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Abstract24

Predicting the adaptation of populations to a changing environment is crucial to assess25

the impact of human activities on biodiversity. Many theoretical studies have tackled this26

issue by modeling the evolution of quantitative traits subject to stabilizing selection around27
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an optimal phenotype, whose value is shifted continuously through time. In this context, the28

population fate results from the equilibrium distribution of the trait, relative to the moving29

optimum. Such a distribution may vary with the shape of selection, the system of repro-30

duction, the number of loci, the mutation kernel or their interactions. Here, we develop a31

methodology that provides quantitative measures of population maladaptation and potential32

of survival directly from the entire profile of the phenotypic distribution, without any a priori33

on its shape. We investigate two different systems of reproduction (asexual and infinitesimal34

sexual models of inheritance), with various forms of selection. In particular, we recover that35

fitness functions such that selection weakens away from the optimum lead to evolutionary36

tipping points, with an abrupt collapse of the population when the speed of environmental37

change is too high. Our unified framework allows deciphering the mechanisms that lead to38

this phenomenon. More generally, it allows discussing similarities and discrepancies between39

the two systems of reproduction, which are ultimately explained by different constraints on40

the evolution of the phenotypic variance. We demonstrate that the mean fitness in the pop-41

ulation crucially depends on the shape of the selection function in the infinitesimal sexual42

model, in contrast with the asexual model. In the asexual model, we also investigate the43

effect of the mutation kernel and we show that kernels with higher kurtosis tend to reduce44

maladaptation and improve fitness, especially in fast changing environments.45

1 Introduction46

Rapid environmental changes resulting from human activities have motivated the devel-47

opment of a theory to understand and predict the corresponding response of populations.48

Efforts have specially been focused on identifying conditions that allow populations to adapt49

and survive in changing environments (e.g. Pease et al., 1989; Lynch et al., 1991; Lynch and50

Lande, 1993; Burger and Lynch, 1995, for pioneering work). To this aim, most theoretical51

studies have modeled the evolution of polygenic quantitative traits subject to stabilizing52

selection around some optimal phenotype, whose value is shifted continuously through time53

(see Kopp and Matuszewski, 2014; Walters et al., 2012; Alexander et al., 2014). A major54

prediction of these early models is that when the optimal phenotype changes linearly with55

time, it will be tracked by the mean phenotype in the population with a lag that eventually56

stabilizes over time. This evolutionary lag, which quantifies the maladaptation induced by57

the environmental change, is predicted to depend on the rate of the change, on the pheno-58

typic variance and on the strength of stabilizing selection on the trait. The maladaptation of59

the population due to the environmental change decreases the mean fitness of the population,60

which is commonly defined as the lag load or evolutionary load (Lynch and Lande, 1993;61

Lande and Shannon, 1996). Thus, above a critical rate of change of the optimal phenotype62

with time, the evolutionary lag is so large that the lag-load of the population will rise above63

the value that allows its persistence and the population will be doomed to extinction.64

These predictions have typically been derived under the assumptions of (i) a particular65

form of selection, (ii) a constant genetic variance for the evolving trait, (iii) a Gaussian66

distribution of phenotypes and breeding values in the population. The selection function,67

describing how the Malthusian fitness declines away from the optimum, has typically a68

quadratic shape in many models (Bürger, 1999; Kopp and Matuszewski, 2014). However,69

the shape of selection functions is difficult to estimate and some studies suggest that it70

can strongly deviate from a quadratic shape, for example, in the case of phenological traits71

involved in climate adaptation (Gauzere et al., 2020). Although a quadratic shape may be72

an appropriate approximation for the fitness function close to its optimum, it may not be the73

2



case for strongly maladapted populations in a changing environment. Recently, (Osmond and74

Klausmeier, 2017; Klausmeier et al., 2020) have shown that “evolutionary tipping points”75

occur when the strength of selection weakens away from the optimum. In this situation,76

the population abruptly collapses when the speed of environmental change is too large. In77

this paper, we aim to investigate, in a general setting, the effects of the shape of selection78

functions on the adaptation of the population under environmental changes.79

The genetic variance also plays a key role in the adaptation to changing environments80

and the determination of the critical rate of change. In many quantitative genetic models,81

this variance is assumed to be constant. Although it is approximately true on a short time82

scale, over a longer time scale the variance in the population is also subject to evolution-83

ary change. More generally, obtaining mathematical predictions for the dynamics and the84

equilibrium value of the variance remains a notoriously difficult issue for many theoretical85

population genetics models (Barton and Turelli, 1989; Bürger, 2000; Barton and Keightley,86

2002; Johnson and Barton, 2005; Hill, 2010). How the genetic variance evolves in a chang-87

ing environment has therefore been explored mostly through simulations (Jones et al., 2012;88

Bürger, 1999; Waxman and Peck, 1999). In our paper, we overcome this problem by model-89

ing the evolution of the entire phenotype distribution, This allows gaining some insights on90

the effect of maladaptation, induced by environmental changes, on the evolution of genetic91

variance.92

Many theoretical works assumed that the phenotype distribution is Gaussian (Lynch93

et al., 1991). In the absence of environmental change, there are indeed many circumstances94

where the phenotypic distribution in the population is well captured by Gaussian distribu-95

tions in quantitative genetics models. For example, in asexual populations, the distribution96

of a polygenic trait is Gaussian at mutation-selection equilibrium, providing that mutation97

effects are weak and selection is quadratic (Kimura, 1965; Lande, 1975; Fleming, 1979). In98

the case of sexual reproduction, similar outcomes are expected with the celebrated Fisher99

infinitesimal model of inheritance introduced by Fisher (1918). In this model, quantitative100

traits are under the control of many additive loci and each allele has a relatively small con-101

tribution on the character (Fisher, 1918). Within this framework, offspring are normally102

distributed within families around the mean of the two parental trait values, with fixed vari-103

ance (Turelli and Barton, 1994; Turelli, 2017; Barton et al., 2017, and references therein).104

As a result, the phenotype distribution of the full population is well approximated by a105

Gaussian distribution under various assumptions on the selection function. Moreover, the106

usual Gaussian approximation of distribution of phenotypic traits provide remarkably good107

approximation of the mean and the variance, even if disruptive selection generates strong108

deviations from normality (see Turelli and Barton 1994 under truncation selection, or see109

(Raoul, 2021) and (Calvez et al., 2019) for a wider class of selection functions). In the pro-110

cess of adaptation to environmental change, since the mean phenotype is lagging behind the111

optimum, selection however may induce a skew in the distribution (Jones et al., 2012). The112

distribution of the mutational effects can have a strong influence on the distribution as well,113

in particular when the evolutionary lag is large (Waxman and Peck, 1999). The Gaussian114

approximation of the phenotypic distribution should therefore naturally be questioned for115

both models of inheritance (asexual and infinitesimal sexual).116

The main objective of this work is to derive signatures of maladaptation at equilibrium,117

e.g. the mean phenotype relative to the optimal phenotype, which allows us to quantify the118

evolutionary lag, the mean fitness and the phenotypic variance, depending on some general119

shape of selection and various features of trait inheritance. Those three components are120

linked by two generic identities describing the demographic equilibrium and the phenotypic121

3



equilibrium. Would the phenotypic variance be known, it would be possible to identify both122

the evolutionary lag and the mean fitness (Kopp and Matuszewski, 2014). In the general123

case, a third relationship is, however, needed. To this aim, we shall compute accurate124

approximations of the phenotypic distribution. Several methodological alternatives have125

been developed to unravel the phenotypic distribution, without any a priori on its shape.126

Previous methods attempted to derive the equations describing the dynamics of the mean, the127

variance and the higher moments of the distribution (Lande, 1975; Barton and Turelli, 1987;128

Turelli and Barton, 1990; Frank and Slatkin, 1990). Then, in his pioneering work, Burger129

(1991) derived relationships between the cumulants of the distribution, which are functions of130

the moments. However this system of equations is not closed, as the cumulants influence each131

other in cascade. More recently, Martin and Roques (2016) analyzed a large class of integro-132

differential models where the trait coincides with the fitness, through the partial differential133

equation (PDE) satisfied by the cumulant generating function (CGF). They applied their134

approach to the adaptation of asexual populations facing environmental change, using the135

Fisher Geometric Model for selection and specific assumptions on trait inheritance (diffusion136

approximation for the mutational effects) (Roques et al., 2020). However, the extension of137

their method to different models of selection or trait inheritance (general mutational kernel)138

seems difficult mainly because it relies on specific algebraic identities to reduce the complexity139

of the problem.140

Here, we use deterministic quantitative genetics models based on integro-differential equa-141

tions to handle various shapes of stabilizing selection, and trait inheritance mechanisms.142

While we deal with a large class of thin-tailed mutational kernels in the asexual model, we143

restrict to the Fisher infinitesimal model as a mechanism of trait inheritance in sexually re-144

producing populations. We assume that the environment is changing linearly with time, as145

in the classical studies reviewed in (Kopp and Matuszewski, 2014). In order to provide quan-146

titative results, we assume that little variance in fitness is generated at each reproduction147

event, through either mutation or recombination. It allows some flexibility about the trait148

inheritance process and the shape of the selection function. This assumption, here referred149

to as the small variance regime, enables using a mathematical framework developed in the150

past two decades in order to derive analytical features in models of quantitative genetics in151

asexual populations, mostly in a stationary phenotypic environment (Diekmann et al., 2005;152

Perthame and Barles, 2008; Barles et al., 2009; Lorz et al., 2011; Mirrahimi and Roquejoffre,153

2016; Mirrahimi, 2017; Calvez and Lam, 2020), but see (Iglesias et al., 2021) in the case of154

a changing environment. This asymptotic methodology was first introduced by Diekmann155

et al. (2005) and Perthame (2007) in the context of evolutionary biology as an alternative156

formulation of adaptive dynamics, when the phenotypical changes are supposed to be small,157

but relatively frequent. Recently, this methodology has been also applied to the infinitesimal158

model for sexual reproduction in a stationary fitness landscape (Calvez et al., 2019; Patout,159

2020). In the present paper, we apply this methodology to the case of a moving optimum.160

From a mathematical perspective, the regime of small variance is analogous to some161

asymptotic analysis performed in mathematical physics, such as the approximation of geo-162

metrical optics for the wave equation at high frequency (Evans, 2010; Rauch, 2012), semi–163

classical analysis for the Schrödinger equation in quantum mechanics (Dimassi and Sjostrand,164

1999; Zworski, 2012), and also the large deviation principle for stochastic processes (Fleming,165

1977; Evans and Ishii, 1985; Freidlin and Wentzell, 1998; Feng and Kurtz, 2006). A common166

feature of these seemingly different asymptotic theories is to focus on the logarithm of the167

unknown function, and expand it with respect to a small parameter. We follow this route in168

the present work, by expanding the logarithm of the phenotypic density with respect to the169
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relatively small variance.170

Conversely to previous methods focusing on the moments of the phenotypic distribution,171

our approach focuses on the entire phenotypic distribution and it provides an accurate ap-172

proximation of the phenotypic distribution even if it deviates significantly from the Gaussian173

shape. As a result, our method allows deriving analytical formulas for biologically rele-174

vant quantities, such as the relative mean phenotype and the evolutionary lag measuring175

maladaptation, the phenotypic variance within the population, the lag-load depressing the176

population mean fitness associated with critical rates of environmental changes, without177

solving the complete profile of the distribution. We are consequently able to answer the178

following questions179

• What is the effect of the shape of selection on the adaptation of a population to a180

gradually changing environment?181

• How does the distribution of mutational effects affect the adaptation dynamics?182

• Does the choice of a particular reproduction model influence predictions about the183

dynamics of adaptation of a population?184

2 Models and methodology185

First, we describe in detail our general model of mutation-selection under changing environ-186

ment with two different reproduction models (asexual and infinitesimal sexual) (Section 2.1).187

Then, we introduce the rescaled model including the relative variance parameter ε2 (Sec-188

tion 2.2) and we describe our methodology to investigate the regime of small variance (see189

Figure 1 for a sketch of the methodology). It is based on the asymptotic analysis with re-190

spect to this small parameter (Section 2.3). In Section 3, we provide, in the regime of small191

variance, analytical formula for the different characteristic quantities of the phenotypic dis-192

tribution at equilibrium — mean fitness, mean relative phenotype and phenotypic variance193

— for the two different reproduction models: asexual model (Section 3.1) and infinitesimal194

sexual model (Section 3.2). After scaling back our results in the original units, we can com-195

pare the outcomes for the two systems of reproduction, and discuss the effect of a changing196

environment on the lag (Section 4.1), the mean fitness (Section 4.2) and the phenotypic197

variance (Section 4.3), respectively. Furthermore, we discuss the conditions for persistence198

of the population depending on the speed of the changing environment (Section 4.4) and199

we compare our approximation with numerical simulations of the whole distribution of the200

population (Section 4.5).201

2.1 The general model under changing environment202

We consider a population reproducing in continuous time, subject to selection on the mor-203

tality rate, and to density-dependent competition. The population is structured by a one–204

dimensional phenotypic trait, denoted by x ∈ R. The density of individuals with trait x is205

f(t,x) at time t > 0. For the sake of simplicity, the birth rate is assumed to be constant,206

set to value β > 0. Selection acts through the intrinsic mortality rate µ(t,x), by means207

of stabilizing selection around some optimal value. In order to capture the dynamics of the208

population under a gradual environmental change, we assume that the optimal trait is shifted209

at a constant speed c > 0. We define the relative phenotype as the difference between the210

phenotypic value x and the optimal value at time t: z = x− ct. It quantifies the maladap-211

tation of an individual of trait x in the changing environment. The intrinsic mortality rate212
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Equilibrium distribution and mean fitness (λ, F)
λ F(z) − c∂zF(z) = βB(F)(z) − µ(z)F(z), z ∈ R

Changing environment Reproduction Selection

Small variance parameter – ε

ε2 := Vdiv
Vsel

Ratio between input of phenotypic variance Vdiv and stabilizing selection variance Vsel

Distribution transformation – Rescaling U

Asexual Reproduction

Standard deviation:

∼

p

"

Phenotypical trait

F(z)

U(z) = �" logF(z)

Sexual Infinitesimal Reproduction

Standard deviation:

∼ "

Phenotypical trait

F(z)

U(z) = −"
2 logF(z)

Small variance asymptotics – ε → 0

U(z) ≈ U0(z) U(z) ≈ U0(z) + ε2U1(z)

λ0 = mean fitness

z∗
0 = mean relative phenotype

|z∗
0| = evolutionary lag

var(F) = phenotypic variance.

Macroscopic properties

Global description
Full distribution

Figure 1: Schematic description of our methodology. To describe the equilibrium F we need the
following steps: (1) Identify the scaling parameter ε and rescale the equation satisfied by the
distribution F ; (2) Transform the distribution F into U. The transformed distribution U is the
logarithmic of the density F , normalized by the ratio ε in the asexual reproduction case and by
ε2 in the infinitesimal sexual reproduction case; (3) Identify the limit equation for U as ε → 0
(orange boxes) and deduce macroscopic properties (green box) such as the mean fitness λ0,
the mean relative phenotype z∗0 in the population, the evolutionary lag |z∗0 | or the phenotypic
variance at equilibrium Var(F ).

µ is decomposed as follows213

µ(z) = µ0 +m(z) , (2.1)

where µ0 is the basal mortality rate at the optimum. The function m(z) = m(x− ct) is the214

increment of mortality due to maladaptation and its shape encodes the effect of selection.215

We assume that m ⩾ 0 attains its unique minimum value at 0 where m(0) = 0, and it is216

symmetrically increasing: m is decreasing on (−∞, 0) and increasing on (0,∞). We further217

assume that β > µ0, which ensures a net growth of individuals at the optimal trait.218
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The dynamics of the density f(t,x) is given by the following equation:219

∂tf(t,x) = βB(f(t, ·))(x)−
(
µ(x− ct) + κρ(t)

)
f(t,x) , (2.2)

where the term ρ(t) =
∫
R f(t,x′)dx′ corresponds to the size of the population, and κ > 0 is220

the strength of competition within the population. This nonlinear term introduces density–221

dependent mortality in the model, as it reduces the population growth rate at high density.222

Integrating the model (2.2) over the x variable, the population size ρ(t) satisfies the following223

logistic equation224

∂tρ(t) =
(
β − µ(t)− κρ(t)

)
ρ(t) , with µ(t) =

∫
R
µ(x− ct)

f(t,x)∫
R
f(t,x′)dx′

dx. (2.3)

The operator B describes how new individuals with phenotype x are generated depending225

on the whole phenotypic density. For simplicity, we assume no environmental effects on the226

expression of the phenotype, and phenotypic values equal to breeding values. We consider227

the two following choices for the reproduction operator B:228

Asexual model of reproduction with mutations. We first consider the case of229

asexual reproduction where the phenotype of an offspring x is drawn randomly around the230

phenotype of its single parent x′. We restrict to the case where the changes depend only on231

the trait difference x′−x, described by the kernel Kdiv. The reproduction operator has then232

the following expression:233

B(f)(x) =
∫
R
Kdiv(x− x′)f(x′) dx′ , where Kdiv(x) =

1

V
1/2
div

K

(
x− x′

V
1/2
div

)
(2.4)

where K is a symmetrical probability density function with unit variance. Hence, Vdiv234

is the variance of the phenotypic changes at each reproduction event. We assume that K235

decays faster than some exponential function. This is usually called a thin–tailed kernel.236

This corresponds to the scenario where the mutations with large effect on phenotypic traits237

are rare.238

The extremal case corresponding to accumulation of infinitesimal changes is referred to239

as the diffusion approximation. This translates into the following formula240

B(f)(x) = f(x) +
Vdiv

2
∂2
xf(x) , (2.5)

In this case, the shape of the kernel does not matter and only the variance remains.241

The general form (2.4) encompasses the decomposition of the kernel Kdiv into Kdiv =242

(1− η)δ0+ ηKmut, where η ∈ [0, 1] is the probability of a mutation, δ0 is the Dirac mass at 0243

and Kmut is the probability distribution of mutational effects. In such case, Vdiv = ηVmut,244

where Vmut is the variance associated with the mutational effects.245

Infinitesimal model of sexual reproduction. Secondly, we consider the case where246

the phenotype of the offspring x is drawn randomly around the mean trait of its parents247

(x1,x2), following a Gaussian distribution GLE. This is known as the Fisher infinitesimal248

model (Fisher, 1918; Bulmer, 1980; Turelli and Barton, 1994; Tufto, 2000; Barton et al.,249

7



2017). The reproduction operator has then the following expression:250

B(f)(x) =
∫∫

R2

GLE

(
x− x1 + x2

2

)
f(x1)

(
f(x2)∫

R f(x′
2) dx

′
2

)
dx1dx2 , (2.6)

where GLE denotes the centered Gaussian distribution with variance VLE/2. Here the251

parameter VLE corresponds to the genetic variance at linkage equilibrium in the absence252

of selection (Bulmer, 1971; Lange, 1978; Bulmer, 1974; Santiago, 1998; Turelli and Barton,253

1994). For comparison with the asexual case we shall use the same notation Vdiv for VLE,254

as it scales the input of phenotypic variance in the population for each reproduction event255

(see discussion below).256

Input of phenotypic variance through reproduction. In the absence of selection257

(m(z) = 0) and random drift, the input of phenotypic variance per reproduction event is258

scaled in both model byVdiv. Indeed, we can show using equation (2.2) that, in this situation,259

the dynamics of phenotypic variance are260

∂tVar(f)(t) = β

 Vdiv (asexual)
1

2
(Vdiv −Var(f)) (infinitesimal sexual)

(2.7)

where the variance Var(f) and the mean trait z are defined by261

Var(f)(t) =

∫
R

(
z− z(t)

)2 f(t, z)∫
R f(t, z′)dz′

dz and z(t) =

∫
R
z

f(t, z)∫
R f(t, z′)dz′

dz

Even if the variance in the offspring distribution in the infinitesimal sexual model and in262

the asexual model are conceptually different, they both scale with the input of phenotypic263

variance per reproduction event, that is why we use the same notation Vdiv.264

However, the impact of diversity depends on the model of reproduction. In the asexual265

case, the variance of the phenotypic distribution increases indefinitely in the absence of266

selection (2.7). Thus, the asexual model does not impose any strong constraint on the267

variance of the phenotypic distribution of the population. Conversely, in the absence of268

selection, the infinitesimal sexual model generates a finite phenotypic variance at equilibrium,269

equal to Vdiv. Thus the dynamics of the phenotypic variance are more constrained in the270

infinitesimal model than in the asexual model.271

Equilibrium in a changing environment In this paper, we focus on the asymp-272

totic behavior of the model, studying whether the population will persist or go extinct in273

the long term. In order to mathematically address the problem, we seek special solutions274

of the form f(t,x) = F(x − ct). These solutions correspond to a situation where the phe-275

notypic distribution F has reached an equilibrium, which is shifted at the same speed c as276

the environmental change. This distribution of relative phenotype z := x − ct quantifies277

maladaptation within the population. One can observe from equation (2.2) that the trivial278

solution, which corresponds to F = 0, always exists. Our aim is first to decipher when non279

trivial equilibrium F exists. Secondly, we characterize in detail the distribution F when it280

exists.281

Using the property of invariance by translation verified by the reproduction operator B,282

we obtain that a non trivial, non-negative, equilibrium F solves the following eigenvalue283

problem,284

λF(z)− c∂zF(z) = βB(F)(z)− µ(z)F(z) (2.8)
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where the eigenvalue λ is expected to be positive λ > 0, since it must satisfy285

λ = κρ = κ

∫
R
F(z′)dz′. (2.9)

The transport term −c∂zF corresponds to the effect of the moving optimum on the phe-

notypic distribution F at equilibrium. Moreover since λ is a constant and F decays to 0 as

|z| → ∞, a formal integration of equation (2.8) shows that

λ =

∫
R
(β − µ(z))

F(z)∫
R F(z′)dz′

dz.

The eigenvalue λ can thus be interpreted as a measure of the mean fitness of the population,286

or its mean intrinsic rate of increase, where β−µ(z) is the contribution of an individual with287

relative phenotype z to the growth rate of the population at low density. Thus, an analytical288

description of λ will provide a formula for the critical speed of environmental change above289

which extinction is predicted, corresponding to the case where the eigenvalue λ is negative.290

The value λ also informs us on the size of the population at equilibrium in presence of a291

changing environment, ρ (see equation (2.9)).292

Our aim is to describe accurately the couple (λ,F) in presence of a moving optimum with293

constant speed c in both reproduction scenarios. To do so, we compute formal asymptotics of294

(λ,F) at a weak selection or slow evolution limit when little variance in fitness is generated by295

mutation or sexual reproduction per generation. Note that the shape of F is not prescribed296

a priori and the methodology presented here can handle significantly large deviations from297

Gaussian distributions.298

Noteworthy, the equation (2.8) with asexual reproduction operators defined by (2.4) or299

(2.5) admits solutions under suitable conditions. Cloez and Gabriel (2020) proved that solu-300

tions exist for any speed c if the mortality function µ goes to ∞ when |z| → ∞. Furthermore,301

Coville and Hamel (2019) proved that solutions also exist for more general mortality func-302

tions µ as soon as the speed c remains below a critical threshold. For the infinitesimal303

operator (2.6), Calvez et al. (2019) proved the existence of solutions without changing en-304

vironment and in the special regime of small variance described below. The existence of a305

pair (λ,F) for positive speed c will be the topic of a future mathematical paper.306

2.2 Adimensionalization307

In order to compute asymptotics of the solution of our model, we first need to rescale the308

model with dimensionless parameters (see Table 1 for the relationship between original vari-309

ables and their values after rescaling and Supplementary Information SI B for mathematical310

details).311

Time scale. We introduce the relative time coordinate t = βt, to scale the model ac-312

cording to the generation time. Hence, the dimensionless fecundity rate equals one, and the313

increment of mortality is m = m/β, which corresponds to the selection function. The effect314

of stabilizing selection is captured by Vsel, which is inversely proportional to the strength of315

selection around the optimum:316

1

Vsel
=

1

β
m′′(0) > 0 . (2.10)

Note that Vsel scales as a variance parameter.317

9



Parameters Description Rescaled parameters

z relative phenotype z =
z

V
1/2
sel

F (z) phenotypic density F (z) = F (z)

β fecundity rate 1

m(z) increment of mortality rate m(z) =
m(z)

β
(selection function)

λ mean fitness λ = (λ+ µ0)/β

c speed of environmental change c =


c

βV
1/2
div

(asexual)

cV
1/2
sel

βVdiv
(infinitesimal sexual)

Vsel variance of stabilizing selection 1

Vdiv input of phenotypic variance ε2 =
Vdiv

Vsel
≪ 1

Table 1: Biological parameters and their formula after rescaling for both the asexual and in-
finitesimal sexual model. Our methodology relies on the assumption that the dimensionless
parameter ε is small, ε ≪ 1, while the other rescaled parameters are of order 1.
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Phenotypic scale. All measures depending on phenotypic units are expressed in unit318

V
1/2
sel , and we change variables accordingly, z = z/

(
V

1/2
sel

)
. As such, the strength of selection319

in the rescaled system is equal to unity:320

m′′(0) = Vsel
m′′(0)

β
= 1 . (2.11)

Phenotypic variance parameter. Similarly, in both asexual and infinitesimal sexual321

models, the dimensionless parameter describing how much phenotypic variance is introduced322

in the population at each generation is ε2 =
Vdiv

Vsel
. Accordingly, we have the following323

expression in dimensionless variables,324

B(F )(z) =


1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′ (asexual)

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 (infinitesimal sexual)

(2.12)

Speed of environmental change. The rescaling of the speed of environmental change325

differs in the asexual and infinitesimal sexual versions of our model. In both models, the326

ability to evolve fast enough to track the moving optimum depends critically on the input327

of phenotypic variation fueling evolutionary change. Since this input is of a different nature328

between the models, we have to adjust the scale of the speed differently in each context to329

observe non-trivial behaviours. We define accordingly the speed of change c = c/
(
βV

1/2
div

)
in330

the asexual case, but c = cV
1/2
sel /

(
βVdiv

)
in the case of the infinitesimal model (see Table 1).331

As a consequence, the transport term −c∂zF which carries the effect of environmental332

change in (2.8), inherits respectively a factor ε (asexual) and ε2 (infinitesimal), see SI B.3.333

A mismatch in this expression (e.g. involving any other power of ε) would result in a severe334

unbalance between the various contributions in the models, leading either to a dramatic335

collapse of the population if the effective speed is too large, or to no significant effect of the336

change if the effective speed is too small.337

In addition, the discrepancy between these scaling formula reveals a strong difference on338

the effect of the selection between the models. Indeed, the strength of selection is involved339

in the infinitesimal sexual model, whereas it does not appear in the asexual model. Our340

analysis is aimed to enlighten and explain those differences (see section 4).341

Rescaled model. Using these rescaled variables, we obtain the following equations:342

Asexual reproduction343

λF (z)− εc∂zF (z) +m(z)F (z) =
1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′ . (2.13)

Infinitesimal sexual reproduction

λF (z)− ε2c∂zF (z) +m(z)F (z) =

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 . (2.14)
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2.3 Small variance asymptotics344

In the following, we further assume that the parameter ε is small, which means that little345

variance in fitness is introduced in the population through either mutation or recombination346

during reproduction. This is what we call the small variance regime. This situation may347

happen either when the input of phenotypic variation is small or because stabilizing selection348

is weak.349

In the asexual model, we also assume that mutations are reasonably frequent, that is350

the probability of mutation η is of order one. Under the small variance regime (ε ≪ 1),351

this assumption of frequent mutations prevents the mutation kernel K to degenerate in our352

scaling regime, which is a key assumption in the mathematical framework introduced by353

(Diekmann et al., 2005) (see SI D.4 for mathematical details).354

Moreover, our regime of small variance (ε ≪ 1 ∼ η) is usually referred to as the strong355

mutation and weak selection regime, which is linked to the Gaussian approximation regime356

when Vmut ≪ ηVsel (Kimura, 1965; Lande, 1975; Fleming, 1979; Bürger, 2000). This regime357

of frequent mutations contrasts with the House-of-Cards (HC) regime where mutations are358

rare with large effects when ηVsel ≪ Vmut (Turelli, 1984; Turelli and Barton, 1990; Bürger,359

2000). In the HC regime, the mutation rate η is smaller than our ε parameter (η ≪ ε ≪ 1).360

Our analysis would thus fail in this regime, because the asymptotic limits are conceptually361

different.362

In the small variance regime (ε ≪ 1), we expect the equilibrium F to be concentrated363

around a mean value z∗ of the relative phenotype, that we name the mean relative phenotype,364

see Fig. 1. The evolutionary lag |z∗| is defined here as the distance between the mean365

phenotypic trait in the population and the optimal trait. Note that, in previous literature366

the evolutionary lag is sometimes defined as we do here (e.g. Gomulkiewicz and Houle, 2009),367

sometimes as the difference between the mean trait value and the optimum, referred as the368

mean relative phenotype here (e.g. Burger and Lynch, 1995) or the opposite difference (e.g.369

Lande and Shannon, 1996).370

The core of our approach consists in the accurate description of the phenotypic distribu-371

tion F when ε ≪ 1. This is made possible after a suitable transformation of the phenotypic372

distribution F . The Cole-Hopf transformation is an appropriate mathematical tool to pro-373

vide approximations of singular distributions with respect to a small parameter, for instance374

the wavelength in wave propagation (geometric optics) or the Planck constant in quantum375

mechanics (semi–classical analysis), and also the phenotypic variance in our theoretical biol-376

ogy setting. It is defined as the logarithm of the density F , multiplied by a small parameter377

related to the order of magnitude of the phenotypic variance. In our problem, we need to378

introduce different quantities depending on the modeling choice:379 U = −ε logF (asexual)

U = −ε2 logF (infinitesimal sexual)
(2.15)

We emphasize that the discrepancy between the two scenarios is an outcome of our analysis.380

The scaling has been carefully tuned to induce a non trivial limit in the regime ε ≪ 1. We381

discuss this scaling in details in the Discussion section. In order to describe U asymptotically,382

we expand it with respect to ε as follows:383 {
U(z) = U0(z)+εγU1(z) + o(εγ)

λ = λ0+εγλ1 + o(εγ)
where γ =

{
1 (asexual)

2 (infinitesimal sexual)
(2.16)
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and (λ0, U0) is the limit shape as ε → 0, and (λ1, U1) is the correction for small ε > 0. In384

the next sections 3.1 and 3.2, we show, by formal arguments, that the function U and the385

mean fitness λ converge towards some non trivial function U0 and some value λ0 as ε → 0.386

In the following section Results, we compute relevant quantitative features, such as the387

mean fitness λ0, the mean relative phenotype z∗0 , and the phenotypic variance Var(F ). The388

latter is related to U0 by the following formula (derived in SI C):389

Var(F ) =
εγ

∂2
zU0(z∗0)

+ o(εγ) . (2.17)

Remarkably, our methodology is able to compute those quantities directly, bypassing the390

resolution of the limit equation solved by (λ0, U0) (which may have non-explicit solutions).391

3 Results in the regime of small variance392

3.1 The asexual model393

Using the logarithmic transformation (2.15) to reformulate our problem (2.13) and the Taylor394

expansion of the pair (λ,U) with γ = 1, we show that the limit shape (λ0, U0) satisfies the395

following problem (see SI D.1):396

λ0 + c∂zU0(z) = 1 +H (∂zU0(z))−m(z) , (3.1)

where the Hamiltonian function H is the two-sided Laplace transform of the mutation kernel397

K up to a unit constant:398

H(p) =

∫
R
K (y) exp (yp) dy − 1 . (3.2)

It is a convex function that satisfies H(0) = H ′(0) = 0, and H ′′(0) = 1 from hypothesis (2.4)399

on the mutation kernel K. Moreover, thanks to our assumption on the mutation probability400

η, the function H is not singular (see SI D.4 for more details).401

We can remark that the shape of the equation (3.1) also contains the diffusion approxima-402

tion model where the reproduction operator is approximated by a diffusion operator (2.5). For403

the diffusion approximation, we find that the Hamiltonian function is given by H(p) = p2/2404

(see SI D.1.1)405

Computation of the mean fitness λ0. We find that (see SI D.1.3 for details)406

λ0 = 1− L(c) , (3.3)

where the Lagrangian function L, also known as the Legendre transform of the Hamiltonian407

function H, is defined as:408

L(c) = max
p∈R

(pc−H(p)) . (3.4)

It is a convex function satisfying L(0) = L′(0) = 0, and L′′(0) = 1. Moreover, we always409

have L(c) ⩽ |c|2/2 where L(c) = |c|2/2 corresponds to the diffusion approximation case.410

Since the mean fitness is λ0 = 1 in the absence of environmental change, the quantity L(c)411

represents the lag-load in the rescaled units, which is induced by the moving optimum (Lynch412

and Lande, 1993; Lande and Shannon, 1996). Moreover, if we push the expansion to the413

higher order we are able to compute the following mean fitness (see SI D.6 for mathematical414

13



details)415

λ = 1− L(c)−ε

2

(
1

L′′(c)

)1/2

+ o(ε) (3.5)

The new term of order ε can be seen as the standing load, i.e. a reduction in mean fitness416

due to segregating variance for the trait in the population (Lynch and Lande, 1993; Burger417

and Lynch, 1995; Kopp and Matuszewski, 2014).418

Computation of the mean relative phenotype z∗0. We obtain from the main419

equation (3.1), evaluated at z = z∗0 , that λ0 + m(z∗0) = 1. Thus, combining with equa-420

tion (3.3), we deduce that z∗0 is a root of421

m(z∗0) = L(c) (3.6)

with the appropriate sign, that is m′(z∗0) and c have opposite signs: z∗0 < 0 if c > 0 and422

vice-versa.423

Computation of the phenotypic variance. From equation (2.17), we need to com-424

pute the second derivative of U0 at the mean relative phenotype z∗0 . We can derive it from425

the differentiation of equation (3.1) evaluated at z∗0 (recall that H ′(0) = 0 by symmetry of426

the mutation kernel K):427

∂2
zU0(z

∗
0) +

m′(z∗0)

c
= 0 . (3.7)

We deduce the following first order approximation of the phenotypic variance:428

Var(F ) = − εc

m′(z∗0)
+ o(ε) . (3.8)

Remark 1. The expressions obtained in this section are still valid when c = 0. A direct429

evaluation gives that λ0 = 1 and z∗0 = 0. Moreover, we show in Supplementary Information430

SI D.5 that in the limit c → 0, the previous formula (3.7) becomes431

∂2
zU0(0) = 1 . (3.9)

We will discuss the biological implications of these predictions after expressing them in432

the original units in the section 4.433

3.2 The infinitesimal model of sexual reproduction in the regime of434

small variance435

The limiting problem formulation. Remarkably enough, a similar mathematical436

analysis can be performed when the convolution operator is replaced with the infinitesimal437

model for reproduction (2.12). However, the calculations are slightly more involved than438

the former case, but the final result is somewhat simpler. Here, the suitable logarithmic439

transformation of the phenotypic distribution F is U = −ε2 log(F ). The equation for the440
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new unknown function U is:441

λ+ c∂zU(z) +m(z) =

1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

[(
z − z1 + z2

2

)2

+ U(z1) + U(z2)− U(z)−minU

])
dz1dz2∫

R
exp

(
−U(z′)−minU

ε2

)
dz′

,

(3.10)

where minU has been subtracted both in the numerator and the denominator. The specific442

form of the right-hand-side characterizes the shape of U . Indeed, the quantity between443

brackets must remain non negative, unless the integral takes arbitrarily large values as ε → 0.444

Moreover, its minimum value over (z1, z2) ∈ R2 must be zero, unless the integral vanishes.445

As a consequence, the function U must be a quadratic function of the form 1
2 (z− z∗0)

2 where446

the mean relative phenotype of the distribution, z∗0 , can be determined aside (see SI F.1 for447

details). To describe z∗0 , we expand the pair (λ,U), in a power series with respect to ε2:448 
U(z) =

1

2
(z − z∗0)

2
+ ε2U1(z)+ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1+ε4λ2 + o(ε4)

(3.11)

Plugging this expansion into (3.10), we obtain the following equation on the corrector U1:449

λ0 + c(z − z∗0) +m(z) = exp

(
U1(z

∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z)

)
, (3.12)

which contains as a by–product the value of some quantities of interest, such as the mean450

fitness λ0, and the mean relative phenotype z∗0 . Moreover, we can solve this equation if, and451

only if λ0 and z∗0 take specific values that we identify below.452

The mid-point (z + z∗0)/2 which appears in the right-hand-side of (3.12) has a direct453

interpretation in terms of the conditional distribution of parental traits. It means that an454

individual of trait z is very likely to be issued from a pair of parents having both traits close455

to the mid-value between z and the mean phenotype z∗0 (and equal to (z+ z∗0)/2 in the limit456

ε → 0). This is the result of the following trade-off: parents with traits close to the mean457

trait value z∗0 are frequent but the chance of producing offspring with relative phenotype458

z ̸= z∗0 is too small. On the other hand, parents with traits evenly distributed around z459

would likely produce offspring with relative phenotype z, but they are not frequent enough.460

As a compromise, the most likely configuration is when both parents have their relative traits461

close to (z + z∗0)/2, see Figure S2 and SI F.2.1.462

Computation of macroscopic quantities. Let us first observe that equation (3.12)463

is equivalent to the following one:464

log (λ0 + c(z − z∗0) +m(z)) = U1(z
∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z) . (3.13)

The key observation is that the expression on the right hand side vanishes at z = z∗0 , and so465

does its first derivative with respect to z at z = z∗0 . This provides two equations for the two466

unknowns λ0, z
∗
0 , without computing the exact form of U1:467 

λ0 +m(z∗0) = 1

c+m′(z∗0) = 0 .

(3.14)
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These two relationships are necessary and sufficient conditions, meaning that they guarantee468

that equation (3.12) admits at least one solution U1 (see SI F.1 for mathematical details,469

and Calvez et al. (2019)). In addition, we can push the expansion further and we can gain470

access to the higher order of approximation for the quantities of interest (see SI F.2).471

Mean relative phenotype z∗ = z∗0−ε2
(
m′′′(z∗0)

2m′′(z∗0)
+ 2c

)
+ o(ε2) , such that m′(z∗0) = −c

Mean fitness λ = 1−m(z∗0)−ε2
(
2c2 + c

m′′′(z∗0)

2m′′(z∗0)
+

1

2
m′′(z∗0)

)
+ o(ε2)

Phenotypic variance Var(F ) =
ε2

1+2ε2m′′(z∗0) + o(ε2)
(3.15)

4 Comparison of predictions of the asexual and infinites-472

imal models473

To discuss our mathematical results from a biological perspective, we need to scale back the474

results in the original units (see Table 1 for the link between the scaled parameters and the475

parameters in the original units). Our general predictions for macroscopic quantities in the476

original units are shown in Table 2. For ease of comparison with previous literature, which477

has generally assumed a quadratic form for the selection function, we present our predictions478

in Table 3 under this special assumption and with the diffusion approximation.479

Numerical simulations. To illustrate our discussion, we also perform numerical sim-480

ulations. The simulated stationary distribution is obtained through long time simulations481

of a suitable numerical scheme for (2.2) (details in SI G). Using this numerical expression,482

we compute the lag, the mean fitness and the phenotypic variance of the distribution. In483

the asexual model, the function U0 is obtained from the direct resolution of the ordinary484

differential equation (3.1) using classical integration methods – see SI D.7. In the infinites-485

imal model, the correction U1 is computed directly from its analytical expression given in486

SI F.2.4. The macroscopic quantities in the regime of small variance are directly computed487

from their analytical expressions given in the Table 2 and 3. We also compare our analytical488

expression with the outcome of a stochastic model, which considers an evolving population489

with a finite number of individuals (see SI H).490
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Macroscopic
quantities

Asexual model Infinitesimal sexual model

Mean rela-
tive pheno-
type

z∗ ≈ z∗0

with m(z∗0) = βL

(
c

βV
1/2
div

) z∗ ≈ z∗0−Vdiv
m′′′(z∗0)

2m′′(z∗0)
− 2

c

β

with m′(z∗0) = − c

Vdiv

Mean fit-
ness

λ ≈ β − µ0 − βL

(
c

βV
1/2
div

)

−β

2

 Vdiv
Vsel

L′′

(
c

βV
1/2
div

)


1/2

λ ≈ β − µ0 −m(z∗0)

−
(

2c2

βVdiv
+ c

m′′′(z∗0)

2m′′(z∗0)
+

Vdivm
′′(z∗0)

2

)

Phenotypic
variance

Var(F) ≈ − c

m′(z∗0)
Var(F) ≈ Vdiv

1+2Vdiv
m′′(z∗0)

β

Table 2: Analytical predictions for the mean relative phenotype z∗, the mean fitness λ and the
phenotypic variance Var(F) for both the asexual and infinitesimal sexual model in the original
variables. In the asexual model, L is the Lagrangian defined by (3.4) and it is associated to the
mutation kernel K by a two-sided Laplace transformation.

Macroscopic
quantities

Asexual model
(quadratic selection / diffusive ap-
prox)

Infinitesimal sexual model
(quadratic selection)

Mean rela-
tive pheno-
type

z∗ = − c

β

(
Vsel

Vdiv

)1/2

z∗ ≈ − c

β

(
Vsel

Vdiv

)
−2

c

β

Mean fit-
ness

λ = β−µ0−
c2

2βVdiv
−β

2

(
Vdiv

Vsel

)1/2

λ ≈ β−µ0−
c2Vsel

2βV2
div

−
(

2c2

βVdiv
+

βVdiv

2Vsel

)

Phenotypic
variance

Var(F) = (VdivVsel)
1/2 Var(F) ≈ Vdiv

1+2Vdiv
Vsel

Table 3: Analytical predictions for the mean relative phenotype z∗, the mean fitness λ and
the phenotypic variance Var(F) for both the asexual and infinitesimal sexual model in the
original variable when assuming a quadratic form of selection m(z) = z2/2 (corresponding to
m(z)/β = z2/(2Vsel) in original units). In the asexual model, we are under the diffusion
approximation: L(v) = v2/2.
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Figure 2: Influence of the mutational kernel K, described in panel (a), on (b) the mean fitness
λ, (c) the evolutionary lag |z∗| and (d) the phenotypic variance Var(F) at equilibrium in an
environment changing at rate c ranging in (0, 0.5) for the asexual model. We compare the
diffusion approximation (blue curves) with four different mutation kernels with the same variance
Vdiv = 0.01, while the variance of selection is Vsel = 1: the Uniform distribution (red curves),
the Gaussian distribution (orange curves), Exponential distribution (purple curves) and Gamma
distribution (green curves). For each case we compare our analytical results (dashed lines) with
the simulation results (marked symbol).

4.1 Mean relative phenotype and evolutionary lag491

The mean relative phenotype z∗ is here defined as the difference between the mean phe-492

notypic trait in the population x∗ and the optimal trait ct. In our study, for numerical493

illustration, we used c > 0. So a negative mean relative phenotype z∗ indicates that the dis-494

tribution of phenotype lags behind the optimal trait. The maladaptation of the population495

is generally measured by the evolutionary lag, which is defined as the distance between the496

mean phenotypic trait and the optimal trait. In our study, the evolutionary lag corresponds497

to the absolute value of the mean relative phenotype, |z∗| = |x∗ − ct|, which is positive.498

The lag increases with the speed of environmental change. In both the499

asexual model and infinitesimal model, we recover the classic result that the lag |z∗0| is an500

increasing function of c (as illustrated by Fig. 2 and Fig. 3).501

In the asexual model, the evolutionary lag at equilibrium is such that the mortality rate502
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Figure 3: Influence of the speed of environmental change c for three different shapes of the
selection function: quadratic function m(z) = z2/2 (blue curves), super–quadratic function
m(z) = z2/2+z6/64 (red curves) or bounded function m(z) = m∞(1−exp(−z2/(2m∞)) (orange
curves). Other parameters are: β = 1, Vsel = 1, Vdiv = 0.01 and m∞ = 0.5 in the asexual
model and m∞ = 1 in the infinitesimal sexual model. In the asexual model, the mutation kernel
is Gaussian. We compare our analytical results (first approximation dashed lines and second
approximation plain lines) with the numerical simulations of the stationary distribution of (2.8)
(marked symbols) for both asexual and sexual infinitesimal model. The vertical lines correspond
to the critical speeds for persistence cc, defined by (4.5) and the critical speed of tipping point
ctip, defined by (4.3).
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(a) Determination of the mean relative phenotype z∗

in the asexual model
(b) Determination of two possible evolutionary lags
z∗s and z∗u in the infinitesimal sexual model

Figure 4: Graphical illustration of the two ways to characterize the mean relative phenotype z∗

(in original units). (a) In the asexual model, the mean relative phenotype is found where the

mortality rate m equals a specific value βL

(
c

βV
1/2
div

)
. In this case we only have one possible

lag z∗ because m′(z∗) and c should have opposite signs. (b) In the sexual infinitesimal model,
the mean relative phenotype z∗ is found where the selection gradient m′ equals a specific value
−c
Vdiv

. In this case, we may obtain two possible values, a stable point z∗s in the convex part of m
and an unstable point z∗u in its concave part.

(a) Asexual model (b) Infinitesimal sexual model

Figure 5: Effect of the initial lag on the persistence of the population with various rates of
environmental change c. We compute numerically, the solutions of the time–dependent prob-
lem (2.2) with Gaussian initial conditions centered on various mean relative phenotypes z∗init
inducing an initial evolutionary lag |z∗init| (left axes). We repeated this exploration for various
speeds c ranging in (0, 1.5 ctip). For each case, we plot the evolutionary lag |z∗| at the final time
of computations: coloured regions (colorbar) and red circles (right axes). We also compare with
the analytical evolutionary lags given by the first line of Table 2 (red lines right axes): the plain
lines corresponds to the stable trait (z∗ in asexual model and z∗s in infinitesimal sexual model)
while the dashed lines corresponds to the unstable trait z∗u occurring in the infinitesimal sexual
model. The grey region correspond to initial data such that the final evolutionary lag diverges.
In the asexual simulations, the mutation kernel is Gaussian.

equals βL

(
c

βV
1/2
div

)
(see Table 2). The latter quantity increases with the rate of environ-503

mental change. As the mortality rate m increases when we move away from the optimal504

trait, the lag |z∗0| must also increase with respect to c.505

In the infinitesimal model of sexual reproduction, the evolutionary lag at equilibrium is506

found where the gradient of selection (m′) equals − c
Vdiv

, which increases in absolute value507
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with the rate of environmental change c (see Table 2). In the convex neighborhood of the508

optimal trait, the gradient of selection (m′) is increasing with deviation from the optimum,509

hence the lag |z∗0| is increasing with respect to c. However, if the fitness function has both510

a convex and a concave part (as in the yellow curves in Fig. 3), there may be multiple511

equilibria fulfilling the condition in Table 2 (see Fig. 4(b)). In the concave part of the fitness512

function, the selection gradient is decreasing when c increases, and so would the lag (see513

dashed curve in Fig. 5(b)). However, heuristic argument and numerical simulations suggest514

that equilibrium points in the concave part of the fitness function are unstable (see Fig. 5(b)515

and more detailed discussion of this scenario below).516

The lag increases faster or slower than the speed of environmental change.517

Our analytical predictions suggest that a linear relationship between the rate of environmen-518

tal change and the evolutionary lag is expected only under special circumstances. We indeed519

show that the rate of increase of the lag according to the speed of change c crucially depends520

on the shape of the selection in both the infinitesimal and asexual models (Fig. 3).521

In addition, in the asexual model, this rate of increase will depend on the shape of the522

mutation kernel through the Lagrangian function L. Indeed, we can show from our formula523

in Table 2 that the lag increases linearly with the speed of change as soon as the function524

c 7→ m−1(L(c)) is linear. Thus, both the shape of selection and that of the mutation kernel525

interact to determine how the evolutionary lag responds to faster environmental change. If526

the selection function is quadratic (i.e. m(z) = z2/2), we can show from the convexity of527

the Lagrangian function L that the lag increases linearly with the speed only in the diffusion528

approximation L(c) = c2/2 (see Table 3 and blue curve in Fig. 2), while it increases sub–529

linearly for any other mutation kernels (see red, orange, purple and green curves in Fig. 2).530

We can further show that the lag in this scenario increases more slowly with the speed of531

environmental change when the kurtosis of the mutation kernel is higher (see SI D.4 for532

mathematical details). In Fig. 2, we compare four different mutation kernels with increasing533

kurtosis: uniform distribution kernel (red), Gaussian kernel (orange), double exponential534

kernel (purple) and Gamma kernel (green). In the asexual model, a fat tail of the muta-535

tion kernel thus tends to reduce the lag, even though this effect is most visible when the536

environment changes fast (Fig. 2) .537

To examine the effect of the shape of the selection function on how the evolutionary lag538

increases in faster changing environment, we now focus on the case of diffusion approximation539

in the asexual model (L(c) = c2/2), for the sake of simplicity, and compare it to the results540

in the infinitesimal model. In both cases, we can exhibit a simple criteria to decipher the541

nature of this increase. Let us first observe that, in those cases, the lag increases linearly with542

the speed if the selection function is quadratic (see Table 3 and the blue curves in Fig. 3).543

The lag however accelerates with the speed if m is sub-quadratic in the following senses (see544

orange curves in Fig. 3):545

m′′m

(m′)2
<

1

2
(asexual) , m′′′ > 0 (infinitesimal sexual) . (4.1)

Conversely, the lag decelerates with the speed if m is super-quadratic in the following senses546

(see red curves in Fig. 3):547

m′′m

(m′)2
>

1

2
(asexual) , m′′′ < 0 (infinitesimal sexual) . (4.2)

The criteria are of different nature depending on the model of reproduction (asexual versus548
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infinitesimal). However, they coincide in the case of a homogeneous selection functionm(z) =549

|z|p (p > 1). Indeed, selection is super-quadratic in both cases if and only if p > 2. More550

generally, the lag is reduced when the selection function has a stronger convexity in the sense551

of (4.2). This behavior is illustrated in Fig. 3.552

The lag can diverge for a fast speed of environmental change. As observed553

by Osmond and Klausmeier (2017), we also find that the lag may diverge, i.e. grow infinite,554

when the selection function is too weak away from the optimum, and when the speed of555

environmental change exceeds some critical threshold. Interestingly, both the infinitesimal556

model and the asexual model exhibit such ”evolutionary tipping point”, corresponding to557

a critical level of an external condition where a system shifts to an alternative state (van558

Nes et al., 2016). The underlying mechanisms are however qualitatively different in the two559

models, as explained below.560

In order to illustrate this phenomenon, we consider a bounded selection function depicted561

in Fig. 3 (orange curve). We restrict to the diffusion approximation in the asexual case for562

the sake of simplicity. We find the following critical speed ctip,563

ctip =

(
2βVdiv

(
max

z∈(−∞,0)
m(z)

))1/2

(asexual)

ctip = Vdiv

(
max

z∈(−∞,0)
|m′(z)|

)
(infinitesimal sexual)

, (4.3)

so that the lag is finite if and only if c < ctip, while the lag diverges if c > ctip and the564

population cannot keep pace with the environmental change. The difference between the two565

formulas can be understood through graphical arguments (see Fig. 4). In the asexual model,566

the lag at equilibrium is found where the mortality rate equals a specific value, which increases567

with the speed of change c. This point is found where the selection function intersects an568

horizontal line, of higher elevation as c increases in Fig. 4. With a bounded mortality569

function, there is thus a finite value of c for which this critical quantity equals the maximal570

mortality rate, the latter being reached for an infinitely large lag. In the infinitesimal model,571

the evolutionary lag is found where the selection gradient equals a specific value increasing572

with c, see the graphical construction in (Osmond and Klausmeier, 2017, Fig.1B). With a573

bounded mortality function such as in Fig. 4, there are in general two equilibrium points574

characterized by such local slope, one stable in the convex part and one unstable in the575

concave part. As the speed of environmental change increases, so does the local slope at the576

two equilibria, which gradually converge towards the inflection point of the mortality function577

with the maximal slope. This point characterizes the maximal speed of environmental change578

for which there is a finite evolutionary lag. Above that critical speed of change, the lag579

grows without limit. We illustrate this phenomenon of severe maladaptation in Fig. 3 (see580

the orange curves).581

Despite the existence of tipping points in both cases, the transition from moderate (c <582

ctip) to severe maladaptation (c > ctip) have different bifurcation signatures depending on583

the reproduction model. In the asexual model, the lag becomes arbitrarily large as the584

speed c becomes close to the maximal sustainable speed ctip. At the transition, the stable585

equilibrium state reaches infinity, which corresponds to a peculiar state where all individuals586

have the same fitness, and selection is not effective, reminiscent of a transcritical bifurcation.587

In contrast, in the infinitesimal model, the lag remains uniformly bounded up to ctip. At the588

transition, the stable equilibrium state merges with the unstable equilibrium state, through589

a saddle-node bifurcation.590
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We can also see a major difference between the two reproduction models when we look591

at the time dynamics (Fig. 5). We run simulations of equation (2.2) starting from various592

initial data centered at different traits (see crosses in Fig. 5). In the infinitesimal model,593

when the initial lag is beyond the unstable point z∗u, defined in Fig. 4(b), the lag diverges,594

whereas it converges to the stable point z∗s , also defined in Fig. 4(b), if the lag is initially595

moderate. We see that the long term adaptation of the population to a changing environment596

does not only depend on the speed of change, but also on the initial state of the population.597

In the asexual model, the initial configuration of the population does not play a significant598

role in the long term dynamics of adaptation: we observe that the population can adapt599

whatever the initial lag is, if the speed of change is below ctip (see Fig. 5). We can expect600

such difference because the lag at equilibrium is uniquely defined in the asexual model while601

it can take multiple values in the infinitesimal model if the function has an inflection point,602

a signature of bistability (see Fig 4).603

4.2 The mean fitness604

We now investigate the effect of the changing environment on the mean fitness of the popu-605

lation.606

The mean fitness decreases with increasing speed of environmental change.607

In both scenarios the lag load △λ, defined as the difference between the mean fitness in a608

constant environment (λ(0) = β) and the mean fitness under changing environment, is609

(unsurprisingly) given by the increment of mortality at the mean relative phenotype m(z∗0)610

△λ = β − µ0 − λ = m(z∗0).

Since m is symmetrically increasing and the lag |z∗0| is increasing with respect to c, we611

deduce that the mean fitness decreases with respect to c. It is illustrated in Fig. 3 for612

different selection functions.613

In the asexual model, the lag-load takes the following form614

△λ = βL

(
c

βV
1/2
div

)
.

which is exactly the expression (3.4) in the original units with a speed c. Since L increases615

with the kurtosis of the mutation kernel, we deduce that higher kurtosis of the mutation616

kernel increases the mean fitness (see Fig. 2 and SI D.4). Thus the lag-load is maximal for617

the diffusion approximation.618

The shape of selection affects the lag load in the infinitesimal model, but619

not in the asexual model. In the asexual model, the lag load only depends, at the620

leading order, on the speed of environmental change and the mutation kernel through the621

Lagrangian function L (3.2)-(3.4) and the variance Vdiv (see Table 2). It does not depend on622

the selection, as illustrated in Fig. 6(a) (dashed line). At the next order of approximation, the623

mean fitness however depends on the local shape of the selection function around the optimal624

trait through Vsel (2.10). The mean fitness is then predicted to decline as the strength of625

stabilizing selection around the optimum 1/Vsel increases, due to increasing standing load.626

These predictions are confirmed by our numerical simulations see Fig. 3(a) and 6(a).627

In contrast, the influence of the selection pattern is more intricate in the case of the628

infinitesimal model of reproduction. The lag load depends strongly on the global shape of m629
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(see Fig. 3(b) and 6(b)). In particular, we see that for low strength of selection 1/Vsel, the630

mean fitness crucially depends on the shape of selection. Mean fitness is higher in the scenario631

with super–quadratic selection than with quadratic selection, and lowest when selection is632

sub-quadratic in Fig. 3(b) and 6(b)). Moreover, the mean fitness increases with increasing633

strength of selection in the quadratic case, while it initially decreases for the super–quadratic634

case. However, for stronger strength of selection, the shape of selection has less importance.635

Our approximation allows us to capture those differences. For instance, in the quadratic636

case (blue curves in Fig. 6 and 3), we can see from Table 3 that the mean fitness increases637

with the strength of selection at the leading order, which corresponds to large value of Vsel.638

However, when the strength of selection becomes stronger, antagonistic effects occur at the639

next order so that the fitness may decrease due to standing load, defined in (3.5) (Lynch640

and Lande, 1993; Lande and Shannon, 1996; Kopp and Matuszewski, 2014). This effect is641

illustrated in Fig. 6(b).642

4.3 The phenotypic variance643

In both asexual diffusion approximation and the infinitesimal model, the phenotypic variance644

does not depend on the speed of change c when the selection function is quadratic (see blue645

curves in Fig. 2(d) for asexual model and Fig. 3(f) for infinitesimal model). The phenotypic646

variance however increases with c if the selection function is sub-quadratic in the sense of (4.1)647

(see orange curves in Fig. 3). Conversely, the phenotypic variance decreases with c if the648

selection function is super-quadratic in the sense of (4.2) (see red curves in Fig. 3) – see649

details in SI E.650

The phenotypic variance is less variable in the infinitesimal model than in the asexual651

model. It was expected from our analysis (see formula of Table 2) because the infinitesimal652

model tends to constrain the variance of the phenotypic distribution. Indeed, we know from653

previous analysis (Mirrahimi and Raoul, 2013; Barton et al., 2017), that in the absence of654

selection, the infinitesimal model generates a Gaussian equilibrium distribution with variance655

Vdiv. Our analysis shows that under the small variance assumption, the phenotypic variance656

is close to this variance Vdiv and our numerical analysis shows that phenotypic variance657

slowly deviates from the genetic variance without selection Vdiv, when either the speed of658

change increases or the strength of selection increases. This pattern is observed whatever659

the shape of selection. We can thus conclude that for the infinitesimal model under the660

small variance hypothesis, the phenotypic variance is not very sensitive to either selection661

(strength of selection or shape of selection) or the speed of environmental change.662

Conversely, in the asexual model, the phenotypic variance is quite sensitive to the selection663

function. This is emphasized in the case of a bounded selection function. The phenotypic664

variance dramatically increases as the speed of change becomes close to the critical speed665

ctip because the selection gradient becomes flat (see Table 2).666

In the asexual model, the phenotypic variance is moreover sensitive to the shape of the667

mutation kernel. We see from Fig. 2(c) that the phenotypic variance generally increases with668

a fatter tail of the mutation kernel. There are however exceptions to this pattern (see for669

instance the Gamma mutation kernel at low speed of environmental change, green curves670

in Fig. 2). This situation, unexpected by our approximation, might be due to the fact that671

when the speed of change is low, the mutations with large effects are quickly eliminated by672

selection, which in turn reduces the phenotypic variance. This detrimental effect of large673

mutations when the environmental change rate is low has been also observed by Kopp and674

Hermisson (2009) and Collins et al. (2007).675
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Figure 6: Influence of the strength of selection 1/Vsel on the mean fitness λ, the evolutionary
lag |z∗| and the phenotypic variance Var(F) at equilibrium in an environment changing at rate
c = 0.05 and with three different selection patterns: quadratic (blue curves), super–quadratic
(red curves) or bounded (orange curves). Other parameters are: β = 1, Vdiv = 0.01 and
the intensity of selection 1/Vsel ranges from 10−2 to 4. We compare our analytical results
(first approximation dashed lines and second approximation plain lines) with the numerical
simulations of the stationary distribution of (2.2) (marked symbol) for both asexual and sexual
infinitesimal model. In the asexual model, we only consider a Gaussian mutation kernel.
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4.4 Persistence of the population: the critical speed cc676

The final outcome of our analysis is the computation of the speed cc beyond which the677

population cannot keep pace with the environmental change (λ < 0). In the general case,678

we can obtain the following approximation formula:679 
cc = βV

1/2
div L−1

(
β − µ0

β

)
(asexual model)

cc = Vdivm
′ (m−1(β − µ0)

)
(infinitesimal model)

(4.4)

We can first observe that, in the small variance regime, the critical speed in the asexual680

model does not depend on the shape of the selection m, but on the mutation kernel through681

the Lagrangian L and the variance Vdiv. Thus, for any selection function, the critical speed682

is the same (see Fig. 7(a)). Conversely, for the infinitesimal model, the critical speed crucially683

depends on the shape of the selection (see Fig. 7(b)). Moreover, we can mention that the684

discussion of the dependency of λ with respect to various parameters also holds naturally685

for cc.686
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Figure 7: Critical speeds cc and ctip as the function of the selection strength 1/Vsel for: (a) the
asexual model and (b) the sexual infinitesimal model. In panel (a), the plain curve corresponds
to the critical speed cc with different mutation kernel: Diffusion approximation (blue), Uniform
distribution (red), Gaussian distribution (orange), Exponential distribution (purple curve) and
Gamma distribution (green). The dashed line is the critical speed ctip. In panel (b), the curves
correspond to different selection functions: quadratic (blue), super-quadratic (red) and v-shape
(orange). The plain curves corresponds to the critical speed cc while the dashed curve to the
critical speed ctip.

When we consider the diffusion approximation for the asexual model (L(v) = v2/2)687

and the quadratic selection function m(z) = z2/(2Vsel), we obtain the following formula,688

including the next order term:689 

cc =
√
2βV

1/2
div

(
β − µ0

β
−1

2

(
Vdiv

Vsel

)1/2
)1/2

(asexual model)

cc =
√
2β

Vdiv

V
1/2
sel

(
β − µ0

β
− Vdiv

2Vsel

)1/2

(
1+4Vdiv

Vsel

)1/2 (infinitesimal model)

(4.5)
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In the asexual case, the formula (4.5) is in agreement with previous results where it was690

assumed that the relative phenotype z is normally distributed in the population, which691

corresponds in our framework to assuming that the equilibrium distribution F is Gaussian692

(see Lynch et al., 1991; Lynch and Lande, 1993).693

Moreover, in the asexual case with µ0 = 0, our formula (4.5) is consistent with the694

classical formula given with the phenotypic variance as a parameter:695

cc ≈
√
2β

Var(F)

V
1/2
sel

(4.6)

see for instance Eq. [A6] in (Kopp and Matuszewski, 2014). Although this simple formula is696

a good approximation in a general setting, it might be misleading, as it omits some possible697

compensation, such as the selection strength 1/Vsel, which disappears in the case of asexual698

reproduction because it also affects Var(F).699

Numerical approximations for finite population700

Here, we compare our approximation formula described in Table 2, with the outcomes of the701

stochastic model, defined in SI H, when the number of individuals is small (K is equal to702

102 or 103) and the selection scenario varies as in Fig. 3.703

When the speed of change is slow compared to the critical speeds, our approximations704

seem accurate in the sense that the approximation error usually falls on our confidence705

intervals (see Fig. S4-S6). In the infinitesimal sexual model, our approximations also do well706

when the speed is close to the critical threshold. In this model, we know that the population707

adapt thanks to the bulk of the population, which moves forward. Thus, even if the size of708

the population decreases, many individuals remains at the dominant trait. The size of the709

population does not have a critical influence on the adaptation response.710

However for the asexual model, when the speed of change increases, our approximations711

become less accurate. In this model, only the individuals near the optimal trait help the712

population to adapt. Thus when the speed increases, the proportion of individuals near713

the optimal trait decreases because the lag increases. Moreover, when the population size714

decreases, the actual number of individuals at the optimal trait may be zero, which may lead715

to an additional burden, and possibly the extinction of the population before the critical716

value cc is reached Calvez et al. (2023). In particular, we see in Figures S4-S6 (a) that the717

mean fitness of the population drops below 0 for fifty percent of the simulations when the718

speed is close to the critical speed. Thus the effect of the population size is stronger for the719

asexual model than for the infinitesimal sexual model.720

4.5 Numerical predictions for the whole distribution of phenotypes721

Quality of the approximation. For the asexual model, we only compare the simu-722

lation results with our first order approximation stated in Table 2 (black colored), except723

for the variation of the mean fitness with respect to the strength of selection, where it is724

preferable to take into account the standing load that appears at the second order of ap-725

proximation (see gray colored formula in Table 2). We can first observe from Fig. 6 that our726

approximations are accurate when ε = (Vdiv/Vsel)
1/2

is small (see value of 1/Vsel < 0.5 in727

Fig. 6). The scale of Fig. 6(a) is of order ε, which is why the first order approximation seems728

less accurate than the second order approximation. This was expected since the standing729

load, which increases with the strength of selection, occurs at the second order of the ap-730

proximation. The approximations of z∗ and λ remain efficient even when ε increases (see731
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Fig. 2 and 3 for small value of c). However, we see that the approximations deviate from the732

simulations when the speed of change increases and reaches the critical value cc (see Fig. 2733

and 3) or when the mutation kernel becomes leptokurtic (see green curves of Fig. 2). The734

approximation of the phenotypic variance is more sensitive to the parameter ε. When c and735

ε are small it is accurate (see Fig. 2). However, when the speed increases, the approximation736

diverges from the simulations even if ε is small (see Fig. 2 and 3).737

For the infinitesimal model, we have compared our simulations to our first order approxi-738

mation, as well as the second order approximation stated in Table 2 (first order approximation739

is black colored and second order approximation is gray colored). The first order approxima-740

tion of z∗ and λ are efficient only when ε is really small, while the first order approximation741

of the phenotypic variance may deviate from the simulation value even for small ε (see red742

curve Fig. 6(f)). However, the second approximations are really precise for small value of ε743

(see Fig. 6) and they remain accurate when ε increases and c increases (see Fig. 6 and 3).744

Comparing simulations to the approximation for the entire distribution.745

We compare the simulated equilibrium distribution F with our analytical approximations746

(Fig. 8): the first order approximation corresponds to F0 = exp(−U0/ε
γ), where U0 sat-747

isfies respectively the differential equation (3.1) (asexual model) or U0(z) = (z − z∗0)
2/2748

(infinitesimal sexual model), and γ is respectively equal to 1 in the asexual model and 2 in749

the infinitesimal case; and the second order approximation F1 = exp(−U0/ε
γ − U1), where750

U1 satisfies respectively equation (D.12) (asexual model) or the non–local functional equa-751

tion (3.12) (infinitesimal model). Our simulations are performed with an εγ = 0.1, which is752

not that small.753

In the asexual model, we can observe that the first order analytical approximation is754

really efficient at tracking the shape of the entire distribution for both super-quadratic and755

quadratic selection, even if ε is not so small (Fig. 8). For the bounded selection, our first756

order approximation fails to fit the left tail of the distribution, mainly because the speed of757

environmental change is close to the critical speed.758

In the infinitesimal model, we can observe that the first order Gaussian approximation759

is not precise enough to track the entire distribution (Fig. 8). We need the second order760

approximation to fit the distribution. This is a direct consequence of our analysis, where we761

observe that we need the second order approximation to define the first order approximation762

of the lag z∗ and the mean fitness λ.763

We also compare our approximations of the phenotypic distribution with the empirical764

distribution of the IBM model, described in SI H, for the scenarios described in Fig. 8. When765

the size of the population is large (of order K = 104), our approximations are accurate and766

fit with the empirical distribution of the stochastic model (see Fig. S3).767

The skewness and the kurtosis of the phenotypic distribution. To go further768

in understanding the effect of a changing environment, we looked at the skewness and the769

kurtosis of the distributions. Those two indicators allow us to test whether the distribution770

F can be well approximated by the Gaussian distribution.771

In the asexual model, with a Gaussian kernel K, we can observe from Fig. 9 that, even772

for quadratic selection, the distributions differ from a Gaussian distribution: they are skewed773

and leptokurtic, which means that their kurtosis are higher than the kurtosis of the Gaus-774

sian distribution with same mean and variance. So the Gaussian distribution fails to track775

the exact distribution of the trait around the mean trait of the population in a changing776

environment. This phenomenon is enhanced when the selection function differs from the777
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quadratic function (see Fig. 9 diamond curves and Fig. 8). In addition, we see that, when778

the selection function is super–quadratic, the distribution has a positive skew, while, for a779

bounded selection function, it has a negative skew.780

Conversely, in the infinitesimal case, the Gaussian distribution well approximates the781

equilibrium distribution in general. This was already described by our approximation for-782

mula (3.11) in Section 3.2. We can see that the kurtosis of the equilibrium distribution783

remains close to zero for any speeds of change and any selection functions. However, when784

the selection function is either super-quadratic or bounded, we can observe from Fig. 8 and 9785

that the distribution of phenotypes in the infinitesimal model also becomes skewed as the786

speed increases. The skew of the distribution corresponds to regions where the gradient of787

selection is low, with the same pattern as in the asexual model.788

5 Discussion789

We have pushed further a recent methodology aimed at describing the dynamics of quantita-790

tive genetics models in the regime of small variance, without any a priori knowledge on the791

shape of the phenotype distribution. This methodology combines an appropriate rescaling792

of the equation with Taylor expansions on the logarithmic distribution.793

Small variance asymptotics. Our approach differs from the previous studies based794

on the cumulant generating function (CGF), which is the logarithm of the Laplace transform795

of the trait distribution, here C(t, p) = log
(∫

epzf(t, z) dz
)
. In his pioneering work, Burger796

(1991) derived equations for the so-called cumulants, which are the coefficients of the Taylor797

series of the CGF C(t, p) at p = 0. However this system of equations is not closed, as798

the cumulants influence each other in cascade. This analysis was revisited in (Martin and799

Roques, 2016) in the asexual model, using PDE methods. They derived an analytical formula800

for the CGF itself, but restricted it to a directional selection, when the trait represents the801

fitness itself. This was further extended to a moving optimum in (Roques et al., 2020).802

However, they made the crucial assumption of the Fisher Geometric Model for selection,803

which is analogous to our quadratic case, and diffusion for mutations, for which it is known804

that Gaussian distributions are particular solutions. The common feature with our present805

methodology is the PDE framework. Nevertheless, we focus our analysis on the logarithm of806

the trait distribution itself, as it is commonly done in theoretical physics to reformulate the807

wavefunction in terms of its action (see SI D.3 for heuristics on this approach). This strategy808

is well-suited to provide precise approximations with respect to a small parameter, for809

instance the wavelength in wave propagation (geometric optics) and the Planck constant in810

quantum mechanics (semi-classical analysis), and the phenotypic variance in our theoretical811

biology setting.812

Here, the small variance regime corresponds to relatively small effect of mutations com-813

pared to the strength of stabilizing selection. Under this regime, little variance in fitness814

is introduced in the population through either mutation or recombination events during815

reproduction. However, despite it is usually referred to as the ”weak selection – strong mu-816

tation” regime, population can still experience strong effect of selection that may drive the817

population to extinction due to the evolutionary lag.818

Under the small variance regime, we could describe analytically the phenotype distribu-819

tion (see Fig. 8), and assess the possible deviation from the Gaussian shape. We further820

gave analytical approximations of the three main descriptors of the steady state: the mean821

relative phenotype, the mean fitness, and the phenotypic variance (see Table 2). We also822
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Figure 8: Mutation-selection equilibria F in changing environment with three different shapes
of selection: (a)-(b) quadratic function m(z) = z2/2 (blue circled marked curves); (c)-(d) super-
quadratic function m(z) = z2/2 + z6/64 (blue star marked curves); (e)-(f) bounded function
m(z) = m∞(1− exp(−z2/(2m∞)) (orange diamond marked curves). The speed of environment
change is c = 0.09 in the asexual model while it is c = 0.05 in the infinitesimal sexual model so
that it remains below the critical speeds cc and ctip and the distribution deviates significantly
from the Gaussian distribution approximation. Other parameters are: β = 1, Vsel = 1, Vdiv =
0.01 and m∞ = 0.5 in the asexual model and m∞ = 1 in the infinitesimal sexual model. We
compare simulated equilibria distribution F (marked curves) with our analytical results (first
order results dashed curves and second order results plain curves). For the asexual scenario, we
used the Gaussian kernel.
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Figure 9: Influence of the speed of environmental change c for three different shapes of selection:
(a)-(b) quadratic function m(z) = z2/2 (blue curves), super-quadratic function m(z) = z2/2 +
z6/64 (red curves) or bounded function m(z) = m∞(1 − exp(−z2/(2m∞)) (orange curves).
Other parameters are: β = 1, Vsel = 1, Vdiv = 0.01 and m∞ = 0.5 in the asexual model
and m∞ = 1 in the infinitesimal sexual model. In the asexual model, the mutation kernel is
Gaussian. We compare our analytical results (dashed lines) with the numerical simulations of
the stationary distribution of (2.2) (marked symbols) for both asexual and sexual infinitesimal
model. It appears that our analytical results are able to catch interesting features even for
relatively large speed of change c.
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compared our deterministic approximations with the outcomes of stochastic simulations with823

a finite number of individuals (see SI H). Stochastic simulations are in good agreement when824

the number of individuals is large enough, or when the speed of change is not too close to825

the critical speed cc in the asexual case. Furthermore, in the infinitesimal sexual model, our826

approximations seems really precise even when the size of the population shrinks as the speed827

of change increases. In this case, the variance is constrained to remain nearly constant, which828

forces the bulk of the population to adapt and prevent random drift to drive the population829

towards extinction. However, in the asexual model, we observe large discrepancies when830

the speed of change approaches the critical threshold. More precisely, in the asexual model,831

the dynamics of adaptation relies upon those individuals which are the fittest, as can be832

illustrated by the ancestral lineages Patout et al. (2020); Calvez et al. (2022b). In an infinite833

population, the fittest individuals are certainly at the optimal trait. This actually explains834

why the lag load does not depend on selection at the leading order. However, in finite pop-835

ulations, when the speed of change increases, the lag increases, thus reducing the chance to836

find individuals with an optimal trait. This sampling effect induces an additional burden to837

the population, resulting in an increase of maladaptation, which may lead to extinction of838

the population, not predicted by the deterministic model of infinite population size (Calvez839

et al., 2023). This negative feedback between maladaptation and phenotypic variance, called840

”mutational meltdown” by Lynch and Gabriel (1990) in the context of the evolution of small841

population by mutation-selection, has already been observed numerically for small sexual842

populations subject to fast environmental change by Burger and Lynch (1995).843

Noticeably, two different models of reproduction, assuming either asexual reproduction,844

or infinitesimal sexual reproduction with an infinite number of freely recombining loci (the845

infinitesimal model), could be handled in a unified framework. This allows discussing similar-846

ities and differences between the two models, which are frequently used in analytical models847

of adaptation to changing and/or heterogeneous environments. However, the two models848

are subject to different scaling regimes, as exemplified by the differences in the phenotypic849

variance at equilibrium (see Tables 2 and 3), or by the different formulas of the critical850

speed (4.4). This discrepancy is an outcome of our analysis and we did not find any a priori851

biological evidence, which supports our scaling in our setting with general selection functions852

and various mutation kernels. Still, in the particular cases where the phenotypic distribution853

is well approximated by a Gaussian distribution, the former theoretical literature (Bürger,854

2000; Barton et al., 2017) may be used to justify our different scaling. More precisely, under855

mutation-selection balance, the phenotypic variance of an haploid asexual population is well856

approximated under the Gaussian regime by Var(F) =
(
VdivVsel

)1/2
= εVsel (see Bürger,857

2000, and Table 3). While the phenotypic variance of a population following the infinitesi-858

mal model is approximately Var(F) = Vdiv = ε2Vsel (Barton et al., 2017). As a result, we859

see that the phenotypic variance in the asexual model is of order ε, while it is of order ε2 for860

the infinitesimal sexual model. Noteworthy, our analysis shows that, despite the fact that861

the phenotypic distribution can deviate significantly from a Gaussian shape (see Fig. 8), the862

phenotypic variance scale remains of the same ε order in our analysis, in line with (Diekmann863

et al., 2005; Barles et al., 2009; Lorz et al., 2011) for the asexual case, and (Calvez et al.,864

2019) for the infinitesimal sexual case.865

Relaxing the Gaussian distribution assumption. Our analytical framework al-866

lows us to relax the assumption of a Gaussian distribution of phenotypic values, commonly867

made by several quantitative genetics models of adaptation to a changing environment with868

a moving optimum, both in the case of sexually (e.g. Burger and Lynch, 1995; Osmond and869
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Klausmeier, 2017) and asexually reproducing organisms (e.g. Lynch et al., 1991). Consis-870

tently with previous simulations and analytical results (Turelli and Barton, 1994; Bürger,871

1999; Jones et al., 2012), our results show that we expect stronger deviations from a Gaus-872

sian distribution of phenotypes if the selection function departs from a quadratic shape, if873

the mutation model departs from a simple diffusion, if reproduction is asexual rather than874

well described by the infinitesimal model, and/or if the environment changes relatively fast.875

We in particular recover the observation made by Jones et al. (2012) in their simulations876

that the skew of the phenotypic distribution is greater in absolute value in faster changing877

environments, but we further predict that the sign of this skew critically depends on the878

shape of the selection function away from the optimum, an observation that could not be879

made by their simulations that only considered quadratic selection.880

Universal relationships. Interestingly, despite deviations from the Gaussian distribu-881

tion, our predictions in the regime of small variance for the mean relative phenotype, or the882

critical rate of environmental change, are consistent with predictions of past quantitative883

genetics models that have assumed a constant phenotypic variance and a Gaussian distri-884

bution of phenotypes. We discuss below the links between the present results and those885

past predictions and how they provide new insights. As a direct consequence of the small886

variance assumption, the two following relationships, linking the three main descriptors of887

the population (the mean relative phenotype, mean fitness and phenotypic variance), hold888

true, whatever the model of reproduction (either asexual or infinitesimal):889 
λ ≈ 1−m(z∗)

Var(F ) ≈ − εγc

m′(z∗)

(5.1)

The first relationship corresponds to the demographic equilibrium, when the mean fitness890

is the balance between (constant) fecundity and mortality at the mean relative phenotype.891

The second one corresponds to the evolutionary equilibrium, when the speed of evolutionary892

change (as predicted by the product of phenotypic variance and the selection gradient) equals893

the speed of change in the environment. Note that our model assumes for simplicity that894

the phenotypic variance is fully heritable. Those relationships are better visualized in di-895

mensionless units. They can be deduced directly from equations (2.13)-(2.14). Although the896

reproduction model does not affect the demographic relationship, it influences the evolution-897

ary relationship through the scaling exponent γ (γ = 1 for asexual reproduction and γ = 2 for898

infinitesimal sexual reproduction). Similar equations appear in quantitative genetics models899

assuming a Gaussian phenotypic distribution and a constant phenotypic variance. In par-900

ticular, with quadratic selection, the second relationship allows us to recover the following901

results of Burger and Lynch (1995) and Kopp and Matuszewski (2014):902

|z∗| ≈ βc
Vsel

Var(F)
. (5.2)

However, the two relationships (5.1) are not enough to compute the three descriptors,903

if one does not consider the phenotypic variance Var(F ) as a fixed parameter, as previous904

studies often did. Our small variance approximations allows us to predict the value of the905

phenotypic variance in a changing environment in the two models, where previous studies906

have generally used simulations (e.g. Bürger, 1999) to examine how the evolution of the907

phenotypic variance affects the adaptation of sexual and asexual organisms in a changing908

environment. Many of our results are ultimately explained by the fact that the evolution of909
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the phenotypic variance is under very different constraints under the asexual model and the910

infinitesimal model.911

In the asexual model, the evolution of the phenotypic variance is not strongly constrained912

and has in particular no upper bound. The mean fitness λ does not depend on the shape of913

the selection function at the leading order (see (3.3) and Table 2), but only on the speed of914

environmental change and on the mutation kernel. Once the mean fitness is determined, the915

mean relative phenotype z∗ and the phenotypic variance Var(F ) are deduced from respec-916

tively the first and the second relationship in (5.1). The phenotypic variance then strongly917

depends on the shape of the selection in the asexual model. In contrast, in the sexual in-918

finitesimal model, we found that the phenotypic variance Var(F ) does not depend on the919

shape of the selection function at the leading order (see (3.11) and Table 2). The mecha-920

nism of inheritance in the infinitesimal model indeed constrains the value of the phenotypic921

variance at equilibrium. Then, the mean relative phenotype z∗ and the mean fitness λ are922

deduced from respectively the second and the first relationship (5.1). Most of our predictions923

(discussed below) are a consequence of this core discrepancy between the two models.924

Mean fitness weakly depends on selection in the asexual model, but not925

in the infinitesimal model. In the asexual model, λ depends on m only at the second926

order through the strength of selection around the optimal trait 1/Vsel = m′′(0) (2.10).927

Hence, up to a reasonable accuracy, the mean fitness depends (weakly) on the local shape928

of the selection pattern around the optimal trait, even if the population can be localized929

around a mean relative phenotype far from the optimal trait. This happens because, in a930

gradually moving environment, the asexual population is constantly regenerated by the fittest931

individuals. This phenomena is apparent when tracing back lineages in the population at932

steady state: it was proven independently by Patout et al. (2020) and Calvez et al. (2022b)933

that the typical trajectories of ancestors of individuals sampled uniformly in the population934

converge to the optimal trait backward in time. In contrast, the mean fitness strongly935

depends on the shape of the selection function in the infinitesimal sexual model. It appears936

clearly in the quadratic case where Vsel enters into the formula for the mean fitness at the937

leading order (Table 3). In particular, we recover the previous finding that weak selection938

represents a ”slippery slope” in a changing environment, leading to a lower mean fitness,939

when effects of selection on the evolution of phenotypic variance are neglected (Kopp and940

Matuszewski, 2014). Again, it is interesting to link this finding to the behavior of the typical941

trajectories of the ancestors in the infinitesimal model, which converge to the mean relative942

phenotype backward in time (Patout, 2019, Chapter 5).943

The shape of selection has strong effects on the evolution of the mean944

relative phenotype and phenotypic variance under both the asexual and945

infinitesimal models. In both models, however, the exact shape of the selection func-946

tion away from the optimum has noticeable consequences for the evolution of the lag between947

the mean phenotype in the population and the moving optimum, and for the evolution of948

the phenotypic variance, especially in fast changing environments. There is unfortunately949

very scarce empirical evidence about the exact shape of fitness landscapes and how much950

they deviate from a quadratic, due to the difficulty to estimate precisely the shape of such951

fitness functions. However, some empirical studies reviewed in (Agrawal and Whitlock, 2010)952

suggest strong deviations from a quadratic shape. For instance, selection can become weaker953

with increasing maladaptation, due to lower bound on fitness (Agrawal and Whitlock, 2010).954

The effect of such selection can only be observed when the population is really maladapted,955
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which might be the case for populations facing rapid environmental change. Under this sce-956

nario, Osmond and Klausmeier (2017) have shown that selection can constrain evolution, by957

limiting the ability of population to evolve and persist in a directional environmental change.958

Most models however assume, for mathematical convenience and in the absence of strong959

empirical support for an alternative, a quadratic selection function. Our analysis allows con-960

sidering a broad diversity of selection functions and also to draw general conclusions about961

how their shape may affect the evolution of the phenotypic distribution. In both asexual and962

infinitesimal models, we found, consistently with previous predictions (reviewed in Kopp and963

Matuszewski, 2014), that the lag increases with the speed of environmental change: how-964

ever there is a linear relationship between the two only when assuming a quadratic selection965

function. When the selection function is super-quadratic (and selection much stronger away966

from the optimum), this puts a brake on maladaptation and the evolutionary lag does not967

increase as fast when the environment changes more rapidly. For the same reason, the phe-968

notypic variance then declines when the environment changes faster in the super-quadratic969

selection scenarios. Conversely, with a sub-quadratic selection function, the weakening of970

selection away from the optimum results in larger lags, accelerating maladaptation with in-971

creasing speed of environmental change and increasing phenotypic variance. There has been972

little discussion yet in the theoretical literature of the consequences of the exact shape of973

selection in changing environments (see however (Osmond and Klausmeier, 2017; Klausmeier974

et al., 2020) and discussion of tipping-points below). In a constant or stationary environment975

with weak fluctuations, the mean phenotype value is never very far from the optimum and976

the quadratic selection is an adequate approximation. However, the present results suggest977

that further empirical investigation of the shape of the fitness landscape far from the opti-978

mum is critically needed to understand how much populations may depart from the optimal979

phenotypic value.980

Evolutionary tipping points. The case of sub-quadratic selection functions has re-981

cently attracted some interest, since it was discovered that the weakening of selection away982

from the optimum could lead to evolutionary tipping points: above some critical speed of983

environmental change, the evolutionary lag grows without limit and the population abruptly984

collapses without much warning signal (Osmond and Klausmeier, 2017; Klausmeier et al.,985

2020). This behaviour is very different from the dynamics of the lag under classic mod-986

els of quadratic selection on moving optimum. Osmond and Klausmeier (2017) assumed a987

Gaussian distribution of phenotypes and a constant phenotypic variance and compared their988

analytical results to simulations of a sexually reproducting population. Klausmeier et al.989

(2020) went on to show that non quadratic fitness function with inflection points, leading990

to such tipping points, could emerge from various realistic ecological feedbacks involving991

density-dependence or interactions with other species. Our analytical results allow us to992

predict the critical speed at which the evolutionary tipping points occur. In particular, we993

show that the infinitesimal tipping points occurs at the maximal rate of evolution, which994

corresponds to the product of the phenotypic variance and the maximal selection gradient.995

This relationship was already derived in a particular case by Osmond and Klausmeier (2017).996

We furthermore show that evolutionary tipping points also emerge in the asexual model, but997

with a different signature. In the asexual model, there is only one possible equilibrium for998

each value of the speed of environmental change. Again, ultimately, this unique equilibrium999

is due to the fact that the variance evolves more freely in the asexual model, which allows any1000

variant close to the optimal trait to become dominant in the population Patout et al. (2020).1001

As the speed increases towards the critical value ctip, the lag diverges (Figure 4(a)-5(a)). As1002
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a result, the variance gets arbitrarily large and the skewness becomes negative, which shows1003

that more individuals lag behind the mean relative phenotype. Conversely, in the infinites-1004

imal model, the variance is constrained to remain nearly constant , which forces the bulk1005

of the population to adapt. As a result, multiple equilibria exist, which determine several1006

basins of stability, up to the critical value ctip. The lag remains bounded in the vicinity of1007

the tipping point, determining a characteristic range for the basin of attraction of the origin1008

(Figure 4(b)-5(b)). The lag can diverge, even if c < ctip, for maladapted initial distributions1009

concentrated far from the origin. This corresponds to a population that cannot keep pace1010

with the environmental change because they are initially maladapted, possibly due to some1011

transient change in the environment of major effect.1012

Effect of the mutation kernel. In the asexual model, our results also give analytical1013

insights on the effect of the shape of the mutation kernel on the adaptation to a changing1014

environment. Empirical data on the exact distribution of mutational effects on phenotypic1015

traits are hard to get (even though there is more data on the fitness effects of mutations) (see1016

e.g. Halligan and Keightley, 2009; Nei, 2014). Most models therefore assume for mathemati-1017

cal convenience a Gaussian distribution of mutational effects. A few simulation studies have1018

however explored marginally the consequences of a different, leptokurtic, mutation kernel1019

(Keightley and Hill, 1988; Bürger, 1999; Waxman and Peck, 1999) : they found that a fat-1020

ter tail for the distribution of mutational effects led to higher phenotypic variance, smaller1021

evolutionary lag and greater fitness. The present analytical results are consistent with these1022

past simulation results and show that we may expect in general distributions of mutations1023

with higher kurtosis to reduce maladaptation and improve fitness, especially in fast changing1024

environments.1025

The advantage of sex in changing environments. Previous studies (Charlesworth,1026

1993; Bürger, 1999; Waxman and Peck, 1999) have used the Gaussian assumption and/or1027

simulations to compare the dynamics of adaptation to a changing environment in sexual and1028

asexual organisms. They all reached the conclusion that sex should provide a net advantage1029

in a directionally changing environment, with a lower lag and greater fitness, which was1030

ultimately due to the greater phenotypic variance evolving in a sexually reproducing popula-1031

tions. More precisely, Bürger (1999) and Waxman and Peck (1999) found that the phenotypic1032

variance in sexual organisms would increase significantly with the speed of environmental1033

change, while it would have only moderate effects on the variance in the asexual popula-1034

tion. These findings seem to contrast with our comparison of the asexual model and sexual1035

infinitesimal model, with more constraints on the evolution of the phenotypic variance for1036

the latter. However, we would warn against interpreting our comparison of the infinitesimal1037

and asexual model as informing about the advantage of sex in a changing environment. We1038

rather see this comparison as informing us about the consequences of some modeling choices,1039

with various constraints on the evolution of the phenotypic variance. First, for the ease of1040

comparison between models, we used the same notationVdiv to determine the amount of new1041

variation introduced through reproduction in the progeny of parents in both models: in the1042

asexual model it describes the amount of variance introduced by mutation, while it describes1043

variation due to segregation in the infinitesimal model. It is unclear whether these quantities1044

would be comparable with an explicit genetic model, including mutation and segregation1045

at a finite set of loci. Second, we note that both Bürger (1999) and Waxman and Peck1046

(1999) used in their simulations parameter values for mutation and selection corresponding1047

well to the regime of the House-of-Cards approximation (Turelli, 1984; Turelli and Barton,1048
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1990; Bürger, 2000), with rare mutations of large effects on fitness. Our study focused on1049

a different regime of frequent mutations with small effects. Even if the equilibrium variance1050

is small in both cases, the effect of a changing environment is different.1051

Conclusions and perspectives. One of the main conclusion of our study is that the1052

genetic variance at equilibrium truly depends on the modelling choice of the mode of repro-1053

duction. To understand this relationship, the approximation of the phenotype distribution1054

appeared necessary. This approach is indeed robust, as shown by several studies following the1055

same methodology in spatial structured population models: discrete patches ((Mirrahimi,1056

2017) with an asexual model and (Dekens, 2020) with the infinitesimal sexual model); dis-1057

persal evolution ((Perthame and Souganidis, 2016; Lam and Lou, 2017; Lam, 2017; W Hao,1058

2021; Calvez et al., 2022a; Lam et al., 2022) in the asexual case and (Dekens and Lavigne,1059

2021) in the infinitesimal sexual case). Moreover, this methodology is expected to be ef-1060

ficient to investigate other structured population models. Our next step will be to study1061

the adaptation of an age–structured population to a changing environment, following (Cotto1062

and Ronce, 2014). Other modes of reproduction with a more complicated genetic underly-1063

ing architecture are also under investigation, (see for instance Dekens and Mirrahimi, 2021;1064

Dekens et al., 2021).1065
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Nicolas Champagnat, Régis Ferrière, and Sylvie Méléard. Unifying evolutionary dynamics:1110
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Supplementary Information1270

The following subsections gather mathematical analysis supporting the dimensionless scaling,1271

numerical methods, Taylor expansions and formula derived in the main text. Although1272

some parts are standard methods (rescaling, numerics), some parts are original contributions1273

(dedicated Taylor expansions and formula involving the Lagrangian function), extending the1274

literature in multiple ways. Hence, this supplementary material can be read as the companion1275

mathematical paper of the main text.1276

Before we enter into the technical details, let us highlight some important observations1277

about the Taylor expansions:1278

• These expansions are more than moment closure methods, where one usually tries1279

to guess the higher moments of the distribution in order to derive a close system of1280

equations on some scalar quantities (first moments of the distribution, e.g. population1281

size, mean relative phenotype value, etc). Here, the whole distribution is approximated,1282

then scalar quantities are deduced without any a priori assumptions on the shape of1283

the distribution.1284

• In contrast to classical expansions of the distribution F which are linear, e.g. F =1285

F0 + εF1 + . . . , we perform here a multiplicative Taylor expansion, meaning a linear1286

expansion of the logarithm of the density: U = U0 + εU1 + . . . . We claim this is1287

the natural expansion in the regime of small variance in order to discard the variance1288

from the asymptotic calculations. Nonetheless, intermediate computations may appear1289

heavy because of the nonlinear nature of the multiplicative expansion.1290

• We believe all these approximations can be theoretically justified, and error terms1291

can be controlled quantitatively up to some extent. Results in the literature so far1292

cover the case without environmental change (c = 0), see (Perthame and Barles, 2008;1293

Barles et al., 2009; Mirrahimi and Raoul, 2013) for the asexual model, and the more1294

recent (Calvez et al., 2019; Patout, 2020) for the infinitesimal sexual model.1295

A Derivation of generic formula (5.1)1296

Let us consider the equilibrium of our model:1297

λF (z)− εγc∂zF (z) +m(z)F (z) = B(F )(z) , γ ∈ {1, 2} (A.1)

By integration over R, we find:1298

λρ+

∫
R
m(z)F (z) dz = ρ , ρ =

∫
R
F (z) dz . (A.2)

In the regime of small variance, we expect F to concentrate around the mean relative phe-1299

notype z∗, so as to get the following relationship1300

λ ≈ 1−m(z∗) , (A.3)

which corresponds to the demographic equilibrium. Next, we multiply by (z− z∗), where z∗1301

is the mean value of the distribution F . Then, we integrate over R to find:1302

εγcρ+

∫
R
(z − z∗)m(z)F (z) dz =

∫
R
(z − z∗)B(F )(z) dz . (A.4)
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For any operator B defined by (2.12), we find that the right-hand-side vanishes by definition1303

of z∗. The concentration of the distribution F motivates the Taylor expansion of the selection1304

function: m(z) ≈ m(z∗) + (z − z∗)m′(z∗) which implies the following:1305

εγc ≈ −m′(z∗)(Var(F )) . (A.5)

B Dimensionless scaling1306

We present in this section the details of the scaling procedure which leads to equations (2.13)1307

and (2.14) in dimensionless form. By convention, the variables and parameters in original1308

units are written in bold, whereas dimensionless quantity are in normal font.1309

The stationary state (λ,F) satisfies

λF(z)− c∂zF(z) + µ(z)F(z) = βB(F)(z) .

Dividing by the fecundity rate β, (trait-independent) it becomes1310

λ+ µ0

β
F(z)− c

β
∂zF(z) +

m(z)

β
F(z) = B(F)(z) . (B.1)

Around the optimum trait z = 0, the mortality per individual per generation m/β is equiv-

alent to
m(z)

β
=

1

2

m′′(0)

β
z2 + o(z2) =

z2

2Vsel
+ o(z2)

This, it is natural to measure traits at the selection scale:

Zsel = V
1/2
sel .

The mean fitness and the phenotypic distribution becomes in the scaled trait variable z =

z/Zsel:

λ =
λ+ µ0

β
, and F (z) = F(Zselz) .

The mortality rate per individual becomes

m(z) =
m (Zselz)

β
,

so that the selection strength around the optimum is scaled to a unit value:

m′′(0) = 1 .

Our main assumption is that there is a small variability with respect to the selection scale

Zsel. Denoting by Zdiv the standard deviation of offspring traits from the parental traits,

Zdiv = V
1/2
div , we define ε the scaling ratio:

ε =
Zdiv

Zsel
.

Then, our main assumption can be summarized as ε ≪ 1, paving the way to suitable Taylor1311

expansions. Both models share the same notation for the standard deviation Zdiv = V
1/2
div in1312

the original units. However, we emphasize that it corresponds to mechanisms of variability1313

associated with very different genetical background.1314
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The reproduction operators B are transformed as follows:1315

B.1 Asexual reproduction operator in scaled variables.1316

B(F)(Zselz) =
1

Zdiv

∫
R
K

(
Zsel

Zdiv

(
z − z′

Zsel

))
F(z′) dz′.

Using the change of variable z′ = z′/Zsel in the integral and the definition of ε = Zdiv/Zsel,

we obtain

B(F)(Zselz) =
Zsel

Zdiv

∫
R
K

(
Zsel

Zdiv
(z − z′)

)
F(Zselz

′) dz′ =
1

ε

∫
R
K

(
z − z′

ε

)
F (z′) dz′.

B.2 Sexual reproduction operator in scaled trait.1317

B(F)(Zselz) =
1√

πVdiv

∫∫
R2

exp

(
− 1

Vdiv

(
Zselz −

z1 + z2
2

)2
)
F(z1)

F(z2)∫
R F(z′2) dz

′
2

dz1dz2

=
1√
π

1

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − 1

2

(
z1
Zsel

+
z2
Zsel

))2
)
F(z1)

F(z2)∫
R F(z′2) dz

′
2

dz1dz2 .

Using the change of variable z1 = z1/Zsel, z2 = z2/Zsel, and z′2 = z′2/Zsel, in the integrals

and the definition of ε = Zdiv/Zsel, we obtain

B(F)(Zselz) =
1√
π

1

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F(Zselz1)

F(Zselz2)

Zsel

∫
R F(Zselz′2) dz

′
2

Z2
seldz1dz2

=
1√
π

Zsel

Zdiv

∫∫
R2

exp

(
−
(
Zsel

Zdiv

)2(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2

=
1

ε
√
π

∫∫
R2

exp

(
− 1

ε2

(
z − z1 + z2

2

)2
)
F (z1)

F (z2)∫
R F (z′2) dz

′
2

dz1dz2 .

B.3 The dimensionless speed.1318

It remains to express the dimensionless speed c = c/C with different choices of the typical1319

speed C. This choice depends on the mode of reproduction as follows:1320

C =


βV

1/2
div (asexual model)

β
Vdiv

V
1/2
sel

(infinitesimal sexual model)
. (B.2)

We thus deduce the dimensionless expression of the advection term:1321

− c

β
∂zF(z) = −c

C

βZsel
∂zF (z) =


−c

Zdiv

Zsel
∂zF (z) = −εc∂zF (z) (asexual model)

−c
Z2

div

Z2
sel

∂zF (z) = −ε2c∂zF (z) (infinitesimal sexual model)

.

(B.3)

We obtain eventually the two rescaled problems as shown in (2.13) and (2.14). To conclude,1322

let us mention that the discrepancy between the two values of C (B.2) is due to the very1323

last step (B.3), where the dimensionless speed must be of order ε in the asexual model, resp.1324

of order ε2 in the infinitesimal sexual model, in order to balance the other contributions. A1325

mismatch at this step (e.g. any other power of ε) would result in a severe unbalance between1326

the contributions, namely dramatic collapse of the population if the effective speed is too1327

large, or no clear effect of the change if the effective speed is too small.1328
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C Derivation of the variance1329

We compute below the formula of the phenotypic variance Var(F ) in terms of U = −εγ logF ,1330

Var(F ) =

(∫
R
((z − z∗)

2
exp

(
−U(z)

εγ

)
dz

)/(∫
R
exp

(
−U(z)

εγ

)
dz

)
(C.1)

We assume that U reaches a non-degenerate minimum point at a unique z∗, such that1331

U(z) = U(z∗) + 1
2 (z − z∗)2∂2

zU(z∗) + o((z − z∗)2) as z → z∗. The denominator is equivalent1332

to1333

εγ/2
√
2π√

∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
(C.2)

whereas the numerator is equivalent to1334

εγ

∂2
zU(z∗)

εγ/2
√
2π√

∂2
zU(z∗)

exp

(
−U(z∗)

εγ

)
. (C.3)

Thus, the ratio is equivalent to (2.17):1335

Var(F ) ∼ εγ

∂2
zU(z∗)

. (C.4)

D Asexual type of reproduction (Details of Section 3.1)1336

This long section is devoted to the details of the Taylor expansion of U defined by (2.15). The1337

equations verified by the successive terms U0 and U1 are derived. The meaningful formula1338

are computed.1339

We can formally expand the pair (λ,U) with respect to ε as follows,1340 U(z) = U0(z)+εU1(z) + o(ε)

λ = λ0+ελ1 + o(ε)
(D.1)

where (λ0, U0) gives the limit shape as ε → 0, and (λ1, U1) is the correction for small ε > 0.1341

We focus on the leading order contribution in this work. The corrector is required to refine1342

our approximation in some part of the discussion.1343

D.1 Equations for (λ, U), (λ0, U0) and (λ1, U1)1344

We begin with the diffusion approximation for the sake of simplicity. This enables to present1345

the main ingredient, namely the completion of the square in the equation, that will be gen-1346

eralized next for a general mutation kernel.1347

D.1.1 The diffusion approximation1348

The equation for F (2.13), together with the logarithmic transformation F (z) = exp(−U(z)/ε),1349

is equivalent to the following one:1350

λ+ c∂zU(z) +m(z) = 1 +
1

2
(∂zU(z))

2
+

ε

2
∂2
zU(z) . (D.2)

Clearly, the limiting problem for (λ0, U0) is1351

λ0 + c∂zU0(z) +m(z) = 1 +
1

2
(∂zU0(z))

2
. (D.3)
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It is instructive to gather all the ∂zU0 in the right hand side, then to complete the square:1352

m(z) +

[
λ0 − 1 +

c2

2

]
=

1

2
(∂zU0(z)− c)

2
. (D.4)

The key point is that there exist admissible solutions of this ODE if, and only if, the value1353

between brackets vanishes, i.e. λ0 = 1− c2

2 . The argument is as follows.1354

Completion of the square. On the one hand, evaluating (D.4) at z = 0, we find that1355

λ0 − 1 + c2

2 ⩾ 0 since m(0) = 0. On the other hand, if λ0 − 1 + c2

2 is positive, then ∂zU0 − c1356

does not change sign. Assuming without loss of generality that it is everywhere positive, we1357

find that U0(z) ⩾ cz + U0(0) for z ⩾ 0 and U0(z) ⩽ cz + U0(0) for z ⩽ 0. In particular,1358

we have U0(z) → −∞ as z → −∞, and U0(z) → +∞ as z → +∞, which is clearly not1359

admissible because F is a population density. Therefore, λ0 − 1 + c2

2 = 0.1360

Next, we can deduce the lag by evaluating (D.3) at z∗0 such that ∂zU0(z
∗
0) = 0,1361

m(z∗0) =
c2

2
, (D.5)

and also the value of the second derivative by differentiating once and evaluating at z∗0 :1362

c∂2
zU0(z

∗
0) + ∂zm(z∗0) = 0. (D.6)

Finally, we deduce the variance from (2.17)1363

Var(F ) = − εc

∂zm(z∗0)
+ o(ε) (D.7)

consistently with (5.1).1364

We can even provide a formula for the profile U0 by solving the ODE (D.4):1365

U0(z) = cz +

∣∣∣∣∫ z

0

(2m(z′))
1/2

dz′
∣∣∣∣ . (D.8)

Notice that the environmental change acts here as a linear correction of the equilibrium profile1366

obtained in the case c = 0. However, this is a peculiarity of the diffusion approximation.1367

It is another peculiarity that a quadratic selection function m(z) = z2

2 results in a1368

quadratic profile U0(z) = cz + z2

2 (D.8), which corresponds to a Gaussian distribution func-1369

tion F with variance ε.1370

D.1.2 The case of a mutation kernel1371

Again, we can reformulate the problem (2.13) in an equivalent form:1372

(λ+ c∂zU(z) +m(z)) exp

(
−U(z)

ε

)
=

1

ε

∫
R
K

(
z − z′

ε

)
exp

(
−U(z′)

ε

)
dz′ (D.9)

After the change of variables z′ = z − εy in the integral term, we obtain:

λ+ c∂zU(z) +m(z) =

∫
R
K (y) exp

(
U(z)− U(z − εy)

ε

)
dy

=

∫
R
K (y) exp

(
y∂zU(z)− ε

2
y2∂2

zU(z) + o(ε)
)
dy .
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Injecting (D.1) into (2.13), but dropping terms of order higher than ε, we get

λ0 + ελ1 + c∂z (U0(z) + εU1(z)) +m(z) =

∫
R
K (y) exp

(
y∂z (U0(z) + εU1(z))−

ε

2
y2∂2

zU0(z) + o(ε)
)
dy

=

∫
R
K (y) exp (y∂zU0(z))

(
1 + εy∂zU1(z)−

ε

2
y2∂2

zU0(z)
)
dy + o(ε) .

(D.10)

By identification of the contributions having the same order in ε in equation (D.10), we

obtain the following equations for the pairs (λ0, U0) and (λ1, U1)

Limit problem: λ0 + c∂zU0(z) +m(z) = 1 +H (∂zU0(z)) , (D.11)

First correction problem: λ1 + (c− ∂pH(∂zU0(z))) ∂zU1(z) = −1

2
∂2
pH(∂zU0(z))∂

2
zU0(z) ,

(D.12)

where the Hamiltonian function H is the two-sided Laplace transform of K up to an additive

constant:

H(p) =

∫
R
K (y) exp (yp) dy−1 , ∂pH(p) =

∫
R
yK (y) exp (yp) dy , ∂2

pH(p) =

∫
R
y2K (y) exp (yp) dy .

D.1.3 Computation of the mean fitness1373

The argument of Section D.1.1 for computing λ0 can be extended to the general case.1374

Quadratic functions are replaced by convex ones, but the argument is essentially the same.1375

Again, let us reorganize (3.1) as follows, gathering the ∂zU0 in the right hand side,1376

m(z) + λ0 − 1 = H(∂zU0(z))− c∂zU0(z) . (D.13)

The function p 7→ cp−H(p) reaches a maximum value, denoted as L(c) by definition (3.4).1377

Adding this value on each side, we find1378

m(z) + [λ0 − 1 + L(c)] = H(∂zU0(z))− c∂zU0(z) + L(c) . (D.14)

Completion of the generalized square. As in (D.4), the function p 7→ H(p)− cp+1379

L(c) in the right-hand-side is convex, nonnegative and touches zero. This is the analogous1380

computation of the completion of the square by means of adding L(c). The same reasoning as1381

above implies that the constant between brackets must vanish, i.e λ0 = 1−L(c). Otherwise,1382

the quantity H(∂zU0(z))− c∂zU0(z) + L(c) would take positive values for z ∈ R, hence the1383

function ∂zU0(z) could take values only on one of the two branches of the function p 7→1384

H(p)−cp+L(c), as depicted in Fig S1. As the function p 7→ H(p)−cp+L(c) is invertible on1385

each separate branch, we could determine unambiguously the value of ∂zU0(z) for z ∈ R. In1386

particular, it would have the same limiting value (possibly infinite) as z → −∞ and z → +∞1387

since s(−∞) = s(+∞). This would preclude the asymptotic behavior U0(±∞) = +∞ which1388

is equivalent to vanishing population density at infinity. Hence, λ0 = 1 − L(c) is the only1389

possible value.1390
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H(p)− cp + L(c)

p

λ0 − 1 + L(c)

H(@zU0(z))− c@zU0(z) + L(c)

Figure S1: Sketch of the resolution of the main equation (3.1). The key function p 7→ H(p) −
cp + L(c) is plotted. It is H(p) − cp + L(c) = 1

2(p
2 − 2cp + c2) = 1

2(p − c)2 in the case of the
diffusion approximation. More generally, it is always a convex function, with minimum value
zero. The equation (3.1) can be reformulated asH(p0)−cp0+L(c) = m(z)+[λ0−1+L(c)], where
the derivative p0 = ∂zU0(z) must continuously change values as z goes from −∞ to +∞. In
particular, it must have opposite signs at z = −∞ and z = +∞, otherwise U0 would correspond
to a non-admissible distribution F having an infinite limit on one side. A graphical analysis
shows that it prescribes a unique value for λ0, that is λ0 = 1−L(c). On the one side, evaluating
at z = 0, we find [λ0 − 1 + L(c)] = H(p0) − cp0 + L(c) ⩾ 0 (by definition of L(c) which is the
completion of the generalized square). On the other hand, we cannot have λ0 > 1−L(c). If so,
then we would get H(p0) − cp0 + L(c) ⩾ [λ0 − 1 + L(c)] > 0 for all values of the derivative p0.
Thus, the solution would lie on one of the two branches of the function p 7→ H(p) − cp + L(c)
(left or right), without possible continuous connection between the two. Consequently, the value
p0 could be determined unambiguously by inverting H(p0)− cp0+L(c) = m(z)+ [λ0− 1+L(c)]
on that branch for each z ∈ (−∞,+∞). This would induce the same limit for p0 as z → ±∞,
contradiction. Once the value of λ0 is found, it remains to solve H(p0)−cp0+L(c) = m(z). This
can be done in principle by inverting the function p 7→ H(p)−cp+L(c) for each z, with a careful
choice of the branch. The switch between the two branches happens at (z = 0, p0 = ∂cL(c)),
where both functions z → m(z) and p 7→ H(p)− cp+ L(c) reach their minimum value (zero).
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D.2 Summary1391

So far we have obtained an analytical formula for the mean fitness,1392

λ0 = 1− L(c) , (D.15)

by means of the Lagrangian function which is the Legendre transform of the Hamiltonian1393

function,1394

L(c) = max
p

(pc−H(p)) , (D.16)

where H is the Laplace transform of the mutation kernel K.1395

The knowledge of the mean fitness enables deriving the lag load, which equilibrates birth1396

and death in the population concentrated at trait z∗0 : λ0 = 1−m(z∗0), or equivalently1397

m(z∗0) = L(c) . (D.17)

Note that the latter is equivalent to setting ∂zU0(z
∗
0) = 0 in (D.13) (critical point of the1398

density), which is another characterization of the lag load.1399

The variance can be completed subsequently by differentiating (D.13) with respect to1400

z and evaluating at z = z∗0 . It is found that the variance equilibrates the fitness gradient1401

and the speed of environmental change (i.e. the variations in the trait value in the moving1402

frame):1403

∂2
zU(z∗0) = −∂zm(z∗0)

c
. (D.18)

D.3 Conjugacy: Enlightening heuristics1404

There exists an alternative way to get some of the previous formula. The idea is to twist1405

the unknown distribution F by a well chosen exponential function, in order to remove the1406

transport part −c∂zF due to the environmental change. An enlightening example is the case1407

of the diffusive approximation. Suppose the model is1408

λF (z)− εc∂zF (z)− ε2

2
∂2
zF (z) = (1−m(z))F (z) . (D.19)

Then, the twisted distribution F(z) = F (z)ecz/ε satisfies the following equation:1409

λF(z)− ε2

2
∂2
zF(z) =

(
1− c2

2
−m(z)

)
F(z) . (D.20)

Therefore, we are reduced to a simpler problem without environmental change, at the expense1410

of a global increase of mortality of value c2/2, consistently with the result of Section D.1.1.1411

However, the general case is based on heuristics rather than formal arguments. Starting1412

from equation (2.13), or equivalently:1413

λF (z)− εc∂zF (z)−
∫
R
Kε(z − z′) (F (z′)− F (z)) dz′ = (1−m(z))F (z) , (D.21)

the density F is replaced with F(z) = F (z)ep0z/ε, for some p0 ∈ R to be characterized later1414

on. The equation for F is:1415

λF(z) + cp0F(z)− εc∂zF(z)−
∫
R
Kε(z − z′)

(
ep0(z−z′)/εF(z′)− F(z)

)
dz′ = (1−m(z))F(z) ,

(D.22)
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It is useful to rearrange the terms as follows:

λF(z)− εc∂zF(z)−
∫
R
Kε(z − z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′

=

(
1− cp0 +

(∫
R
Kε(z

′)ep0z
′/ε dz′ − 1

)
−m(z)

)
F(z) , (D.23)

A natural way to choose p0 is to guarantee that the combination of transport and mutations1416

preserves the center of mass of the distribution. This is a way to remove artificially the1417

asymmetrical transport part. Thus, we propose the following characterization of p0: for any1418

distribution F,1419 ∫
R
z

(
−εc∂zF(z)−

∫
R
Kε(z − z′)ep0(z−z′)/ε (F(z′)− F(z)) dz′

)
dz = 0 .

This is equivalent to:

εc

∫
R
F(z) dz =

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz −

∫∫
zKε(z − z′)ep0(z−z′)/εF(z) dz′dz

=

∫∫
zKε(z − z′)ep0(z−z′)/εF(z′) dz′dz −

∫∫
z′Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

∫∫
(z − z′)Kε(z − z′)ep0(z−z′)/εF(z′) dz′dz

=

(∫
zKε(z)e

p0z/ε dz

)(∫
R
F(z) dz

)
.

Finally, the required condition is equivalent to the following one, which appears to be inde-1420

pendent of ε > 0:1421

c =

∫
yK(y)ep0y dy . (D.24)

With the notations of Section D.1, this is also c = ∂pH(p0). The right hand side of (D.23)1422

becomes:1423

(1− cp0 +H(p0)−m(z))F(z) = (1− L(c)−m(z))F(z) . (D.25)

As a conclusion, we have shown that the combination of transport and mutations is equivalent1424

to an operator which preserves the center of mass, up to a global increase of mortality of1425

value L(c).1426

D.4 Some properties of the Hamiltonian and Lagrangian functions1427

We gather below some classical properties of the special functions that appeared useful in1428

the analysis above.1429

The Hamiltonian and the mutation rate The function H plays a pivotal role in

our analysis. It could eventually break down if H degenerates. This would be the case, for

instance, if the kernel K could be decomposed as K = (1− η)δ0 + ηKmut, with small η ≪ 1.
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Indeed, it could be reformulated as follows

K(x)dx = (1− η)δ0(dx) +
η

V
1/2
mut

K̃

(
x

V
1/2
mut

)
dx

= (1− η)δ0(dx) + η

(
1

ε

V
1/2
div

V
1/2
mut

K̃

(
x

ε

V
1/2
div

V
1/2
mut

)
dx

)

(1− η)δ0(dx) + η

(
η1/2

ε
K̃

(
x
η1/2

ε

)
dx

)
where we have used the relationship Vdiv = ηVmut in the last line. Hence, the corresponding

Hamiltonian function would be

H(p) = (1− η) + η

∫
R
K̃η−1/2 (y) exp (yp) dy − 1

= η

(∫
R
K̃ (y′) exp

(
y′

p

η1/2

)
dy′ − 1

)
= ηH̃

(
p

η1/2

)
where H̃ is the Laplace transform of the mutation kernel K̃. The latter expression would1430

degenerate as η → 0, except if H̃(p) = p2/2.1431

Diffusion approximation as an extremal case of the convolution case. By1432

symmetry of the kernel K, and its properties, the Hamiltonian function can be bounded1433

below:1434

H(p) =

∫
R
K(y)

(
exp(yp) + exp(−yp)

2
− 1

)
dy ⩾

|p|2

2

∫
R
K(y)y2dy =

|p|2

2
. (D.26)

The latter expression is realized by the so-called diffusion approximation, see Section D.1.1.1435

Indeed, the Hamiltonian function there was simply the square of the gradient (D.3). It is a1436

direct consequence of the formula L(c) = maxp (pc−H(p)) (completion of the generalized1437

square) that the Lagrangian function is bounded above:1438

L(c) ⩽
c2

2
. (D.27)

Hence, the maximum of lag load is realized for the diffusion approximation.1439

The Hamiltonian and the Lagrangian functions are dual from each other.1440

The Hamiltonian H(p) can be recovered from the Lagrangian function L(c) by the very same1441

formula, simply exchanging the roles of c and p:1442

H(p) = max
c

(pc− L(c)) . (D.28)

This inversion of the roles can also be seen on the derivatives of the functions, which are1443

reciprocical one from each other. Indeed, at p = p0, we have ∂pH(p0) = c0, where c0 is1444

the one achieving the maximum value in (D.28), that is, the one satisfying the first order1445

condition p0 = ∂cL(c0). This is exactly the definition of reciprocical functions. This is a1446

natural property from the viewpoint of convex analysis: the two functions H and L are1447

indeed convex, so they have both monotonic derivative functions. The relationship between1448

H and L is precisely the reciprocity of their derivatives.1449
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Mutation kernel K(y) Hamiltonian function H(p)

Diffusion approximation
1

2
∂2
z

1

2
p2

Uniform distribution
1

2
√
3
1(−

√
3,
√
3)

sinh(
√
3p)√

3p
− 1

Gaussian distribution
1√
2π

exp

(
−y2

2

)
exp

(
p2

2

)
− 1

Exponential distribution
1√
2
exp

(
−
√
2|y|
) 1

1− p2

2

− 1

Gamma distribution |y|γ−1 exp
(
−
√
γ(γ + 1)|z|

) 1

2
((1− θp)−γ + (1 + θp)−γ)− 1

Table 4: (Left) Five examples of mutation kernels with same (unit) variance, ordered by in-
creasing kurtosis (from top to bottom). (Right) The associated Hamiltonian functions, with
analytical formula. The corresponding Lagrangian functions cannot be expressed with classical
functions, but the first one, up to our knowledge.

The Hamiltonian function contains all the moments of the mutation ker-

nel. By definition of the exponential function we have:

H(p) =

∫
R
K(y)

( ∞∑
k=0

(py)k

k!

)
dy − 1

=

∞∑
k=1

(∫
R
K(y)yk dy

)
pk

k!
.

Hence, the moments of K are successive derivatives of H at the origin.1450

Influence of the kurtosis of the mutation kernel. As an immediate consequence,1451

we see that the mean fitness λ0 = 1−L(c) crucially depends on the full shape of the mutation1452

kernel K. Indeed, the Lagrangian function L is related to the Laplace transform of the1453

mutation kernel K (3.2) via the Legendre transform (3.4). To investigate this relationship,1454

we investigate five kernels having the same variance, but different shapes, see Table 4. We1455

can show from the Taylor expansions that the Hamiltonian functions are ordered from top1456

to bottom as follows:1457

Hdiff ⩽ Hunif ⩽ Hgauss ⩽ Hexp ⩽ Hgamma . (D.29)

Accordingly, the Lagrangian functions are ordered in the opposite way, and the resulting1458

mean fitnesses are ordered as follows:1459

λdiff ⩽ λunif ⩽ λgauss ⩽ λexp ⩽ λgamma . (D.30)

Hence, the lag load is ordered with respect to the kurtosis of the kernel.1460
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D.5 Consistency of the formula for ∂2
zU0(z

∗
0) at c = 01461

Here, we justify Remark 1, meaning that the formula obtained for ∂2
zU0(z

∗
0) at c > 0 (D.18)1462

coincides with the formula at c = 0, namely ∂2
zU0(0) = 1. The latter is derived as follows.1463

Firstly, the mean fitness (D.15) is λ0 = 1, as L(0) = 0, and the mean relative pheno-1464

type (D.17) is naturally z∗0 = 0 at c = 0 by definition of the mortality rate, optimum at the1465

origin. Secondly, the expression of ∂2
zU0(0) can be obtained by two alternative ways.1466

By differentiating twice (D.11) with respect to z, yields1467

∂2
zm(z) = ∂2

pH (∂zU0(z))
(
∂2
zU0(z)

)2
+ ∂pH (∂zU0(z)) ∂

3
zU0(z) .

By evaluating this expression at z = 0, the last contribution vanishes because ∂pH (∂zU0(0)) =1468

∂pH (0) = 0. Hence, we get that1469

∂2
zU0(0) =

(
∂2
zm(0)

∂2
pH (∂zU0(0))

)1/2

= 1 ,

since ∂2
zm(0) = ∂2

pH(0) = 1.1470

Alternatively, performing suitable Taylor expansions in expressions of, respectively, z∗0
(3.6) and ∂2

zU0(z
∗
0) (3.7), as c → 0, yields:

z∗0 =
∂z∗0
∂c

c+ o(c) , and
1

2
∂2
zm(0)

(
∂z∗0
∂c

c

)2

=
1

2
∂2
vL(0)c

2 ,

∂2
zU0(0) = −∂2

zm(0)

c

(
∂z∗0
∂c

c

)
= ∂2

zm(0)

(
∂2
vL(0)

∂2
zm(0)

)1/2

=
(
∂2
zm(0)∂2

vL(0)
)1/2

= 1 .

By reciprocity of the derivatives of H and L, we have ∂2
vL(0) = 1/

(
∂2
pH(0)

)
= 1. Both1471

calculations coincide.1472

D.6 Quantitative description of the first correction (λ1, U1)1473

We derive useful informations from the equation (D.12) about the pair (λ1, U1). The method-1474

ology goes as in Section D.1.1475

We give the formula for the correctors λ1, z
∗
1 , and the local shape around the minimal1476

value: ∂2
z (U0+ εU1)(z

∗
0 + εz∗1). However, only the former one (λ1) is meant to be used in the1477

main text, as it contains useful information about the mutation load in the population.1478

The formula are summarized in the following list, which completes those obtained in1479

Section (D.2) at the leading order:1480

Mean fitness λ = 1− L(c)− ε

2

(
1

∂2
vL(c)

)1/2

+ o(ε)

Mean relative phenotype z∗ = z∗0 +
ε

2

(
1

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

c

)
+ o(ε)

Local shape

∂2
zU(z∗) = −∂zm(z∗0)

c

−ε

2

(
1

c

∂2
zm(z∗0)

∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+

(
∂zm(z∗0)

c2

)2
)

+ o(ε)

(D.31)

54



Description of the Mean fitness λ1. The equation (D.12) evaluated at the optimal1481

trait z = 0 yields λ1 = −∂2
pH(p0)∂

2
zU0(0)/2, where p0 = ∂zU0(0). To compute ∂2

zU0(0), we1482

differentiate (D.11) twice, and evaluate the expression at z = 0:1483

1 = ∂2
pH (p0)

(
∂2
zU0(0)

)2
. (D.32)

Recall that p0 = ∂vL(c). Moreover, since ∂pH and ∂vL are reciprocal functions, then the1484

second derivatives are inverse from each other. Therefore ∂2
pH(p0) =

(
∂2
vL(c)

)−1
. Thus, λ11485

is given by the following expression:1486

λ1 = −1

2

(
1

∂2
vL(c)

)1/2

. (D.33)

Description of the mean relative phenotype z∗1. By pushing the computations

further, it is also possible to derive the first order correction of the lag z∗1 . It is defined such

that z∗0+εz∗1 is the critical point of U0+εU1, that is ∂z(U0+εU1)(z
∗
0+εz∗1) = 0 . By expanding

this relation, but keeping only the first order terms, we obtain z∗1 = −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0).

On the other hand, evaluating the equation (D.12) at z = z∗0 yields −∂zU1(z
∗
0)/∂

2
zU0(z

∗
0) =

λ1/(c∂
2
zU0(z

∗
0)) + 1/(2c). Using the expression (D.18) of ∂2

zU0(z
∗
0), we obtain:

z∗1 =
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

+
1

2c
. (D.34)

Description of the local shape. We expand the second derivative of U0+ εU1 at the1487

lag point z∗0 + εz∗1 with respect to ε and we obtain1488

∂2
z (U0 + εU1)(z

∗
0 + εz∗1) = ∂2

zU0(z
∗
0) + ε

(
∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)
)
+ o(ε) . (D.35)

We aim at characterizing the term of order ε in this expansion. The first additional contri-1489

bution ∂3
zU0(z

∗
0) can be deduced from the equation (D.11) by differentiating it twice, and1490

evaluating at z = z∗0 :1491

c∂3
zU0(z

∗
0) + ∂2

zm(z∗0) = ∂2
pH (0)

(
∂2
zU0(z

∗
0)
)2

=
(
∂2
zU0(z

∗
0)
)2

.

The second additional contribution ∂2
zU1(z

∗
0) is deduced from the equation (D.12) by differ-1492

entiating once and evaluating at z = z∗0 :1493

c∂2
zU1(z

∗
0) = ∂2

zU0(z
∗
0)∂zU1(z

∗
0)−

1

2
∂3
zU0(z

∗
0) .

Combining these two expressions with the expression (D.34) of z∗1 , and ∂zU1(z
∗
0), we get

∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)

= ∂3
zU0(z

∗
0)

(
z∗1 − 1

2c

)
+

1

c
∂2
zU0(z

∗
0)∂zU1(z

∗
0)

=
1

c

((
∂2
zU0(z

∗
0)
)2 − ∂2

zm(z∗0)
)( 1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

− 1

c
∂2
zU0(z

∗
0)

(
λ1

c
+

∂2
zU0(z

∗
0)

2c

)

=
1

c

((
∂zm(z∗0)

c

)2

− ∂2
zm(z∗0)

)(
1

2∂zm(z∗0)

(
1

∂2
vL(c)

)1/2
)

+
∂zm(z∗0)

c2

(
− 1

2c

(
1

∂2
vL(c)

)1/2

− ∂zm(z∗0)

2c2

)

= − ∂2
zm(z∗0)

2c∂zm(z∗0)

(
1

∂2
vL(c)

)1/2

− 1

2

(
∂zm(z∗0)

c2

)2
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This concludes the analysis of the corrector problem at first order.1494

D.7 Numerical computation of the distributions U0 and U1 in the1495

asexual model1496

The equation for U0 (D.11) is a non linear Ordinary Differential Equation (ODE). It has a

singular point at z = 0, where the function p 7→ cp−H(p) cannot be inverted. It was solved

numerically in the following way: after differentiation with respect to z, equation (D.11)

becomes

(∂pH(∂zU0(z))− c) ∂2
zU0(z) = ∂zm(z) ⇔ d

dz
(U ′

0(z)) =
m′(z)

∂pH(U ′
0(z))− c

.

This ODE on U ′
0(z) was solved using a classical solver (RK45), separately on the two branches1497

z > 0 and z < 0. The issue is to initialize appropriately the solver for z = 0+, and z = 0−.1498

The correct initialization was deduced from the analytical expressions of U ′
0(0) = p0 =1499

∂vL(c).1500

Next, the linear ODE for U1 (D.12) was computed along characteristic lines:

ż(τ) = ∂pH(∂zU0(z(τ)))− c =⇒ d

dτ
(U1(z(τ))) = λ1 +

1

2
∂2
pH(∂zU0(z(τ)))∂

2
zU0(z(τ))

= λ1 +
1

2

(
d

dz
∂pH(∂zU0)

)
(z(τ)) .

Integrating this formula with respect to time τ yields

U1(z(τ))− U1(z(0)) = λ1τ +
1

2

∫ τ

0

(
d

dz
∂pH(∂zU0)

)
(z(τ ′)) dτ ′

= λ1τ +
1

2

∫ z(τ)

0

(
d

dz
∂pH(∂zU0)

)
(z)

(
1

∂pH(∂zU0(z))− c

)
dz

= λ1τ +
1

2
log

∣∣∣∣∂pH(∂zU0(z(τ)))− c

∂pH(∂zU0(z(0)))− c

∣∣∣∣ .
Again, the delicate issue is to evaluate appropriately the value U1(z(0)) for a starting point1501

z(0) close to 0 (notice that 0 is an equilibrium point for the ODE: ż(τ) = ∂pH(∂zU0(z(τ)))−1502

c). The correct approximation is given by the analytical expression of ∂zU1(0) obtained by1503

differentiating equation (D.12) with respect to z and evaluating it at z = 0.1504

E Qualitative properties of the phenotypic variance at1505

equilibrium Var(F)1506

In this section, we discuss in detail the behavior of the phenotypic variance at equilibrium1507

with respect to the speed of change c in the scenario of asexual reproduction. Let us remind1508

that in this case the phenotypic variance at equilibrium is well approximated by the following1509

expression at the leading order:1510

Var(F) ≈ − c

∂zm(z∗0)
.

It is convenient to introduce the positive lag |z∗0|, which is the distance to the optimal trait1511

located at z = 0, so that1512

Var(F) ≈ c

∂zm(|z∗0|)
.
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Recall that the lag is deduced from the inversion of the increment of mortality m:1513

|z∗0| = m−1

(
βL

(
c

βV
1/2
div

))
, (E.1)

where m−1 is the inverse of the function m on (0,∞). The differentiation of the lag |z∗0|1514

with respect to c goes as follows:1515

d|z∗0|
dc

(c) =
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
∂z(m

−1)

(
βL

(
c

βV
1/2
div

))
, (E.2)

Since ∂z(m
−1) = 1/∂zm(m−1), the previous expression becomes1516

d|z∗0|
dc

(c) =
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
1

∂zm

(
m−1

(
βL

(
c

βV
1/2
div

))) =
1

V
1/2
div

∂vL

(
c

βV
1/2
div

)
1

∂zm(|z∗0|)
,

(E.3)

Reformulating this expression, we get an alternative expression for the variance:1517

Var(F) ≈ c

∂zm(|z∗0|)
=

d|z∗0|
dc

(c)×V
1/2
div c

(
∂vL

(
c

βV
1/2
div

))−1

(E.4)

Now let us differentiate the latter expression with respect to c:

d

dc

(
c

∂zm(|z∗0|)

)
=

d2|z∗0|
dc2

(c)×V
1/2
div c

(
∂vL

(
c

βV
1/2
div

))−1

+
d|z∗0|
dc

(c)×V
1/2
div

(
∂vL

(
c

βV
1/2
div

))−1

1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

)


We shall establish that for all c > 0, the following inequality holds true:1518 1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

)
 ⩾ 0 .

Indeed, it can be reformulated by means of p such that p = ∂vL
(
c/βV

1/2
div

)
, as follows:1519

1− c

βV
1/2
div

∂2
vL

(
c

βV
1/2
div

)
∂vL

(
c

βV
1/2
div

) = 1− ∂pH(p)

p∂2
pH(p)

= 1−

∫
R
yK(y)epy dy

p

∫
R
y2K(y)epy dy

= 1−

∫
R+

yK(y) sinh(py) dy

p

∫
R+

y2K(y) cosh(py) dy

.

(E.5)

The conclusion follows from the pointwise inequality tanh(py) ⩽ py for p, y ⩾ 0, which is1520

equivalent to sinh(py) ⩽ py cosh(py).1521

On the other hand, we have shown that the lag increases with respect to the speed of1522

change c, thus d|z∗0|/dc ⩾ 0. Then, if the lag is convex with respect to the speed of change1523

c, that is d2|z∗0|/dc2 ⩾ 0, then the phenotypic variance at equilibrium increases with respect1524

to the speed c.1525
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However, the convexity of the lag depends on the convexity of the function c 7→ m−1(L(c)).1526

If the selection is quadratic m(z) = z2/2, this function is concave for any mutation kernel.1527

However, if the selection function is more than quadratic, we can find mutation kernels such1528

that the lag becomes convex.1529

In the diffusion approximation L(c) = c2/2, we can go further. In this case, we know from1530

equation (4.1) that the lag accelerates with c if m is sub-quadratic. Whereas it is concave if1531

m is super-quadratic in the sense of (4.2).1532

As a result, we have shown that the variance Var(F) increases with c if the function1533

c 7→ m−1(L(c)) is convex. More precisely, in the diffusion approximation, the variance1534

increases with c if m is sub-quadratic in the sense of (4.1).1535

F Sexual type of reproduction (details of Section 3.2)1536

In this section we develop the computations required to describe U up to order ε2, as in1537

(3.11). We present arguments from convex analysis to characterize U0. We provide an1538

explicit formula for the first order correction U1 as an infinite series. Meanwhile, we present1539

tedious computations needed to identify the linear part of U1, and we derive the first order1540

correction of the mean fitness λ1 as a by-product.1541

Our starting point is the following relationship which is equivalent to finding a stationary

density in the moving frame, expanded at first order in ε2:

λ0 + c∂zU0(z) +m(z) =

1

ε2
√
2π

∫∫
R2

exp

(
− 1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
− U1(z1)− U1(z2) + U1(z)

)
dz1dz2

1

ε
√
2π

∫
R
exp

(
− 1

ε2
U0(z

′)− U1(z
′)

)
dz′

.

(F.1)

Note that the prefactors (involving ε, π have been arranged for the sake of normalizing1542

singular integrals).1543

The arguments below are formal computations. We refer to (Calvez et al., 2019) for a1544

rigorous analysis of this asymptotic analysis in the case c = 0, and to (Patout, 2020) for the1545

time marching problem.1546

F.1 The characterization of U0 by convex analysis1547

Recall that the identity satisfied by U0 is the following one, ensuring that the right hand side

of (F.1) does not get trivial as ε → 0:

∀z ∈ R min
(z1,z2)∈R2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)−minU0

]
= 0

⇐⇒ U0(z) + minU0 = min
(z1,z2)∈R2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
. (F.2)

The goal of this section is to prove that any solution of the functional equation (F.2) is1548

given by a member of the three parameters family1549

U0(z) = C +
(z − a)2−

2
+

(z − b)2+
2

, (F.3)
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where the parameters a, b are such that a ⩽ b and C is an arbitrary constant. We denote by1550

z∗0 a minimum point of U0. We can restrict to minU0 = 0 without loss of generality (so that1551

the additive constant C is set to 0). The characterization of U0 is done in several steps.1552

Regularity and λ−concavity. Firstly, notice that U0(z) − z2 is a concave function,

as it can be written as

U0(z)− z2 = min
(z1,z2)∈R2

(
−z(z1 + z2) +

(
z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
= min {affine functions with respect to z} .

We deduce that U0 is continuous, and that it admits left and right derivatives everywhere.1553

The convex conjugate. The trick is to introduce the convex conjugate Û0 (also called

the Legendre transform of U0):

Û0(y) = max
z∈R

((z − z∗0)y − U0(z)) ,

where z∗0 is a minimum point of U0. The basic properties of Û0 are listed below:1554

• Û0 is convex, so it is continuous, and it admits left and right derivatives everywhere,1555

• Û0(0) = max (−U0) = −min (U0) = 0,1556

• for all y, Û0(y) ⩾ −U0(z
∗
0) = 0, thus min Û0 = 0.1557

We deduce from the functional identity (F.2), that

Û0(y) = max
z∈R

(z − z∗0)y − min
(z1,z2)

∈R2

((
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)

)
= max

(z,z1,z2)∈R3

(
(z − z∗0)y −

(
z − z1 + z2

2

)2

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
max
z∈R

(
(z − z∗0)y −

(
z − z1 + z2

2

)2
)

− U0(z1)− U0(z2)

)

= max
(z1,z2)∈R2

(
y2

4
+

1

2
(z1 + z2) y − z∗0y − U0(z1)− U0(z2)

)
=

y2

4
+ max

z1∈R

(
1

2
(z1 − z∗0)y − U0(z1)

)
+max

z2∈R

(
1

2
(z2 − z∗0)y − U0(z2)

)
.

Finally, we end up with the following functional identity,1558

Û0(y) =
y2

4
+ 2Û0

(y
2

)
. (F.4)

We observe that Û0(y) = y2/2 is a solution to the latter identity. However, it is not the

only one. More generally, let a = Û ′
0(0

−) and b = Û ′
0(0

+) denote the left and the right

derivative at y = 0, respectively. By convexity, and optimality at the origin y = 0 (namely,

min Û0 = Û0(0) = 0), we have a ⩽ 0 ⩽ b. We deduce recursively from (F.4) the series
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expansion

Û0(y) =
y2

4
+

y2

8
+

y2

16
+ · · ·+ 2n

(2−ny)2

4
+ 2n+1Û0

(
2−(n+1)y

)
,

=⇒ Û0(y) =
y2

2
+ Û ′

0(0
±)y . (F.5)

Obviously, the choice of the left or right derivative depends on the sign of y.1559

The convex bi-conjugate. Next, we define the convex bi-conjugate

Ŭ0(z) = max
y∈R

(
(z − z∗0)y − Û0(y)

)
.

Standard results in convex analysis states that Ŭ0 and U0 coincide if U0 is convex. More1560

generally, Ŭ0 is the (lower) convex envelope of U0 (Rockafellar, 1970). This is quite useful,1561

because the characterization (F.5) enables to compute the convex bi-conjugate:1562

Ŭ0(z) =
(z − z∗0 − a)2−

2
+

(z − z∗0 − b)2+
2

. (F.6)

We deduce that the latter function is the (lower) convex envelope of U0. The last (delicate)1563

step consists in proving that it coincides with U0.1564

From the convex envelope to the function. The idea is to use the functional

identity (F.2) iteratively. As z = z∗0 + a is an extremal point of the graph of Ŭ0, the values

of U0 and Ŭ0 must coincide at this point. Hence, we have U0(z
∗
0 + a) = 0, and similarly

U0(z
∗
0 + b) = 0. Recall that U0(z

∗
0) = 0 by definition. As a consequence, we have for

z1 = z∗0 + a, z2 = z∗0 , and z = z∗0 + a/2 in (F.2):

U0

(
z∗0 +

a

2

)
⩽ 0 ,

from which we deduce that U0 vanishes at z = z∗0 +a/2 as well, and similarly at z = z∗0 +b/2.1565

The same argument shows that U0 vanishes at each middle point between two vanishing1566

points. So, it vanishes on a dense set of points in z∗0 +(a, b). By continuity of U0, it vanishes1567

everywhere on z∗0 +[a, b]. Finally, it coincides with its (lower) convex envelope (F.6) because1568

the latter is strictly convex outside the interval [a, b].1569

Finally, it is necessary that a = b = 0 in the present context. Otherwise F would not1570

correspond to a population density uniformly with respect to vanishing ε.1571

We have proved that U0 is necessary of the form1572

U0(z) =
(z − z∗0)

2

2
. (F.7)

However, we are not able at this point to characterize the mean relative phenotype z∗0 . We1573

need to push the analysis beyond the first order and compute the profile U1, as done in the1574

following sections.1575

Discussion. There is an immediate interpretation of this result.We found that the equa-1576

tion (F.2) satisfied by U0 does not depend on the selection function m. Thus we can say1577

that the main equation (F.1) is dominated by the reproduction term in the regime of small1578

variance. Hence, the stationary distribution at the leading order equilibrium is the Gaus-1579

sian distribution with prescribed variance (here, renormalized to a unit value), meaning a1580
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quadratic polynomial after taking the logarithm. In fact, Gaussian distributions are known1581

to be stationary distributions of the Infinitesimal model in the absence of selection. As se-1582

lection does not act on reproduction, there is no way to find the mean relative phenotype1583

at equilibrium, and so z∗0 must be unknown at this point of analysis. The situation is quite1584

different from the case of asexual reproduction, where no stationary distribution can be1585

achieved without selection, and the mean relative phenotype is deduced from the knowledge1586

of U0, accordingly.1587

F.2 Description of the corrector U11588

Next, we can rearrange the right hand side in (F.1) using the characterization of U0 (F.7).

It is instructive to begin with the denominator integral, which is a classical computation:

1

ε
√
2π

∫
R
exp

(
− (z′ − z∗0)

2

2ε2

)
exp

(
− U1(z

′)
)
dz′ =

1√
2π

∫
R
exp

(
−y′2

2

)
exp (−U1(z

∗
0 + εy′)) dy′

−→
ε→0

exp(−U1(z
∗
0)) .

Indeed, the function (ε
√
2π)−1 exp

(
−(z′ − z∗0)

2/(2ε2)
)
is the approximation of a Dirac mass1589

as ε → 0. Hence the integral concentrates on the mean relative phenotype z∗0 : this yields1590

the convergence of the integral towards exp(−U1(z
∗
0)). An alternative way to say is that, in1591

the integral
∫
F (z′) dz′, most of the contribution comes from those z′ which are close to z∗0 .1592

F.2.1 What are the most representative parental trait values?1593

The same kind of computation allows handling the numerator in (F.1). The key point is to1594

understand how the term inside the integral gets concentrated as ε → 0. In other words, we1595

shall identify what are the most representative trait values (z1, z2) of parents giving birth to1596

an offspring of trait z. Those will contribute mainly to the integral in the right hand side.1597

They will enable to derive the equation for U1.1598

A preliminary computation is required: the double integral gets concentrated at the1599

minimum points (with respect to variables (z1, z2)) of the quadratic form under brackets:1600 (
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z) where U0(z) =
(z − z∗0)

2

2
. (F.8)

We know already that the minimum value is zero thanks to the characterization (F.2). The1601

values above the minimum will contribute very little to the integral as they will have size of1602

order exp(−δ/ε2), for δ > 0. Indeed, this decays to zero very fast as ε → 0.1603

Direct computation provides the unique minimum (z1, z2) = (z̄, z̄), with z̄ = (z + z∗0)/2.1604

This means that an offspring of trait z is very likely to be the combination of equal parental1605

trait values z1 = z2, equal to the mid-value between z and the mean relative phenotype1606

z∗0 . This is the result of an interesting trade-off: parents with phenotype close to the mean1607

relative phenotype value z∗0 are more frequent but the chance of producing an offspring1608

with phenotype z decreases when their own phenotype departs from the latter value. As a1609

compromise, the most likely configuration is when both parents have the mid-point trait z̄,1610

see Figure S2.1611

We thus define the following change of variable centered around this minimum point:1612 z1 = z̄ + εy1

z2 = z̄ + εy2
(F.9)
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Figure S2: Sketch of the argument that underpins the estimation of the double integral in (F.1).
Recall that the infinitesimal model assigns to an offspring the trait z which is the mean value
of the parental trait values plus a normal random variable with standard deviation 1/

√
2 (in

dimensionless variables). Among the three scenarios A,B,C, the first one is by far the most
likely in the regime of small variance ε2 ≪ 1. In scenario B, the parental trait values (z1, z2)
are close to the mean relative phenotype z∗0 : this is a likely event from the point of view of
the parental trait distribution. However, it is very unlikely to draw a random number Y so
large resulting in z at the next generation. In scenario C, the deviation is small, so that the
mean parental trait is close to z: this is a likely event from the point of view of the ”choice”
of the offspring trait. However, it is very unlikely to draw a parent with trait z2 from the
phenotypic distribution F : that one is too far from the mean relative phenotype in the tail of
the distribution. Scenario A is the compromise between these two antagonistic effects.

The quadratic form between brackets [· · · ] in the numerator of (F.1) is transformed into an1613

expression which does not depend on ε:1614

1

ε2

[(
z − z1 + z2

2

)2

+ U0(z1) + U0(z2)− U0(z)

]
=

1

2
y1y2 +

3

4

(
y21 + y22

)
. (F.10)

And the numerator finally writes

1√
2π

∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2) + U1(z)

)
dy1dy2

−→
ε→0

1√
2π

(∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)])
dy1dy2

)
exp (−U1(z̄)− U1(z̄) + U1(z))

= exp (−2U1(z̄) + U1(z))

Note that the prefactor (
√
2π)−1 is such that the integral in (y1, y2) has unit value.1615

F.2.2 Equation for the corrector U11616

We conclude that equation (F.1) converges as ε → 0 to the following equation on the corrector1617

U1:1618

λ0 + c(z − z∗0) +m(z) = exp (U1(z
∗
0)− 2U1(z̄) + U1(z)) , with z̄ =

z + z∗0
2

. (F.11)

This equation is simple enough to admit an explicit solution as an infinite series, as shown1619

below.1620

Note that the values of λ0 and z∗0 can be deduced readily from (F.12) as explained in the1621
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main text (3.14).1622

F.2.3 Analytical expression of U11623

It is convenient to reformulate equation (F.11) as follows, by using the formula (3.14) for λ01624

and z∗0 ,1625

log
(
1 +G(z)

)
= U1(z

∗
0)− 2U1

(
z + z∗0

2

)
+ U1(z) (F.12)

where G(z) = m(z)− ∂zm(z∗0)(z − z∗0) is such that G(0) = ∂zG(0) = 0. Differentiating this

equation with respect to z, we obtain

∂zG(z)

1 +G(z)
= ∂zU1(z)− ∂zU1

(
z + z∗0

2

)
.

After the change of variable z = z∗0 + h, we get eventually the recursive relation where the

value at some z∗0 + h can be computed from the value at z∗0 + h/2,

∂zU1(z
∗
0 + h) = ∂zU1

(
z∗0 +

h

2

)
+

∂zG(z∗0 + h)

1 +G(z∗0 + h)
.

We deduce the following series expansion,1626

∂zU1(z
∗
0 + h) = ∂zU1(z

∗
0) +

∞∑
n=0

∂zG(z∗0 + 2−nh)

1 +G(z∗0 + 2−nh)
. (F.13)

This provides an expression for U1 after integration with respect to h,1627

U1(z
∗
0 + h) = U1(z

∗
0) + h∂zU1(z

∗
0) +

∞∑
n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.14)

There are two degrees of freedom in the above expression of U1. First, the constant part1628

U1(z
∗
0) cannot be determined, because U is defined up to an additive constant. Thus, we1629

are free to choose any value for U1(z
∗
0), say U1(z

∗
0) = 0 for instance. On the other hand, the1630

value p∗ = ∂zU1(z
∗
0) plays a key role in the shape of the distribution, related to the expansion1631

of the mean relative phenotype, see (F.21) below, but its value cannot be elucidated at this1632

stage. We need to push the expansion up to order ε4 to get the following formula for p∗:1633

p∗ =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.15)

see next section for the complete computation (see also (Calvez et al., 2019) for an alternative1634

path with limited expansions to the next order in the case c = 0).1635

We deduce the following expression for U1,1636

U1(z
∗
0 + h) =

(
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c

)
h+

∞∑
n=0

2n log
(
1 +G(z∗0 + 2−nh)

)
. (F.16)

F.2.4 The missing linear part: calculation of ∂zU1(z
∗
0)1637

Starting with the equation satisfied by U (3.10), and plugging the ansatz1638 U(z) = U0(z) + ε2U1(z) + ε4U2(z) + o(ε4)

λ = λ0 + ε2λ1 + ε4λ2 + o(ε4)
(F.17)
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we obtain the following equation up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z) =
IN (ε, U1, U2)

ID(ε, U1, U2)

where

IN (ε, U1, U2) =
1√
2π

∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− U1(z̄ + εy1)− U1(z̄ + εy2) + U1(z)

)
× exp

(
−ε2U2(z̄ + εy1)− ε2U2(z̄ + εy2) + ε2U2(z)

)
dy1dy2

and

ID(ε, U1, U2) =
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

The integrals were subject to the same change of variables as in (F.9). After elimination of

higher order contributions, we obtain for the denominator, up to order ε2:

1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0 + εy′)− ε2U2(z

∗
0 + εy′)

)
dy′

=
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0)− εy′∂zU1(z

∗
0)− ε2

y′2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
dy′

=
1√
2π

∫
R
exp

(
−y′2

2
− U1(z

∗
0)

)(
1− εy′∂zU1(z

∗
0) +

ε2

2
y′2 |∂zU1(z

∗
0)|

2 − ε2

2
y′2∂2

zU1(z
∗
0)− ε2U2(z

∗
0)

)
dy′

= exp (−U1(z
∗
0))

(
1 +

ε2

2
|∂zU1(z

∗
0)|

2 − ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

)
.

In an analogous way, we obtain for the numerator,

IN (ε, U1, U2) =
1√
2π

∫∫
R2

exp

(
−
[
1

2
y1y2 +

3

4

(
y21 + y22

)]
− 2U1(z̄) + U1(z)

)
(
1− ε [y1 + y2] ∂zU1(z̄) +

ε2

2
[y1 + y2]

2 |∂zU1(z̄)|2 +
ε2

2

[
y21 + y22

]
∂2
zU1(z̄)

− 2ε2U2(z̄) + ε2U2(z)
)
dy1dy2

= exp (−2U1(z̄) + U1(z))

(
1 +

ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂2
zU1(z̄)− 2ε2U2(z̄) + ε2U2(z)

)
Combining all these expansions, we obtain up to order ε2:

λ0 + ε2λ1 + c∂zU0(z) + ε2c∂zU1(z) +m(z)

= exp
(
U1(z

∗
0)− 2U1(z̄) + U1(z)

)
1 +

ε2

2
|∂zU1(z̄)|2 −

3ε2

4
∂2
zU1(z̄)− 2ε2U2(z̄) + ε2U2(z)

1 +
ε2

2
|∂zU1(z

∗
0)|

2 − ε2

2
∂2
zU1(z

∗
0)− ε2U2(z

∗
0)

= exp
(
U1(z

∗
0)− 2U1(z̄) + U1(z)

)
(
1 + ε2

(
1

2
|∂zU1(z̄)|2 −

1

2
|∂zU1(z

∗
0)|

2
+

1

2
∂2
zU1(z

∗
0)

−3

4
∂2
zU1(z̄) + U2(z

∗
0)− 2U2(z̄) + U2(z)

))
.
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By identifying contributions of order ε2 on both sides, we deduce the following equation for

the next order correction U2,

U2(z
∗
0)−2U2(z̄)+U2(z) =

1

2
|∂zU1(z

∗
0)|

2−1

2
|∂zU1(z̄)|2+

3

4
∂2
zU1(z̄)−

1

2
∂2
zU1(z

∗
0)+

λ1 + c∂zU1(z)

1 +G(z)
.

By evaluating, and differentiating at z = z∗0 , we deduce the following pair of identities,1639 
0 =

1

4
∂2
zU1(z

∗
0) + λ1 + c∂zU1(z

∗
0)

0 = −1

2
∂2
zU1(z

∗
0)∂zU1(z

∗
0) +

3

8
∂3
zU1(z

∗
0) + c∂2

zU1(z
∗
0)

(F.18)

The second identity enables to compute p∗ = ∂zU1(z
∗
0):1640

p∗ =
3∂3

zU1(z
∗
0)

4∂2
zU1(z∗0)

+ 2c =
∂3
zm(z∗0)

2∂2
zm(z∗0)

+ 2c , (F.19)

where ∂2
zU1(z

∗
0) and ∂3

zU1(z
∗
0) are deduced from equation (F.12) after multiple differentiation,1641

or directly from (F.13). This yields the missing part in (F.16).1642

F.2.5 Analytical expressions of the macroscopic corrections terms λ1 and1643

z∗11644

Description of Malthus rate λ1. The first identity in (F.19) provides λ1 = −∂2
zU1(z

∗
0)/4−1645

c∂zU1(z
∗
0). The expression (F.11) differentiated twice and evaluated at z = z∗0 , yields1646

∂2
zU1(z

∗
0) = 2∂2

zm(z∗0). We conclude from the expression of p∗ that1647

λ1 = −2c2 − c
∂3
zm(z∗0)

2∂2
zm(z∗0)

− 1

2
∂2
zm(z∗0). (F.20)

Description of the mean relative phenotype correction z∗1. The first order1648

correction of the mean relative phenotype z∗1 is defined such that z∗0 +εz∗1 is the critical point1649

of U0 + ε2U1, that is ∂z(U0 + εU1)(z
∗
0 + εz∗1) = 0 . Expanding this relation and keeping only1650

the terms of order ε2, we obtain using the expression of p∗,1651

z∗1 = −∂zU1(z
∗
0) = − ∂3

zm(z∗0)

2∂2
zm(z∗0)

− 2c . (F.21)

Description of the local shape. The second derivative of U0+ε2U1 at the mean rela-

tive phenotype z∗ is equal to ∂2
z (U0+ε2U1)(z

∗
0+ε2z∗1) = ∂2

zU0(z
∗
0)+ε2

(
∂3
zU0(z

∗
0)z

∗
1 + ∂2

zU1(z
∗
0)
)
,

up to the order ε2. Since ∂3
zU0 is equal to 0, we can deduce from the expression of U1 that

the local shape around z∗ is given by

∂2
z (U0 + ε2U1)(z

∗
0 + ε2z∗1) = 1 + 2ε2∂2

zm(z∗0) .

G Numerical computation of the equilibrium (λ,F)1652

In order to obtain numerical approximations of the pair (λ,F), we get back to the time1653

marching dynamics of the density f(t, z) which satisfies the following equation:1654

∂tf(t, z)− c∂zf(t, z) = βB(f(t, ·))(z)− µ(z)f(t, z) (G.1)
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The density f(t, z) is expected to behave like exp(λt)F(z) for large time. It is preferable to1655

introduce the frequency of traits in population: p(t, z) = f(t, z)/
∫
f(t, z′) dz′. The equation1656

for p is:1657

∂tp(t, z) + (β − µ̄(t))p(t, z)− c∂zp(t, z) = βB(p(t, ·))(z)− µ(z)p(t, z) , (G.2)

where the additional µ̄(t) ensures that
∫
p remains constant:1658

µ̄(t) =

∫
µ(z′)p(t, z′) dz′ . (G.3)

We expect that the pair (β(1− µ̄(t),p) does converge to (λ,F) as t → +∞.1659

Classical numerical methods were used to approximate (G.2)-(G.3) for large time, until1660

some error threshold is reached for ∥∂tp(t, ·)∥∞. The transport term−c∂zp(t, z) was handled1661

using an upwind scheme. The convolutions involved in operator B were handled using the1662

function conv in MATLAB software. The grid mesh was adapted to the scales in SI B in1663

order to capture the appropriate phenomena at the correct scale.1664

H Comparison with an Individual–based model.1665

In this section we aim to compare our deterministic approximation with the outcome of a1666

stochastic individual based model (IBM model) with a finite population. We first describe1667

briefly the IBM model. Then we compare the equilibrium distribution of the IBM with our1668

approximation distributions described in Fig. 8. Finally, we compare our results on the effect1669

of the speed of environmental change with the outcomes of the IBM model.1670

Stochastic Individual Based Model1671

We consider a stochastic IBM model where each individual is characterized by its trait Xi.1672

They reproduce at a rate β and die at a rate that depends on their traits Xi, the speed of1673

environmental change c and on the size of the population Nt at time t. More precisely, the1674

individuals may die due to their maladaptness in the phenotypic landscape, which happens1675

at a rate βµ(Xi − ct). Or they may die from density dependence at a rate βNt/K, where1676

K denotes the carrying capacity. The density dependence keeps the population size finite,1677

and the carrying capacity scales the population size. In particular, when it tends to infinity,1678

the population size also tends to infinity and the (renormalized) stochastic model converges1679

to the deterministic model (2.2) (Champagnat et al., 2006).1680

In the case of a birth event, the trait of the offspring is drawn according to the operator

B. In the asexual model, the offspring trait Xoffspring is given by

Xoffspring = Xparent + Y.

where Y is a random variable with probability distribution K
V

1/2
div

. In the sexual infinitesimal

model, the trait of an offspring Xoffspring with parents traits Xparent,1 and Xparent,2 is given

by

Xoffspring =
Xparent,1 +Xparent,2

2
+ Y

where Y is drawn from a centered normal distribution with variance Vdiv/2.1681

Numerically, this model has a very high computational cost, especially when the number1682

of individuals is large. As a consequence, we performed the simulations using an approxi-1683
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mating model, by first fixing dt to a small but deterministic value. Then, for each individual,1684

we draw a time of birth following the exponential law E(β) and a time of death following1685

the exponential law E(βµ(Xi − ct) +βNt/K). Then we simply count which individuals led1686

to a reproduction event and which died on the time-window [t, t+ dt]. This amounts to the1687

supposition that on this time interval, individuals cannot reproduce more than once.1688

Deterministic approximation of the phenotypic distribution1689

We first compare our approximation of the phenotypic distribution with the empirical dis-1690

tribution of the IBM model for the scenarios described in Fig. 8. When the size of the1691

population is large (of order K = 104), we see that our second order approximations are1692

accurate and fit with the empirical distribution of the stochastic model (see Fig. S3).1693

Deterministic approximation of the effect of the changing speed1694

Here, we compare our approximation formula described in Table 2, with the outcomes of1695

the stochastic model with small population size (K is equal to 102 or 103) in the various1696

scenarios described in Fig. 3.1697

When the speed of change is slow compared to the critical speeds, our approximations1698

seem accurate in the sense that the approximation error usually falls on our confidence1699

intervals (see Fig. S4-S6). In the infinitesimal sexual model, our approximation also does1700

well when the speed is close to the critical threshold. In this model, we know that the1701

population adapt thanks to the bulk of the population, which moves forward. Thus, even1702

if the size of the population decreases, many individuals remain at the dominant trait. The1703

size of the population does not have a critical influence on the adaptation response.1704

However for the asexual model, when the speed increases, our approximations become1705

less accurate. In this model, only the individuals near the optimal trait help the population1706

to adapt. Thus when the speed increases, the proportion of individuals near the optimal1707

trait decreases because the lag increases. Moreover, when the population size decreases,1708

the actual number of individuals at the optimal trait may be zero, which may lead to an1709

additional burden, and possibly the extinction of the population before the critical value cc1710

is reached Calvez et al. (2023). In particular, we see in Figures S4-S6 (a) that the mean1711

fitness of the population drops below 0 for fifty percent of the simulations when the speed is1712

close to the critical speed. Thus the effect of the population size is stronger for the asexual1713

model than for the infinitesimal sexual model.1714
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Asexual model Infinitesimal sexual model

(a) Quadratic selection (b) Quadratic selection

(c) Super–quadratic selection (d) Super–quadratic selection

(e) Bounded selection (f) Bounded selection

Figure S3: Mutation-selection equilibria F in changing environment with three different shapes
of selection: (a)-(b) quadratic function m(z) = z2/2 (blue circled marked curves); (c)-(d) super-
quadratic function m(z) = z2/2 + z6/64 (blue star marked curves); (e)-(f) bounded function
m(z) = m∞(1− exp(−z2/(2m∞)) (orange diamond marked curves). The speed of environment
change is c = 0.09 in the asexual model while it is c = 0.05 in the infinitesimal sexual model so
that it remains below the critical speeds cc and ctip and the distribution deviates significantly
from the Gaussian distribution approximation. Other parameters are: β = 1, Vsel = 1, Vdiv =
0.01 and m∞ = 0.5 in the asexual model and m∞ = 1 in the infinitesimal sexual model. We
compare our analytical results (second order results plain marked curves) with the histogram of
the stochastic model with K = 104 individuals. For the asexual scenario, we used the Gaussian
kernel.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S4: Influence of the speed of environmental change c for a population with finite size
(K = 102 dashed curves and K = 103 dash-dotted curves) under quadratic selection m(z) =
z2/2. Other parameters are: β = 1, Vsel = 1, and Vdiv = 0.01. In the asexual model, the
mutation kernel is Gaussian. The shade region corresponds to the 95% and 5% confidence
intervals around the median. The plain curves correspond to the first order approximation in
the asexual model and the second order approximation in the sexual infinitesimal model.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S5: Influence of the speed of environmental change c for a population with finite size (K =
102 dashed curves and K = 103 dash-dotted curves) under super–quadratic selection m(z) =
z2/2 + z6/64. Other parameters are: β = 1, Vsel = 1, and Vdiv = 0.01. In the asexual model,
the mutation kernel is Gaussian. The shade region corresponds to the 95% and 5% confidence
intervals around the median. The plain curves correspond to the first order approximation in
the asexual model and the second order approximation in the sexual infinitesimal model.
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Asexual model Infinitesimal sexual model

(a) (b)

(c) (d)

(e) (f)

Figure S6: Influence of the speed of environmental change c for a population with finite size (K =
102 dashed curves and K = 103 dash-dotted curves) under bounded selection function m(z) =
m∞(1− exp(−z2/(2m∞)). Other parameters are: β = 1, Vsel = 1, Vdiv = 0.01 and m∞ = 0.5
in the asexual model and m∞ = 1 in the infinitesimal sexual model. In the asexual model,
the mutation kernel is Gaussian. The shade region corresponds to the 95% and 5% confident
intervals around the median. The plain curves correspond to the first order approximation in
the asexual model and the second order approximation in the sexual infinitesimal model.
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