, it is always a convex function,
with minimum value zero. The equation (19) can be reformulated as H(p0) − cp0 +
L(c) = m(z) + [λ0 − 1 + L(c)], where the derivative p0 = ∂zU0(z) must continuously
change values as z goes from −∞ to +∞. In particular, it must have opposite signs at
z = −∞ and z = +∞, otherwise U0 would correspond to a non-admissible distribution
F having an infinite limit on one side. A graphical analysis shows that it prescribes
a unique value for λ0, that is λ0 = 1 − L(c). On the one side, evaluating at z = 0,
we find [λ0 − 1 + L(c)] = H(p0) − cp0 + L(c) ⩾ 0 (by definition of L(c) which is the
completion of the generalized square). On the other hand, we cannot have λ0 > 1−L(c).
If so, then we would get H(p0) − cp0 + L(c) ⩾ [λ0 − 1 + L(c)] > 0 for all values of the
derivative p0. Thus, the solution would lie on one of the two branches of the function
p 7→ H(p) − cp + L(c) (left or right), without possible continuous connection between
the two. Consequently, the value p0 could be determined unambiguously by inverting
H(p0) − cp0 + L(c) = m(z) + [λ0 − 1 + L(c)] on that branch for each z ∈ (−∞,+∞).
This would induce the same limit for p0 as z → ±∞, contradiction. Once the value of λ0

is found, it remains to solve H(p0) − cp0 + L(c) = m(z). This can be done in principle
by inverting the function p 7→ H(p) − cp + L(c) for each z, with a careful choice of the
branch. The switch between the two branches happens at (z = 0, p0 = ∂cL(c)), where
both functions z → m(z) and p 7→ H(p)− cp+ L(c) reach their minimum value (zero).
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The knowledge of the mean fitness enables deriving the lag load, which
equilibrates birth and death in the population concentrated at trait z∗0 : λ0 =
1−m(z∗0), or equivalently

m(z∗0) = L(c) . (D.17)

Note that the latter is equivalent to setting ∂zU0(z
∗
0) = 0 in (D.13) (critical

point of the density), which is another characterization of the lag load.
The variance can be completed subsequently by differentiating (D.13)

with respect to z and evaluating at z = z∗0 . It is found that the variance
equilibrates the fitness gradient and the speed of environmental change (i.e.
the variations in the trait value in the moving frame):

∂2
zU(z∗0) = −∂zm(z∗0)

c
. (D.18)

SI D.3. Conjugacy: Enlightening heuristics

There exists an alternative way to get some of the previous formula. The
idea is to twist the unknown distribution F by a well chosen exponential func-
tion, in order to remove the transport part −c∂zF due to the environmental
change. An enlightening example is the case of the diffusive approximation.
Suppose the model is

λF (z)− εc∂zF (z)− ε2

2
∂2
zF (z) = (1−m(z))F (z) . (D.19)

Then, the twisted distribution F(z) = F (z)ecz/ε satisfies the following equa-
tion:

λF(z)− ε2

2
∂2
zF(z) =

(
1− c2

2
−m(z)

)
F(z) . (D.20)

Therefore, we are reduced to a simpler problem without environmental change,
at the expense of a global increase of mortality of value c2/2, consistently
with the result of Section SI D.1.1.

However, the general case is based on heuristics rather than formal argu-
ments. Starting from equation (14), or equivalently:

λF (z)− εc∂zF (z)

=

∫
R
Kε(z − z′) (F (z′)− F (z)) dz′ + (1−m(z))F (z) , (D.21)
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the density F is replaced with F(z) = F (z)ep0z/ε, for some p0 ∈ R to be
characterized later on. The equation for F is:

λF(z) + cp0F(z)− εc∂zF(z)

=

∫
R
Kε(z − z′)

(
ep0(z−z′)/εF(z′)− F(z)

)
dz′ + (1−m(z))F(z) , (D.22)

It is useful to rearrange the terms as follows:

λF(z)− εc∂zF(z)−
∫
R
Kε(z − z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′

=

(
1− cp0 +

(∫
R
Kε(z

′)ep0z
′/ε dz′ − 1

)
−m(z)

)
F(z) , (D.23)

A natural way to choose p0 is to guarantee that the combination of transport
and mutations preserves the center of mass of the distribution. This is a way
to remove artificially the asymmetrical transport part. Thus, we propose the
following characterization of p0: for any distribution F,∫

R
z

(
−εc∂zF(z)−

∫
R
Kε(z − z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′

)
dz = 0 .

This is equivalent to:

εc

∫
R
F(z) dz =

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz

−
∫∫

zKε(z − z′)ep0(z−z′)/εF(z) dz′dz

=

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz

−
∫∫

z′Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

∫∫
(z − z′)Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

(∫
zKε(z)e

p0z/ε dz

)(∫
R
F(z) dz

)
.

Finally, the required condition is equivalent to the following one, which ap-
pears to be independent of ε > 0:

c =

∫
yK(y)ep0y dy . (D.24)
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With the notations of Section SI D.1, this is also c = ∂pH(p0). The right
hand side of (D.23) becomes:

(1− cp0 +H(p0)−m(z))F(z) = (1− L(c)−m(z))F(z) . (D.25)

As a conclusion, we have shown that the combination of transport and mu-
tations is equivalent to an operator which preserves the center of mass, up
to a global increase of mortality of value L(c).

SI D.4. Some properties of the Hamiltonian and Lagrangian functions

We gather below some classical properties of the special functions that
appeared useful in the analysis above.

The Hamiltonian and the mutation rate. The function H plays a pivotal
role in our analysis. It could eventually break down if H degenerates. This
would be the case, for instance, if the kernel K could be decomposed as
K = (1− η)δ0 + ηKmut, with small η ≪ 1. Indeed, it could be reformulated
as follows

K(x)dx = (1− η)δ0(dx) +
η

V
1/2
mut

K̃

(
x

V
1/2
mut

)
dx

= (1− η)δ0(dx) + η

(
1

ε

V
1/2
div

V
1/2
mut

K̃

(
x

ε

V
1/2
div

V
1/2
mut

)
dx

)

= (1− η)δ0(dx) + η

(
η1/2

ε
K̃

(
x
η1/2

ε

)
dx

)
where we have used the relationship Vdiv = ηVmut in the last line. Hence,
the corresponding Hamiltonian function would be

H(p) = (1− η) + η

∫
R
K̃η−1/2 (y) exp (yp) dy − 1

= η

(∫
R
K̃ (y′) exp

(
y′

p

η1/2

)
dy′ − 1

)
= ηH̃

(
p

η1/2

)
where H̃ is the Laplace transform of the mutation kernel K̃. The latter
expression would degenerate as η → 0, except if H̃(p) = p2/2.
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Diffusion approximation as an extremal case of the convolution case. By sym-
metry of the kernel K, and its properties, the Hamiltonian function can be
bounded below:

H(p) =

∫
R
K(y)

(
exp(yp) + exp(−yp)

2
− 1

)
dy

⩾
|p|2

2

∫
R
K(y)y2dy =

|p|2

2
. (D.26)

The latter expression is realized by the so-called diffusion approximation,
see Section SI D.1.1. Indeed, the Hamiltonian function there was simply
the square of the gradient (D.3). It is a direct consequence of the formula
L(c) = maxp (pc−H(p)) (completion of the generalized square) that the
Lagrangian function is bounded above:

L(c) ⩽
c2

2
. (D.27)

Hence, the maximum of lag load is realized for the diffusion approximation.

The Hamiltonian and the Lagrangian functions are dual from each other.
The Hamiltonian H(p) can be recovered from the Lagrangian function L(c)
by the very same formula, simply exchanging the roles of c and p:

H(p) = max
c

(pc− L(c)) . (D.28)

This inversion of the roles can also be seen on the derivatives of the functions,
which are reciprocical one from each other. Indeed, at p = p0, we have
∂pH(p0) = c0, where c0 is the one achieving the maximum value in (D.28),
that is, the one satisfying the first order condition p0 = ∂cL(c0). This is
exactly the definition of reciprocical functions. This is a natural property
from the viewpoint of convex analysis: the two functions H and L are indeed
convex, so they have both monotonic derivative functions. The relationship
between H and L is precisely the reciprocity of their derivatives.

The Hamiltonian function contains all the moments of the mutation kernel.
By definition of the exponential function we have:

H(p) =

∫
R
K(y)

(
∞∑
k=0

(py)k

k!

)
dy − 1

=
∞∑
k=1

(∫
R
K(y)yk dy

)
pk

k!
.
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Hence, the moments of K are successive derivatives of H at the origin.

Influence of the kurtosis of the mutation kernel. As an immediate conse-
quence, we see that the mean fitness λ0 = 1 − L(c) crucially depends on
the full shape of the mutation kernel K. Indeed, the Lagrangian function
L is related to the Laplace transform of the mutation kernel K (20) via the
Legendre transform (22). To investigate this relationship, we investigate five
kernels having the same variance, but different shapes, see Table D.4. We can
show from the Taylor expansions that the Hamiltonian functions are ordered
from top to bottom as follows:

Hdiff ⩽ Hunif ⩽ Hgauss ⩽ Hexp ⩽ Hgamma . (D.29)

Accordingly, the Lagrangian functions are ordered in the opposite way, and
the resulting mean fitnesses are ordered as follows:

λdiff ⩽ λunif ⩽ λgauss ⩽ λexp ⩽ λgamma . (D.30)

Hence, the lag load is ordered with respect to the kurtosis of the kernel.

SI D.5. Consistency of the formula for ∂2
zU0(z

∗
0) at c = 0

Here, we justify Remark 1, meaning that the formula obtained for ∂2
zU0(z

∗
0)

at c > 0 (D.18) coincides with the formula at c = 0, namely ∂2
zU0(0) = 1.

The latter is derived as follows. Firstly, the mean fitness (D.15) is λ0 = 1,
as L(0) = 0, and the mean relative phenotype (D.17) is naturally z∗0 = 0 at
c = 0 by definition of the mortality rate, optimum at the origin. Secondly,
the expression of ∂2

zU0(0) can be obtained by two alternative ways.
By differentiating twice (D.11) with respect to z, yields

∂2
zm(z) = ∂2

pH (∂zU0(z))
(
∂2
zU0(z)

)2
+ ∂pH (∂zU0(z)) ∂

3
zU0(z) .

By evaluating this expression at z = 0, the last contribution vanishes because
∂pH (∂zU0(0)) = ∂pH (0) = 0. Hence, we get that

∂2
zU0(0) =

(
∂2
zm(0)

∂2
pH (∂zU0(0))

)1/2

= 1 ,

since ∂2
zm(0) = ∂2

pH(0) = 1.
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Mutation kernel K(y) Hamiltonian function H(p)

Diffusion approximation
1

2
∂2
z

1

2
p2

Uniform distribution
1

2
√
3
1(−

√
3,
√
3)

sinh(
√
3p)√

3p
− 1

Gaussian distribution
1√
2π

exp

(
−y2

2

)
exp

(
p2

2

)
− 1

Exponential distribution
1√
2
exp

(
−
√
2|y|
) 1

1− p2

2

− 1

Gamma distribution |y|γ−1 exp
(
−
√

γ(γ + 1)|z|
) 1

2
((1− θp)−γ + (1 + θp)−γ)− 1

Table D.4: (Left) Five examples of mutation kernels with same (unit) variance, ordered by
increasing kurtosis (from top to bottom). (Right) The associated Hamiltonian functions,
with analytical formula. The corresponding Lagrangian functions cannot be expressed
with classical functions, but the first one, up to our knowledge.
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Alternatively, performing suitable Taylor expansions in expressions of,
respectively, z∗0 (24) and ∂2

zU0(z
∗
0) (25), as c → 0, yields:

z∗0 =
∂z∗0
∂c

c+ o(c) , and
1

2
∂2
zm(0)

(
∂z∗0
∂c

c

)2

=
1

2
∂2
vL(0)c

2 ,

∂2
zU0(0) = −∂2

zm(0)

c

(
∂z∗0
∂c

c

)
= ∂2

zm(0)

(
∂2
vL(0)

∂2
zm(0)

)1/2

=
(
∂2
zm(0)∂2

vL(0)
)1/2

= 1 .

By reciprocity of the derivatives ofH and L, we have ∂2
vL(0) = 1/

(
∂2
pH(0)

)
=

1. Both calculations coincide.

SI D.6. Quantitative description of the first correction (λ1, U1)

We derive useful informations from the equation (D.12) about the pair
(λ1, U1). The methodology goes as in Section SI D.1.

We give the formula for the correctors λ1, z
∗
1 , and the local shape around

the minimal value: ∂2
z (U0 + εU1)(z

∗
0 + εz∗1). However, only the former one

(λ1) is meant to be used in the main text, as it contains useful information
about the mutation load in the population.

The formula are summarized in the following list, which completes those
obtained in Section (SI D.2) at the leading order:

Mean fitness λ = 1− L(c)− ε

2

(
1

∂2
vL(c)

)1/2

+ o(ε)

Mean relative phenotype z∗ = z∗0 +
ε

2

(
1

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

c

)
+ o(ε)

Local shape

∂2
zU(z∗) = −∂zm(z∗0)

c

−ε

2

(
1

c

∂2
zm(z∗0)

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+

(
∂zm(z∗0)

c2

)2
)

+ o(ε)

(D.31)

Description of the Mean fitness λ1. The equation (D.12) evaluated at the
optimal trait z = 0 yields λ1 = −∂2

pH(p0)∂
2
zU0(0)/2, where p0 = ∂zU0(0). To

compute ∂2
zU0(0), we differentiate (D.11) twice, and evaluate the expression

at z = 0:
1 = ∂2

pH (p0)
(
∂2
zU0(0)

)2
. (D.32)
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Recall that p0 = ∂vL(c). Moreover, since ∂pH and ∂vL are reciprocal func-
tions, then the second derivatives are inverse from each other. Therefore
∂2
pH(p0) = (∂2

vL(c))
−1
. Thus, λ1 is given by the following expression:

λ1 = −1

2

(
1

∂2
vL(c)

)1/2

. (D.33)

Description of the mean relative phenotype z∗1. By pushing the computations
further, it is also possible to derive the first order correction of the lag z∗1 .
It is defined such that z∗0 + εz∗1 is the critical point of U0 + εU1, that is
∂z(U0 + εU1)(z

∗
0 + εz∗1) = 0 . By expanding this relation, but keeping only

the first order terms, we obtain z∗1 = −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0). On the other

hand, evaluating the equation (D.12) at z = z∗0 yields −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0) =

λ1/(c∂
2
zU0(z

∗
0))+ 1/(2c). Using the expression (D.18) of ∂2

zU0(z
∗
0), we obtain:

z∗1 =
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

2c
. (D.34)

Description of the local shape. We expand the second derivative of U0 + εU1

at the lag point z∗0 + εz∗1 with respect to ε and we obtain

∂2
z (U0+εU1)(z

∗
0+εz∗1) = ∂2

zU0(z
∗
0)+ε

(
∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)
)
+o(ε) . (D.35)

We aim at characterizing the term of order ε in this expansion. The first
additional contribution ∂3

zU0(z
∗
0) can be deduced from the equation (D.11)

by differentiating it twice, and evaluating at z = z∗0 :

c∂3
zU0(z

∗
0) + ∂2

zm(z∗0) = ∂2
pH (0)

(
∂2
zU0(z

∗
0)
)2

=
(
∂2
zU0(z

∗
0)
)2

.

The second additional contribution ∂2
zU1(z

∗
0) is deduced from the equation (D.12)

by differentiating once and evaluating at z = z∗0 :

c∂2
zU1(z

∗
0) = ∂2

zU0(z
∗
0)∂zU1(z

∗
0)−

1

2
∂3
zU0(z

∗
0) .
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Combining these two expressions with the expression (D.34) of z∗1 , and ∂zU1(z
∗
0),

we get

∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)

= ∂3
zU0(z

∗
0)

(
z∗1 −

1

2c

)
+

1

c
∂2
zU0(z

∗
0)∂zU1(z

∗
0)

=
1

c

((
∂2
zU0(z

∗
0)
)2 − ∂2

zm(z∗0)
)( 1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

− 1

c
∂2
zU0(z

∗
0)

(
λ1

c
+

∂2
zU0(z

∗
0)

2c

)
=

1

c

((
∂zm(z∗0)

c

)2

− ∂2
zm(z∗0)

)(
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

+
∂zm(z∗0)

c2

(
− 1

2c

(
1

∂2
vL(c)

)1/2

− ∂zm(z∗0)

2c2

)

= − ∂2
zm(z∗0)

2c∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

− 1

2

(
∂zm(z∗0)

c2

)2

This concludes the analysis of the corrector problem at first order.

SI D.7. Numerical computation of the distributions U0 and U1 in the asexual
model

The equation for U0 (D.11) is a non linear Ordinary Differential Equation
(ODE). It has a singular point at z = 0, where the function p 7→ cp−H(p)
cannot be inverted. It was solved numerically in the following way: after
differentiation with respect to z, equation (D.11) becomes

(∂pH(∂zU0(z))− c) ∂2
zU0(z) = ∂zm(z) ⇔ d

dz
(U ′

0(z)) =
m′(z)

∂pH(U ′
0(z))− c

.

This ODE on U ′
0(z) was solved using a classical solver (RK45), separately on

the two branches z > 0 and z < 0. The issue is to initialize appropriately
the solver for z = 0+, and z = 0−. The correct initialization was deduced
from the analytical expressions of U ′

0(0) = p0 = ∂vL(c).
Next, the linear ODE for U1 (D.12) was computed along characteristic
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lines:

ż(τ) = ∂pH(∂zU0(z(τ)))− c

=⇒ d

dτ
(U1(z(τ))) = λ1 +

1

2
∂2
pH(∂zU0(z(τ)))∂

2
zU0(z(τ))

= λ1 +
1

2

(
d

dz
∂pH(∂zU0)

)
(z(τ)) .

Integrating this formula with respect to time τ yields

U1(z(τ))− U1(z(0)) = λ1τ +
1

2

∫ τ

0

(
d

dz
∂pH(∂zU0)

)
(z(τ ′)) dτ ′

= λ1τ +
1

2

∫ z(τ)

0

(
d

dz
∂pH(∂zU0)

)
(z)

(
1

∂pH(∂zU0(z))− c

)
dz

= λ1τ +
1

2
log

∣∣∣∣∂pH(∂zU0(z(τ)))− c

∂pH(∂zU0(z(0)))− c

∣∣∣∣ .
Again, the delicate issue is to evaluate appropriately the value U1(z(0)) for
a starting point z(0) close to 0 (notice that 0 is an equilibrium point for the
ODE: ż(τ) = ∂pH(∂zU0(z(τ))) − c). The correct approximation is given
by the analytical expression of ∂zU1(0) obtained by differentiating equa-
tion (D.12) with respect to z and evaluating it at z = 0.

SI E. Qualitative properties of the phenotypic variance at equilib-
rium Var(F)

In this section, we discuss in detail the behavior of the phenotypic variance
at equilibrium with respect to the speed of change c in the scenario of asexual
reproduction. Let us remind that in this case the phenotypic variance at
equilibrium is well approximated by the following expression at the leading
order:

Var(F) ≈ − c

∂zm(z∗0)
.

It is convenient to introduce the positive lag |z∗0|, which is the distance to
the optimal trait located at z = 0, so that

Var(F) ≈ c

∂zm(|z∗0|)
.
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Recall that the lag is deduced from the inversion of the increment of mortality
m:

|z∗0| = m−1

(
βL

(
c

βV
1/2
div

))
, (E.1)

where m−1 is the inverse of the function m on (0,∞). The differentiation of
the lag |z∗0| with respect to c goes as follows:

d|z∗0|
dc

(c) =
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
∂z(m

−1)

(
βL

(
c

βV
1/2
div

))
, (E.2)

Since ∂z(m
−1) = 1/∂zm(m−1), the previous expression becomes

d|z∗0|
dc

(c) =
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
1

∂zm

(
m−1

(
βL

(
c

βV
1/2
div

)))

=
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
1

∂zm(|z∗0|)
, (E.3)

Reformulating this expression, we get an alternative expression for the vari-
ance:

Var(F) ≈ c

∂zm(|z∗0|)
=

d|z∗0|
dc

(c)×V
1/2
div c

(
∂vL

(
c

βV
1/2
div

))−1

(E.4)

Now let us differentiate the latter expression with respect to c:

d

dc

(
c

∂zm(|z∗0|)

)
=

d2|z∗0|
dc2

(c)×V
1/2
div c

(
∂vL

(
c

βV
1/2
div

))−1

+
d|z∗0|
dc

(c)×V
1/2
div

(
∂vL

(
c

βV
1/2
div

))−1

1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

)


We shall establish that for all c > 0, the following inequality holds true:1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

)
 ⩾ 0 .
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Indeed, it can be reformulated by means of p such that p = ∂vL
(
c/βV

1/2
div

)
,

as follows:

1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

) = 1− ∂pH(p)

p∂2
pH(p)

= 1−

∫
R
yK(y)epy dy

p

∫
R
y2K(y)epy dy

= 1−

∫
R+

yK(y) sinh(py) dy

p

∫
R+

y2K(y) cosh(py) dy
. (E.5)

The conclusion follows from the pointwise inequality tanh(py) ⩽ py for p, y ⩾
0, which is equivalent to sinh(py) ⩽ py cosh(py).

On the other hand, we have shown that the lag increases with respect to
the speed of change c, thus d|z∗0|/dc ⩾ 0. Then, if the lag is convex with
respect to the speed of change c, that is d2|z∗0|/dc2 ⩾ 0, then the phenotypic
variance at equilibrium increases with respect to the speed c.

However, the convexity of the lag depends on the convexity of the function
c 7→ m−1(L(c)). If the selection is quadratic m(z) = z2/2, this function is
concave for any mutation kernel. However, if the selection function is more
than quadratic, we can find mutation kernels such that the lag becomes
convex.

In the diffusion approximation L(c) = c2/2, we can go further. In this
case, we know from equation (33) that the lag accelerates with c if m is
sub-quadratic. Whereas it is concave if m is super-quadratic in the sense
of (34).

As a result, we have shown that the variance Var(F) increases with c
if the function c 7→ m−1(L(c)) is convex. More precisely, in the diffusion
approximation, the variance increases with c if m is sub-quadratic in the
sense of (33).

SI F. Sexual type of reproduction (details of Section 3.2)

In this section we develop the computations required to describe U up
to order ε2, as in (29). We present arguments from convex analysis to char-
acterize U0. We provide an explicit formula for the first order correction U1
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as an infinite series. Meanwhile, we present tedious computations needed to
identify the linear part of U1, and we derive the first order correction of the
mean fitness λ1 as a by-product.

Our starting point is the following relationship which is equivalent to
finding a stationary density in the moving frame, expanded at first order in
ε2:

λ0 + c∂zU0(z) +m(z) =

1

ε2
√
2π

∫∫
R2

exp

(
− 1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
− U1(z1)− U1(z2) + U1(z)

)
dz1dz2

1

ε
√
2π

∫
R
exp

(
− 1

ε2
U0(z

′)− U1(z
′)

)
dz′

.

(F.1)

Note that the prefactors (involving ε, π have been arranged for the sake of
normalizing singular integrals).

The arguments below are formal computations. We refer to (Calvez et al.,
2019) for a rigorous analysis of this asymptotic analysis in the case c = 0,
and to (Patout, 2020) for the time marching problem.

SI F.1. The characterization of U0 by convex analysis
Recall that the identity satisfied by U0 is the following one, ensuring that

the right hand side of (F.1) does not get trivial as ε → 0:

∀z ∈ R min
(z1,z2)∈R2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)−minU0

]
= 0

⇐⇒ U0(z) + minU0 = min
(z1,z2)∈R2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
.

(F.2)

The goal of this section is to prove that any solution of the functional
equation (F.2) is given by a member of the three parameters family

U0(z) = C +
(z − a)2−

2
+

(z − b)2+
2

, (F.3)

where the parameters a, b are such that a ⩽ b and C is an arbitrary constant.
We denote by z∗0 a minimum point of U0. We can restrict to minU0 = 0
without loss of generality (so that the additive constant C is set to 0). The
characterization of U0 is done in several steps.
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Regularity and λ−concavity. Firstly, notice that U0(z)−z2 is a concave func-
tion, as it can be written as

U0(z)− z2 = min
(z1,z2)∈R2

(
−z(z1 + z2) +

(
z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
= min {affine functions with respect to z} .

We deduce that U0 is continuous, and that it admits left and right derivatives
everywhere.

The convex conjugate. The trick is to introduce the convex conjugate Û0

(also called the Legendre transform of U0):

Û0(y) = max
z∈R

((z − z∗0)y − U0(z)) ,

where z∗0 is a minimum point of U0. The basic properties of Û0 are listed
below:

• Û0 is convex, so it is continuous, and it admits left and right derivatives
everywhere,

• Û0(0) = max (−U0) = −min (U0) = 0,

• for all y, Û0(y) ⩾ −U0(z
∗
0) = 0, thus min Û0 = 0.

We deduce from the functional identity (F.2), that

Û0(y) = max
z∈R

(z − z∗0)y − min
(z1,z2)
∈R2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
= max

(z,z1,z2)∈R3

(
(z − z∗0)y −

(
z − z1 + z2

2

)2

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
max
z∈R

(
(z − z∗0)y −

(
z − z1 + z2

2

)2
)

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
y2

4
+

1

2
(z1 + z2) y − z∗0y − U0(z1)− U0(z2)

)
=

y2

4
+ max

z1∈R

(
1

2
(z1 − z∗0)y − U0(z1)

)
+max

z2∈R

(
1

2
(z2 − z∗0)y − U0(z2)

)
.
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Finally, we end up with the following functional identity,

Û0(y) =
y2

4
+ 2Û0

(y
2

)
. (F.4)

We observe that Û0(y) = y2/2 is a solution to the latter identity. However,

it is not the only one. More generally, let a = Û ′
0(0

−) and b = Û ′
0(0

+)
denote the left and the right derivative at y = 0, respectively. By convexity,
and optimality at the origin y = 0 (namely, min Û0 = Û0(0) = 0), we have
a ⩽ 0 ⩽ b. We deduce recursively from (F.4) the series expansion

Û0(y) =
y2

4
+

y2

8
+

y2

16
+ · · ·+ 2n

(2−ny)2

4
+ 2n+1Û0

(
2−(n+1)y

)
,

=⇒ Û0(y) =
y2

2
+ Û ′

0(0
±)y . (F.5)

Obviously, the choice of the left or right derivative depends on the sign of y.

The convex bi-conjugate. Next, we define the convex bi-conjugate

Ŭ0(z) = max
y∈R

(
(z − z∗0)y − Û0(y)

)
.

Standard results in convex analysis states that Ŭ0 and U0 coincide if U0 is
convex. More generally, Ŭ0 is the (lower) convex envelope of U0 (Rockafellar,
1970). This is quite useful, because the characterization (F.5) enables to
compute the convex bi-conjugate:

Ŭ0(z) =
(z − z∗0 − a)2−

2
+

(z − z∗0 − b)2+
2

. (F.6)

We deduce that the latter function is the (lower) convex envelope of U0. The
last (delicate) step consists in proving that it coincides with U0.

From the convex envelope to the function. The idea is to use the functional
identity (F.2) iteratively. As z = z∗0 + a is an extremal point of the graph
of Ŭ0, the values of U0 and Ŭ0 must coincide at this point. Hence, we have
U0(z

∗
0 + a) = 0, and similarly U0(z

∗
0 + b) = 0. Recall that U0(z

∗
0) = 0

by definition. As a consequence, we have for z1 = z∗0 + a, z2 = z∗0 , and
z = z∗0 + a/2 in (F.2):

U0

(
z∗0 +

a

2

)
⩽ 0 ,
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from which we deduce that U0 vanishes at z = z∗0 +a/2 as well, and similarly
at z = z∗0 + b/2. The same argument shows that U0 vanishes at each middle
point between two vanishing points. So, it vanishes on a dense set of points
in z∗0 + (a, b). By continuity of U0, it vanishes everywhere on z∗0 + [a, b].
Finally, it coincides with its (lower) convex envelope (F.6) because the latter
is strictly convex outside the interval [a, b].

Finally, it is necessary that a = b = 0 in the present context. Otherwise
F would not correspond to a population density uniformly with respect to
vanishing ε.

We have proved that U0 is necessary of the form

U0(z) =
(z − z∗0)

2

2
. (F.7)

However, we are not able at this point to characterize the mean relative phe-
notype z∗0 . We need to push the analysis beyond the first order and compute
the profile U1, as done in the following sections.

Discussion. There is an immediate interpretation of this result. We found
that the equation (F.2) satisfied by U0 does not depend on the selection
function m. Thus we can say that the main equation (F.1) is dominated by
the reproduction term in the regime of small variance. Hence, the station-
ary distribution at the leading order equilibrium is the Gaussian distribution
with prescribed variance (here, renormalized to a unit value), meaning a
quadratic polynomial after taking the logarithm. In fact, Gaussian distribu-
tions are known to be stationary distributions of the Infinitesimal model in
the absence of selection. As selection does not act on reproduction, there
is no way to find the mean relative phenotype at equilibrium, and so z∗0
must be unknown at this point of analysis. The situation is quite different
from the case of asexual reproduction, where no stationary distribution can
be achieved without selection, and the mean relative phenotype is deduced
from the knowledge of U0, accordingly.

SI F.2. Description of the corrector U1

Next, we can rearrange the right hand side in (F.1) using the characteri-
zation of U0 (F.7). It is instructive to begin with the denominator integral,
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which is a classical computation:

1

ε
√
2π

∫
R
exp

(
−(z′ − z∗0)

2

2ε2

)
exp

(
− U1(z

′)
)
dz′

=
1√
2π

∫
R
exp

(
−y′2

2

)
exp (−U1(z

∗
0 + εy′)) dy′

−→
ε→0

exp(−U1(z
∗
0)) .

Indeed, the function (ε
√
2π)−1 exp (−(z′ − z∗0)

2/(2ε2)) is the approximation
of a Dirac mass as ε → 0. Hence the integral concentrates on the mean
relative phenotype z∗0 : this yields the convergence of the integral towards
exp(−U1(z

∗
0)). An alternative way to say is that, in the integral

∫
F (z′) dz′,

most of the contribution comes from those z′ which are close to z∗0 .

SI F.2.1. What are the most representative parental trait values?

The same kind of computation allows handling the numerator in (F.1).
The key point is to understand how the term inside the integral gets con-
centrated as ε → 0. In other words, we shall identify what are the most
representative trait values (z1, z2) of parents giving birth to an offspring of
trait z. Those will contribute mainly to the integral in the right hand side.
They will enable to derive the equation for U1.

A preliminary computation is required: the double integral gets con-
centrated at the minimum points (with respect to variables (z1, z2)) of the
quadratic form under brackets:(

z − z1 + z2
2

)2

+ U0(z1) + U0(z2)− U0(z)

where U0(z) =
(z − z∗0)

2

2
. (F.8)

We know already that the minimum value is zero thanks to the characteriza-
tion (F.2). The values above the minimum will contribute very little to the
integral as they will have size of order exp(−δ/ε2), for δ > 0. Indeed, this
decays to zero very fast as ε → 0.

Direct computation provides the unique minimum (z1, z2) = (z̄, z̄), with
z̄ = (z + z∗0)/2. This means that an offspring of trait z is very likely to be
the combination of equal parental trait values z1 = z2, equal to the mid-
value between z and the mean relative phenotype z∗0 . This is the result of
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an interesting trade-off: on one hand, parents with phenotype close to the
mean relative phenotype value z∗0 are more frequent; on the other hand, the
chance of producing an offspring with phenotype z decreases when their own
phenotype departs from the latter value. As a compromise, the most likely
configuration is when both parents have the mid-point trait z̄, see Figure S2.

We thus define the following change of variable centered around this min-
imum point: {

z1 = z̄ + εy1

z2 = z̄ + εy2
(F.9)

The quadratic form between brackets [· · · ] in the numerator of (F.1) is trans-
formed into an expression which does not depend on ε:

1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
=

1

2
y1y2 +

3

4

(
y21 + y22

)
.

And the numerator finally writes

1√
2π

∫∫
R2

exp
(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2) + U1(z)

)
dy1dy2

−→
ε→0

1√
2π

(∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)])
dy1dy2

)
exp (−U1(z̄)− U1(z̄) + U1(z))

= exp (−2U1(z̄) + U1(z))

Note that the prefactor (
√
2π)−1 is such that the integral in (y1, y2) has unit

value.

SI F.2.2. Equation for the corrector U1

We conclude that equation (F.1) converges as ε → 0 to the following
equation on the corrector U1:

λ0 + c(z − z∗0) +m(z) = exp (U1(z
∗
0)− 2U1(z̄) + U1(z)) ,

with z̄ =
z + z∗0

2
. (F.10)
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1
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Figure S2: Sketch of the argument that underpins the estimation of the double integral
in (F.1). Recall that the infinitesimal model assigns to an offspring the trait z which is
the mean value of the parental trait values plus a normal random variable with standard
deviation 1/

√
2 (in dimensionless variables). Among the three scenarios A,B,C, the first

one is by far the most likely in the regime of small variance ε2 ≪ 1. In scenario B, the
parental trait values (z1, z2) are close to the mean relative phenotype z∗0 : this is a likely
event from the point of view of the parental trait distribution. However, it is very unlikely
to draw a random number Y so large resulting in z at the next generation. In scenario C,
the deviation is small, so that the mean parental trait is close to z: this is a likely event
from the point of view of the ”choice” of the offspring trait. However, it is very unlikely to
draw a parent with trait z2 from the phenotypic distribution F : that one is too far from
the mean relative phenotype in the tail of the distribution. Scenario A is the compromise
between these two antagonistic effects.
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This equation is simple enough to admit an explicit solution as an infinite
series, as shown below.

Note that the values of λ0 and z∗0 can be deduced readily from (F.11) as
explained in the main text (32).

SI F.2.3. Analytical expression of U1

It is convenient to reformulate equation (F.10) as follows, by using the
formula (32) for λ0 and z∗0 ,

log
(
1 +G(z)

)
= U1(z

∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z) (F.11)

where G(z) = m(z) − ∂zm(z∗0)(z − z∗0) is such that G(0) = ∂zG(0) = 0.
Differentiating this equation with respect to z, we obtain

∂zG(z)

1 +G(z)
= ∂zU1(z)− ∂zU1

(
z + z∗0

2

)
.

After the change of variable z = z∗0 + h, we get eventually the recursive
relation where the value at some z∗0 + h can be computed from the value at
z∗0 + h/2,

∂zU1(z
∗
0 + h) = ∂zU1

(
z∗0 +

h

2

)
+

∂zG(z∗0 + h)

1 +G(z∗0 + h)
.

We deduce the following series expansion,

∂zU1(z
∗
0 + h) = ∂zU1(z

∗
0) +

∞∑
n=0

∂zG(z∗0 + 2−nh)

1 +G(z∗0 + 2−nh)
. (F.12)

This provides an expression for U1 after integration with respect to h,

U1(z
∗
0 +h) = U1(z

∗
0)+h∂zU1(z

∗
0)+

∞∑
n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.13)

There are two degrees of freedom in the above expression of U1. First, the
constant part U1(z

∗
0) cannot be determined, because U is defined up to an

additive constant. Thus, we are free to choose any value for U1(z
∗
0), say

U1(z
∗
0) = 0 for instance. On the other hand, the value p∗ = ∂zU1(z

∗
0) plays a

key role in the shape of the distribution, related to the expansion of the mean
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relative phenotype, see (F.20) below, but its value cannot be elucidated at
this stage. We need to push the expansion up to order ε4 to get the following
formula for p∗:

p∗ =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.14)

see next section for the complete computation (see also (Calvez et al., 2019)
for an alternative path with limited expansions to the next order in the case
c = 0).

We deduce the following expression for U1,

U1(z
∗
0+h) =

(
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c

)
h+

∞∑
n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.15)

SI F.2.4. The missing linear part: calculation of ∂zU1(z
∗
0)

Starting with the equation satisfied by U (28), and plugging the ansatz{
U(z) = U0(z) + ε2U1(z) + ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1 + ε4λ2 + o(ε4)
(F.16)

we obtain the following equation up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z) =
IN(ε, U1, U2)

ID(ε, U1, U2)

where

IN(ε, U1, U2) =
1√
2π

∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2) + U1(z)

)
× exp

(
−ε2U2(z̄ + εy1)− ε2U2(z̄ + εy2) + ε2U2(z)

)
dy1dy2

and

ID(ε, U1, U2) =
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

The integrals were subject to the same change of variables as in (F.9). After
elimination of higher order contributions, we obtain for the denominator, up
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to order ε2:

1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

=
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0)− εy′∂zU1(z

∗
0)− ε2

y′2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
dy′

=
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0)

)
(
1− εy′∂zU1(z

∗
0) +

ε2

2
y′2 |∂zU1(z

∗
0)|

2 − ε2

2
y′2∂2

zU1(z
∗
0)− ε2U2(z

∗
0)

)
dy′

= exp (−U1(z
∗
0))

(
1 +

ε2

2
|∂zU1(z

∗
0)|

2 − ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
.

In an analogous way, we obtain for the numerator,

IN(ε, U1, U2) =
1√
2π

∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− 2U1(z̄) + U1(z)

)
(
1− ε [y1 + y2] ∂zU1(z̄) +

ε2

2
[y1 + y2]

2 |∂zU1(z̄)|2 +
ε2

2

[
y21 + y22

]
∂2
zU1(z̄)

− 2ε2U2(z̄) + ε2U2(z)
)
dy1dy2

= exp (−2U1(z̄) + U1(z))

(
1 +

ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂2
zU1(z̄)− 2ε2U2(z̄) + ε2U2(z)

)
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Combining all these expansions, we obtain up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z)

= exp
(
U1(z

∗
0)− 2U1(z̄) + U1(z)

)
1 +

ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂2
zU1(z̄)− 2ε2U2(z̄) + ε2U2(z)

1 +
ε2

2
|∂zU1(z

∗
0)|

2 − ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

= exp
(
U1(z

∗
0)− 2U1(z̄) + U1(z)

)
(
1 + ε2

(
1

2
|∂zU1(z̄)|2 −

1

2
|∂zU1(z

∗
0)|

2 +
1

2
∂2
zU1(z

∗
0)

−3

4
∂2
zU1(z̄) + U2(z

∗
0)− 2U2(z̄) + U2(z)

))
.

By identifying contributions of order ε2 on both sides, we deduce the following
equation for the next order correction U2,

U2(z
∗
0)− 2U2(z̄) + U2(z)

=
1

2
|∂zU1(z

∗
0)|

2 − 1

2
|∂zU1(z̄)|2 +

3

4
∂2
zU1(z̄)−

1

2
∂2
zU1(z

∗
0) +

λ1 + c∂zU1(z)

1 +G(z)
.

By evaluating, and differentiating at z = z∗0 , we deduce the following pair of
identities,

0 =
1

4
∂2
zU1(z

∗
0) + λ1 + c∂zU1(z

∗
0)

0 = −1

2
∂2
zU1(z

∗
0)∂zU1(z

∗
0) +

3

8
∂3
zU1(z

∗
0) + c∂2

zU1(z
∗
0)

(F.17)

The second identity enables to compute p∗ = ∂zU1(z
∗
0):

p∗ =
3∂3

zU1(z
∗
0)

4∂2
zU1(z∗0)

+ 2c =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.18)

where ∂2
zU1(z

∗
0) and ∂3

zU1(z
∗
0) are deduced from equation (F.11) after multiple

differentiation, or directly from (F.12). This yields the missing part in (F.15).
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SI F.2.5. Analytical expressions of the macroscopic corrections terms λ1 and
z∗1

Description of Malthus rate λ1. The first identity in (F.18) provides λ1 =
−∂2

zU1(z
∗
0)/4 − c∂zU1(z

∗
0). The expression (F.10) differentiated twice and

evaluated at z = z∗0 , yields ∂2
zU1(z

∗
0) = 2∂2

zm(z∗0). We conclude from the
expression of p∗ that

λ1 = −2c2 − c
∂3
zm(z∗0)

2∂2
zm(z∗0)

− 1

2
∂2
zm(z∗0). (F.19)

Description of the mean relative phenotype correction z∗1. The first order
correction of the mean relative phenotype z∗1 is defined such that z∗0 + εz∗1 is
the critical point of U0+ε2U1, that is ∂z(U0+εU1)(z

∗
0 +εz∗1) = 0 . Expanding

this relation and keeping only the terms of order ε2, we obtain using the
expression of p∗,

z∗1 = −∂zU1(z
∗
0) = − ∂3

zm(z∗0)

2∂2
zm(z∗0)

− 2c . (F.20)

Description of the local shape. The second derivative of U0 + ε2U1 at the
mean relative phenotype z∗ is equal to ∂2

z (U0+ε2U1)(z
∗
0+ε2z∗1) = ∂2

zU0(z
∗
0)+

ε2 (∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)), up to the order ε2. Since ∂3

zU0 is equal to 0, we
can deduce from the expression of U1 that the local shape around z∗ is given
by

∂2
z (U0 + ε2U1)(z

∗
0 + ε2z∗1) = 1 + 2ε2∂2

zm(z∗0) .

SI G. Numerical computation of the equilibrium (λ,F)

In order to obtain numerical approximations of the pair (λ,F), we get
back to the time marching dynamics of the density f(t, z) which satisfies the
following equation:

∂tf(t, z)− c∂zf(t, z) = βB(f(t, ·))(z)− µ(z)f(t, z) (G.1)

The density f(t, z) is expected to behave like exp(λt)F(z) for large time.
It is preferable to introduce the frequency of traits in population: p(t, z) =
f(t, z)/

∫
f(t, z′) dz′. The equation for p is:

∂tp(t, z) + (β − µ̄(t))p(t, z)− c∂zp(t, z)

= βB(p(t, ·))(z)− µ(z)p(t, z) , (G.2)
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where the additional µ̄(t) ensures that
∫
p remains constant:

µ̄(t) =

∫
µ(z′)p(t, z′) dz′ . (G.3)

We expect that the pair (β(1− µ̄(t),p) does converge to (λ,F) as t → +∞.
Classical numerical methods were used to approximate (G.2)-(G.3) for

large time, until some error threshold is reached for ∥∂tp(t, ·)∥∞. The trans-
port term −c∂zp(t, z) was handled using an upwind scheme. The convolu-
tions involved in operator B were handled using the function conv in MAT-
LAB software. The grid mesh was adapted to the scales in SI SI B in order
to capture the appropriate phenomena at the correct scale.

SI H. Comparison with an Individual–based model.

In this section we aim to compare our deterministic approximation with
the outcome of a stochastic individual based model (IBM model) with a finite
population. We first describe briefly the IBM model. Then we compare the
equilibrium distribution of the IBM with our approximation distributions
described in Fig. 8. Finally, we compare our results on the effect of the speed
of environmental change with the outcomes of the IBM model.

Stochastic Individual Based Model

We consider a stochastic IBM model where each individual is charac-
terized by its trait Xi and its size 1/N. They reproduce at a rate β and
die at a rate that depends on their traits Xi, the speed of environmental
change c and on the number of individuals Nt in the population at time
t. More precisely, the individuals may die due to their maladaptness in the
phenotypic landscape, which happens at a rate µ(Xi− ct). Or they may die
from density dependence at a rate κNt/N, where Nt/N denotes the size of
the population (it is similar to ρ(t) in our deterministic model). The den-
sity dependence keeps the number of individuals finite, and proportional to
N. In particular, when N tends to infinity, the number of individuals also
tends to infinity and the (renormalized) stochastic model converges to the
deterministic model (2) (Champagnat et al., 2006).

In the case of a birth event, the trait of the offspring is drawn according
to the operator B. In the asexual model, the offspring trait Xoffspring is given
by

Xoffspring = Xparent + Y.
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where Y is a random variable with probability distribution Kdiv. In the
sexual infinitesimal model, the trait of an offspring Xoffspring with parents
traits Xparent,1 and Xparent,2 is given by

Xoffspring =
Xparent,1 +Xparent,2

2
+ Y

where Y is drawn from a centered normal distribution with variance Vdiv/2.
Numerically, this model has a very high computational cost, especially

when the number of individuals is large. As a consequence, we performed
the simulations using an approximating model, by first fixing dt to a small
but deterministic value. Then, for each individual, we draw a time of birth
following the exponential law E(β) and a time of death following the expo-
nential law E(µ(Xi−ct)+κNt/N). Then we simply count which individuals
led to a reproduction event and which died on the time-window [t, t+ dt].
This amounts to the supposition that on this time interval, individuals cannot
reproduce more than once.

Deterministic approximation of the phenotypic distribution

We first compare our approximation of the phenotypic distribution with
the empirical distribution of the IBM model for the scenarios described in
Fig. 8. When the number of individuals is large (of order N = 104), we see
that our second order approximations are accurate and fit with the empirical
distribution of the stochastic model (see Fig. S3).

Deterministic approximation of the effect of the changing speed

Here, we compare our approximation formula described in Table 2, with
the outcomes of the stochastic model with a small number of individuals (N
is equal to 102 or 103) in the various scenarios described in Fig. 3.

When the speed of change is slow compared to the critical speeds, our ap-
proximations seem accurate in the sense that the approximation error usually
falls on our confidence intervals (see Fig. S4-S6). In the infinitesimal sexual
model, our approximation also does well when the speed is close to the crit-
ical threshold. In this model, we know that the population adapt thanks to
the bulk of the population, which moves forward. Thus, even if the number
of individuals decreases, many individuals remain at the dominant trait. The
number of individuals does not have a critical influence on the adaptation
response.
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However for the asexual model, when the speed increases, our approxi-
mations become less accurate. In this model, only the individuals near the
optimal trait help the population to adapt. Thus when the speed increases,
the proportion of individuals near the optimal trait decreases because the lag
increases. Moreover, when the number of individuals decreases, the actual
number of individuals at the optimal trait may be zero, which may lead to
an additional burden, and possibly the extinction of the population before
the critical value cc is reached (Calvez et al., 2023). In particular, we see in
Figures S4-S6 (a) that the mean fitness of the population drops below 0 for
fifty percent of the simulations when the speed is close to the critical speed.
Thus the effect of the population size is stronger for the asexual model than
for the infinitesimal sexual model.
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Asexual model Infinitesimal sexual model

(a) Quadratic selection (b) Quadratic selection

(c) Super–quadratic selection (d) Super–quadratic selection

(e) Bounded selection (f) Bounded selection

Figure S3: Mutation-selection equilibria F in changing environment with three different
shapes of selection: (a)-(b) quadratic function m(z) = z2/2 (blue circled marked curves);
(c)-(d) super-quadratic function m(z) = z2/2 + z6/64 (blue star marked curves); (e)-(f)
bounded functionm(z) = m∞(1−exp(−z2/(2m∞)) (orange diamond marked curves). The
speed of environment change is c = 0.09 in the asexual model while it is c = 0.05 in the
infinitesimal sexual model so that it remains below the critical speeds cc and ctip and the
distribution deviates significantly from the Gaussian distribution approximation. Other
parameters are: β = 1, Vsel = 1 and Vdiv = 0.01 and m∞ = 0.5 in the asexual model
and Vdiv = 0.1 and m∞ = 1 in the infinitesimal sexual model. We compare our analytical
results (second order results plain marked curves) with the histogram of the stochastic
model with N = 104 individuals. For the asexual scenario, we used the Gaussian kernel.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S4: Influence of the speed of environmental change c for a population with finite
number of individuals (N = 102 dashed curves and N = 103 dash-dotted curves) under
quadratic selection m(z) = z2/2. Other parameters are: β = 1, Vsel = 1 and Vdiv = 0.01
in the asexual model and Vdiv = 0.1 in the infinitesimal sexual model. In the asexual
model, the mutation kernel is Gaussian. The shade region corresponds to the 95% and
5% confidence intervals around the median. The plain curves correspond to the first order
approximation in the asexual model and the second order approximation in the sexual
infinitesimal model.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S5: Influence of the speed of environmental change c for a population with finite
number of individuals (N = 102 dashed curves and N = 103 dash-dotted curves) under
super–quadratic selection m(z) = z2/2 + z6/64. Other parameters are: β = 1, Vsel = 1
and Vdiv = 0.01 in the asexual model and Vdiv = 0.1 in the infinitesimal sexual model.
In the asexual model, the mutation kernel is Gaussian. The shade region corresponds to
the 95% and 5% confidence intervals around the median. The plain curves correspond to
the first order approximation in the asexual model and the second order approximation in
the sexual infinitesimal model.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S6: Influence of the speed of environmental change c for a population with finite
number of individuals (N = 102 dashed curves and N = 103 dash-dotted curves) under
bounded selection function m(z) = m∞(1 − exp(−z2/(2m∞)). Other parameters are:
β = 1, Vsel = 1 and Vdiv = 0.01 and m∞ = 0.5 in the asexual model and Vdiv = 0.1 and
m∞ = 1 in the infinitesimal sexual model. In the asexual model, the mutation kernel is
Gaussian. The shade region corresponds to the 95% and 5% confident intervals around
the median. The plain curves correspond to the first order approximation in the asexual
model and the second order approximation in the sexual infinitesimal model.
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