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Abstract Purpose: This paper introduces discrete and continuous paths
over simply-connected surfaces with non-zero curvature as means of comparing
and measuring paths between antipodes with either a Feynman path integral
or Wodehouse contour integral, resulting in a number of extensions of the
Borsuk Ulam Theorem.
Methods: All paths originate on a Riemannian surface S, which is simply-
connected and has non-zero curvature at every point in S. A surface is a
simply connected, provided every cross-cut divides the surface into disjoint
regions. A cross cut is an arc that runs through the interior of the surface S
without self-intersections and joins one boundary to another.
Results: A fundamental result in this paper is that for any pair of antipodal
surface points, a path that begins and ends at the antipodal points can be
found. This result is extended to Feynman path integrals on trajectory-of-
particle curves and to N.M.J. Wodehouse countour integrals for antipodal
vectors on twistor curves. Another fundamental result in this paper is that the
Feynman trajectory of a particle is realizable as a Lefschetz arc.
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1 Introduction

This paper introduces a path-Borsuk-Ulam Theorem, stemming from three
main forms of paths over curved surfaces that have been identified, namely,

bc

bc

h⃗i(0)

h⃗i(1)

h⃗i(t)

Fig. 1 Discrete paths hi : Id → S with all t ∈ Id.

1o Poincaré Contour paths were introduced by Poincaré in 1892 in his
analysis situs paper [1]. In a contour path, each subpath is an infinitely
small contour on a manifold [1, p. 240]. Recently, N.M.J. Woodhouse [2]
introduced contour integrals defined on twistor curves on a complex man-
ifold.

2o Whitehead Homotopic paths were introduced during the late 1940s by
J.H.C. Whitehead [3],[4] and S. Lefschetz [5]. For Whitehead, a path is a
continuous map h : [0, 1] → S, i.e., a mapping from the unit interval to
a space S. For Lefschetz, a homotopic path h in an arcwise connected
space S is simply a mapping of a directed (= oriented) closed arc >v0, v1
into R [5, p. 158]. A space is arcwise connected, provided every vector in
the space S is on a path containing an initial vector and a terminal vector
such as the arcs in Fig. 1.

3o Feynman paths were introduced by R.P. Feynman in his thesis completed
in 1942 [6, p. xiv]. A Feynman path is a trace of the trajectory of
a particle between fixed endpoints [6, p. xiv], providing a framework for
a path integral, also introduced by Feynman[6] and elaborated by R.P.
Feynman and A.R. Hibbs in [7]. A Penrose path over a twistor curve
(from R. Penrose’s 1968 paper [8]) and its refinement by R.S. Ward in his
1977 thesis [9] supervised by Penrose, is a form of Feynman path in which
the trajectory of a particle is over a twistor curve.

The original BUT [10] from K. Borsuk in 1933 is given in terms of antipodal
vectors p⃗,−p⃗ on the surface of an n-dimensional Euclidean sphere Sn, defined
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by
Sn =

{
p⃗(x1, . . . , xn+1) ∈ Rn+1, n ≥ 2|x2

1 + · · ·+ x2
n+1 = 1

}
.

Points on the surface of a sphere are antipodal, provided the points are
diametrically opposite each other. Examples of antipodal vectors are the poles
on the surface of a planet.

In 1933, K. Borsuk introduced his Theorem 1.

BUT.

Theorem 1 (Borsuk-Ulam Theorem) [10, p. 178].
Let vector p⃗ ∈ Sn. For a continuous map f : Sn → Rn, there is an
antipodal point −p⃗ such that f(p⃗) = f(−p⃗).

Remark 1 Theorem 1 is a translation from German, which is given by J.
Matouss̆ek [11, p. 21]. �

Remark 2 The basis for Theorem 1 came from K. Borsuk’s thesis completed in
1930 [12]. Ulam is credited by Borsuk (in a footnote [10, p. 178]) with the idea
codified in Theorem 1, which Ulam stated as a conjecture. In effect, Borsuk
proved Ulam’s conjecture in 1933. In 1930, L. Lusternik and S. Shnirel’man
introduced the nonvoid intersection of sets of closed surface curves that have
antipodal vectors in common.

LST.

Theorem 2 (Lusternik-Shnirel’man Theorem) [13].
For any cover F1, . . . , Fn+1 of the sphere Sn by n+1 closed sets, there is
at least one set containing a pair of antipodal points common to Fi,−Fi

(i.e., Fi ∩ −Fi ̸= 0).

Remark 3 Theorem 2 is a translation from Russian, which is given by J.
Matouss̆ek [11, p. 21]. �

Theorem 2 contrasts with Theorem 1. In the Lusternik-Shnirel’man The-
orem 2, there is a closed set Fi that is a cover of a sphere Sn and that has an
opposite set −Fi, in which the sets Fi,−Fi contain antipodal points such that
Fi ∩ −Fi ̸= ∅. This sharply contrasts with the Borsuk-Ulam Theorem, which
asserts there is a continuous map f from Sn into Rn over a surface contain-
ing antipodal surface vectors p⃗,−p⃗ such that f(p⃗) = f(−p⃗). Also, Theorem 2
concludes with the observation that the intersection of Fi,−Fi is nonvoid but
the values of the shared antipodal points are not given. In the LS theorem
formulation, it is possible that the antipodal points in Fi ∩ −Fi have differ-
ent values. By contrast, in the Theorem 1 formulation, it is asserted that the
antipodal points map to the same value. �
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Let Id be a discrete form of a unit interval [0, 1] defined by

i ∈ Z+ natural numbers 1,2,3,….

X =

i.e., there is a gap between xi and xi+1︷ ︸︸ ︷
{Xi ∈ Sn| |xi+1 − xi| > 0} .

Id = {0, 1} ∪ {X : Xi ∈ Sn} .

Example 1 Let X0.00001 be a set of surface points on an n-dimensional Rie-
mannian sphere Sn, defined by

X0.00001 =

i.e., there is a 0.00001 gap between xi and xi+1.︷ ︸︸ ︷
{Xi ∈ Sn| |xi+1 − xi| = 0.00001} .

Id = {0, 1} ∪ {X0.1 : Xi ∈ Sn} . �

2 Preliminaries

More recent versions of BUT [14, §68,p.405] require the map f : Sn → Rn to be
continuous, i.e., the map f is continuous, provided, for each subset E ⊂ Sn, if
a point p⃗ is arbitrarily close to E, then f(p⃗) is arbitrarily close to E. However,
in keeping with an interest in Riemannian surface surface points with gaps
between them, we consider discrete maps.

Definition 1 Discrete map.
Discretely close surface points p⃗, q⃗ such as water molecules always have a
minute gap between them. A map f : Sn → Rn is discrete, provided, for each
subset E ⊂ Sn, if a point p⃗ is discretely close to E, then f(p⃗) = q⃗ is close to
E.

Example 2 Discretely close surface points p⃗, q⃗ such as close water molecules
always have a minute gap between them. �

Example 3 The discrete unit interval Id is a collection Discretely close sur-
face points p⃗, q⃗ ∈ Id such that |p⃗− q⃗| > 0. �

Definition 2 Discrete Path.
Let S be a Riemannian surface. A discrete path h is a discrete mapping,
defined by

h : Id → S, such that
h(0) ∈ S is the initial point in path h, h(1) ∈ S the endpoint of h and h(t) ∈ S
for all t ∈ {x : x ∈ X ⊂ Id}.

Example 4 A sample discrete path h : Id → S on the surface of a Riemannian
sphere is shown in Fig. 2. This path begins at vector h⃗(0) ∈ Rn at v⃗1 on the
surface of S and ends at vector h⃗(1) ∈ Rn, which is the value of antipode of
v⃗1. The assumption made here is that h⃗(0) and h⃗(1) have the same value such
as identical temperature. �
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bc

bc

bc

h

h⃗(0)

:= h⃗(x)
∈ Rn

h⃗(t)
∈ Rn

h

h⃗(1)

:= h⃗(−x)
∈ Rn

bc

bc

bcv⃗1

v⃗3

v⃗2

↙

Fig. 2 The left-slanting arrow ↙ reads collapses to, e.g, J ↙ B, i.e., collapse a left-
pointing solid triangle to its boundary. For example, collapse a sphere S to a circle containing
a discrete path h : Id → S with h⃗(0) = h⃗(x) ∈ R2, antipodal to h⃗(1) = h⃗(−x) ∈ R2,
with h⃗(t) ∈ R3 for t ∈ Id \ {0, 1}.

That is, a discrete path h : Id → S is a mapping from the discrete unit
interval Id ⊂ I (for I = [0, 1]) to a bounded, simply connected surface S with
non-zero curvature. Path h is discrete, since there gaps between all points
h⃗(t) ∈ S between 0 and 1 in Id ⊂ [0, 1]. The surface S is simply connected,
provided every path h has end points h(0), h(1) ∈ S and h has no self-loops.

Paths either lie entirely on a surface in the planar case or lie on a surface
and, possibly, puncture a surface in the non-planar case. Paths that puncture
a surface are called cross-cuts. A cross cut path P (also called an ideal
arc [15, §3, p.11]) has both ends in P and path interior in the interior of S.

Remark 4 Homotopic paths were introduced by J.H.C. Whitehead[3]. For White-
head, a path h : [0, 1] → X is a continuous mapping from the unit interval to
a cell complex X. In the pursuit of discrete paths in a curved space, the focus
is on 0-cells (single points) and 1-cells (arcs) in an n-dimensional Riemannian
space S. A single surface vector is a 0-cell. A Lefschetz arc is a curvilinear
line seqment attached to a pair of 0-cells [16]. �

Definition 3 (Path-Connected) A pair of vectors v0, v1 are path-Connected,
provided there is a sequences of arcs between the vectors.

Example 5 All vectors on the circle in Fig. 2 are path-connected, since there
is a sequence of arcs between each pair of vectors. �

3 Antipodal and Non-Antipodal Path Borsuk-Ulam Theorem

This section introduces results for paths on a Riemann surface.

Theorem 3 The endpoints of a discrete Lefschetz arc can be the same.
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Proof Let >v0, v1 be a discrete Lefschetz arc in which the endpoints v0 = v1 are
the same. There is an arc between v0, v1, namely, itself. Hence, from Def. 3,
the endpoints are path-connected.

Lemma 1 Every discrete path constructs a discrete arc.

Proof Every h(t) is a point on an arc
>
h(0), h(1) between h(0) and h(1) is a

discrete path h : Id → S. Id is discrete. Hence,
>
h(0), h(1) is also discrete.

Theorem 4 Every discrete path constructs a vector field.

Proof Let h : Id → S be a discrete path. From Lemma 1, h constructs a
discrete arc

>
h(0), h(1) on a surface S. Consequently, each h(t) ∈

>
h(0), h(1) has

a location (x1, . . . ) ∈ S with its own magnitude and direction S, i.e., every
h(t) is a vector in S. Hence, h constructs a vector field.

Lemma 2 Let v⃗1, v⃗2 be antipodal vectors on the surface of a sphere S. There
exists a discrete path h with endpoints are antipodal on a surface S.

Proof Let v⃗1, v⃗2 be antipodal vectors on the surface of a sphere S. Then define
a discrete path h : Id → S with h⃗(0) = v⃗1 and h⃗(1) = v⃗2. Hence, a discrete
path can be defined for every pair of antipodal points on S.

From what we have observed about discrete paths on the surface of a
sphere, we obtain

path-BUT.

Theorem 5 (Path-Borsuk-Ulam Theorem).
Let the discrete unit interval Id be an index set for vectors v0, . . . , vt, . . . , v1, t ∈
Id in Sn in a path h : Sn → Rn, i.e., a path discretely maps v0, . . . , vt, . . . , v1
to a set of values {h(v0), . . . , h(vt), . . . , h(v1)} in Rn. For a discrete path
h : Sn → Rn and a vector p⃗ ∈ Sn, there is an antipodal vector −⃗p ∈ Sn

such that h(p⃗) = h(−⃗p).

Proof From Lemma 1, a path h : Sn → Rn constructs of values from
vectors on an arc with endpoints v⃗, vecv′ on Sn. Let the endpoints of this
arc be antipodal. Hence, from Lemma 2, the desired result follows.

Remark 5 An immediate consequence of Theorem 5 is that, for any pair
of antipodal surface points, we can always introduce a discrete path h that
begins and ends at the antipodal points such as places that have same
latitude and longitude. For example, the antipode of Winnipeg, Mani-
toba, Canada with coordinates 49◦.53’N, 97◦.8’W is Port-aux-Français,
Kerguelen, French Southern Territories. �
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Example 6 An example of a discrete path that begins and ends at antipodal
surface points is shown in Fig. 2. �

Observe that a path can be constructed between any pair of surface vectors.
This observation leads to more general form of Theorem 5.

Theorem 6 (Non-antipodal path-BUT).
Let the discrete unit interval Id be an index set for vectors v0, . . . , vt, . . . , v1, t ∈
Id in Sn in a path h : Sn → Rn. There is a discrete path h : Sn → Rn with
endpoints h(v0), h(v1) that are values in Rn such that h(v0) = h(v1).

Proof In the proof of Theorem 5, replace antipodal points on a Leftschetz arc
with endpoints that are any pair of surface points. In addition, notice that
the initial point and the ending point of any discrete path can be the same.
Hence. the desired result follows.

Fig. 3 2D and 3D views of discrete paths on a Gombox Riemannian surface

Example 7 An example of a discrete path that begins and ends at antipodal
surface vectors on a bumpy Riemannian sphere (aka Gomboc sphere) is shown
in Fig. 3. �

Example 8 An example of a discrete path h : S2 → R3 on a 3D Gomboc
Riemannian surface is shown in Fig. 3. The same path is also depicted on a
2D slice of the 3D surface. In keeping with Theorem 6, each vector h⃗(vt) is a
signal value from the path h. For example, if we let the descrete path be an
optical field flow containing a stream of photons reflected from a Riemannian
surface, then there are number of possible signal values for h⃗(vt), e.g.,
1o wavelength of h⃗(vt).
2o frequency of h⃗(vt).
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3o electron voltage of h⃗(vt).
4o lumens (luminosity) of h⃗(vt).
5o gradient of h⃗(vt), t ∈ Id, which would be perpendicular to the surface at

(x, y, z), defined by

grad(⃗h(vt)) =
∂h⃗

x
i+

∂h⃗

y
j +

∂h⃗

z
k.

ℓ = >pq

=
⋃{>

pp′,
>
p′t,

>
tq′,

>
q′q

}

bcbc

bc
bc

bc

bc

bc
bc

bc

bc

bc

bc

p

p′ t

q′ q

Fig. 4 Trajectory of a particle over twistor curve realizable as the union of a sequence of
sub-arcs on Lefschetz arc ℓ = >pq on a R.S. Ward hypersurface CS [9, p.62].

4 Feynman Trajectories of a Particle

This section introduces particle trajectories as continuous paths over the cur-
vature of space-time, which leads to the counterpart of the discrete path results
already given. The transition from discrete paths results from the geometry of
space-time generated by quantum processes [17], which is in keeping with the
observation by R. Penrose [8] that the link between space-time curvature and
quantum processes such as those found in Feynman trajectory of a particle is
supplied by the use of twistors. A twistor space is a complex manifold CM .
For example, a Lefschetz arc in curved space-time is a R.S. Ward hypersurface
S twistor [9, p.56], which is a complex curve ℓ in CS.

Example 9 A sample twistor curve ℓ ∈ CS is shown in Fig. 4, which is a
geometric realization of a Feynman trajectory of a particle (see Def. 4), which
leads to a space-time view of a Lefschetz arc (see Def. 4 and Lemma 3). �

Definition 4 The trajectory of a particle in a 2-plane in curved space-time
is a mapping

h :
{
R2 × S2

}
→

{
R2 × S2

}
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defined by

h(
{
ttxi

}
) =
>
ttx0

, ttxi
∪
⋃>

ttxi
, t′t′x

i′
= ℓ, t, t′ ∈ R, xi ∈ S2, i ∈ I,

in which each
>
ttxi

, t′xi′
is a space-time line segment in a curve ℓ starting with

subarc >ttx0
, ttxi

in a Lefschetz arc at times tt (instant t in region time t) with
index i in the unit interval I = [0, 1] is mapped to an arcwise-connected set, i.e,
the line segments in the trajectory are attached to each other and starting with
>
tx0

, t′xi
, there is a path from any subarc a sequence of subarcs can be traversed

to reach an ending subarc
>
ttxn

, t′t′x
n′

in a N.M.J. Woodhouse [2] twistor space
R2 × S2 with metric signature ++−−. �

Remark 6 From Def. 4, the vectors in h({txi}) are J.H.C. Wodehouse zero
cells in an arcwise-connected space R× S2 × R. �

Definition 5 (Lefschetz arc).
A Lefschetz arc E is a curve ℓ attached between a pair of 0-cells p, p′. The
curve ℓ is dense and the points in ℓ are path-connected, i.e., between every
pair of points q, q′ in ℓ, there is a sequence of sub-arcs traversable between q
and q′. �

Lemma 3 (Lefschetz trajectory arc).
A trajectory of a particle is realizable as a Lefschetz arc.

Proof From Def. 4, a trajectory h is a curve ℓ that starts and ends with a
0-cell and is the union of subarcs in an arcwise-connected space. Hence, from
Def. 5, the trajectory h is realizable as a Lefschetz arc.

Example 10 A sample trajectory of a particle as a Lefschetz arc over a twistor
curve realized as a Lefschetz arc ℓ = >pc with endpoints (0-cells) p⃗, q⃗ and which
is the union of sub-arcs is shown in Fig. 4. �

Definition 6 (Unit interval).
The unit I = [0, 1] ∈ R is the set of all real values in the closed interval
with initial value 0 and ending 1 and an unbounded number of consecutive
everywhere dense subintervals of real values between 0 and 1. That is, every
real number x in a subinterval of A ⊂ I has another real number x′ ∈ A that
is arbitrarily close to x. �
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Lemma 4 The trajectory of a particle is continuous.

Proof From Def. 6, I is dense and is the index set for the points in the tra-
jectory of a particle. From L. Susskind and A. Friedman [18, p. 238], a paricle
moving along the Lefschetz curve can be found at any real value in the unit
interval I = [0, 1]. Let h be the trajectory of a particle. Then if i, i′ ∈ I are
close, then txi

, tx′
i

are close. Hence, the trajectory h is continuous. �

Example 11 (Trajectory of a Particle).
Let g : I → R be defined by g(ti) = ti, i ∈ I, g(ti) ∈ R for each time ti in
the trajectory of a particle. That is, I is a index set for the instants of time
of occurrence of the points in the trajectory of a particle over a vector field.
The map f is continuous, since, for every pair ti, tj , i ̸= j, if i, j are arbitrarily
close, then g(ti), g(tj) are arbitrarily close. Hence, the g is continuous. �

5 Feynman Path Integral

In this section, it is observed that a Feynman path is continuous (Lemma 5),
which leads to the results in Theorem 7 and Theorem 8 for Feynman paths,
which are consequences of the Borsuk-Ulam Theorem.

Definition 7 A Feynman path is a function h(txi
) = xi for a particle at point

xi at time t [7, p.31]. �

Lemma 5 (Feynman Path).
Every Feynman path is continuous.

Proof Let h : R2 × R2 → S2 be a Feynman path, defined by h(ttxa
) = xa

which is the trajectory of a particle at point xa at time tt. Let ℓ represent that
a particle travels over during its trajectory and let h(ttxa

) = xa be a point in
ℓ. For simplicity, the curve ℓ is referred to as the trajectory of a particle and p
is point in ℓ. During the passage of a particle over ℓ, ℓ has no gaps in it. That
is, for each point h(ttxa

) = xa ∈ ℓ at time tt, if xa is arbitrarily close to point
h(ttxk+1

) = xk+1 ∈ ℓ at time tt, then h(ttxa
) is arbitrarily close to h(txk+1

).
Hence, a Feynman path h is continuous.

Remark 7 In Lemma 5, the continuity of a Feynman path h is explained in
terms of the closeness (nearness) paradigm from [19, §1.5, p. 8], instead of
the abstract (less intuitive) ϵ − δ view of continuity. This approach befits
the character of the trajectory of a particle over a curve ℓ, where both the
trajectory of a particle and the curve ℓ (without gaps) traced by particle
trajectory. Just as pairs of points in the curve ℓ can be arbitraily close, so
too,from Lemma 4, the vectors h(ttxa

)), h(ttxk+1
) in the trajectory of a particle

can be arbitrarily close. �
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The value of a path between points a and b on a curve ℓ (the positions of a
particle trajectory at times ta, tb, respectively), is K(b, a), defined in a complex
space CS with respect to Planck’s constant ~ by Feynman and Hibbs [7, p.
45] by

V (x, t) = Potential energy of particle with mass m.

L =
m

2
ẋ2 − V (x, y)(Lagragian for the system).

S =

∫ b

ta

L(ẋ, x, t)dt.

K(b, a) =

∫ b

a

e(
i
~ )S[b,a]Dx(t).

Theorem 7 (Feynman Path Theorem).
Let h : S3 × R3 → S3 be a Feynman path over a curved surface S3 and
let K(bk, xa),K(−xa, bk) be the value of path h containing points bk, xa in a
segment >bk, xa in a curve ℓ starting at point xa and with endpoint bk attached to
a segment >−xa, bkstarting at point bk and with endpoint −xa. For each initial
point xa, there exists an antipodal point −xa in path h such that K(bk, xa) =
K(−xa, bk).

Proof From Lemma 5, a Feynman path h is continuous. Hence, from Theo-
rem 1, we obtain the desired result for antipodal points xa, xb in path h.

Trajectory Results.

Theorem 8 (Feynman Trajectory-of-Particle Theorem).
The Feynman trajectory of a particle satisfies Borsuk-Ulam Theorem 1.
Let h : Sn → Rn be the trajectory of a particle on the surface of sphere.
There is at least one pair vectors p⃗, p⃗ ∈ Sn such that h(p⃗) = h(p⃗′).

Proof From Lemma 5, a Feynman trajectory is continuous. Hence, from
Theorem 1, we obtain the desired result for antipodal points p⃗, p⃗ ∈ Sn in
Feynman tracjectory h.

Theorem 9 (Feynman Path Integral Theorem).
There exists a Feynman path with an initial path integral K(bk, xa) for
an initial vector x⃗a that equals the path integral K(bk,−xa) for a later
vector −x⃗a, which may or may not be the antipode of vector x⃗a.
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Proof K(bk, xa) are Feynman path integrals that resonate (have values)
for a particle that has gradients on either two different surface curvatures
along a surface curve ℓ or on the same surface curvature on a path ℓ′ for
a boomerang trajectory that follows a path that is a cycle. In either case,
choose an intermediate point bk in the path between x⃗a and bk so that
the two segments on ℓ have the same length. In that case, K(bk, xa) =
K(bk,−xa)

Remark 8 The significance of Theorem 9 is that the endpoints on a particle
trajectory curve ℓ need not be antipodal points. That is, Theorem 9 is more
general than Theorem 7. �

bc

bc
bc

bc

bc

q
t

q′

Fig. 5 Wodehouse contour integrals on sub-twistor curve antipodes q, q′ with
∮

>
qt()

=
∮

>
tq′()

.

6 Woodhouse Borsuk-Ulam Theorem

This section briefly introduces N.M.J. Woodhouse contour integrals [2, p. 198],
defined with respect to real α-planes in a twistor space R2 × S1 in which S1

represents the α-planes that lie in the null cone at ∞, over which we have

ξ = x1 + ix2 and τ = t1 + it2, representing α-planes as surfaces, with
w = ξ + z̄r, w̄ = ξ̄ + zr, constant for z = eiθ.

ϕ(ξ, τ, ξ̄, τ̄) =
1

2π

∮
|z|=1

f(ξ + z̄τ, ξ̄ + zτ̄ , z)
dz

z
.

Definition 8 (Contour Integral as a Smooth function).
The contour integral ϕ is a smooth function on a twistor space [2]. That is, ϕ
is continuous. �
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Antipodal Contour Integrals Result.

Theorem 10 The contour integral ϕ satisfies the Borsuk-Ulam Theorem.

Proof From Def. 8, the contour integral ϕ is a continuous function. Let
p,−p be antipodes on a twistor curve in R2 × S1. Replace the Feynman
path integral with the Wodehouse contour integral in the proof of Theo-
rem 9, and the desired result follows.

Example 12 Sample contour integrals on sub-twistor vectors that are antipo-
dal are shown in Fig. 5. �

bc

bc

bcv⃗1
v⃗2

v⃗3

Fig. 6 Wodehouse contour integrals on sub-twistor curves
>
p⃗1p⃗2,

>
p⃗2p⃗3 with∮

>
p⃗1p⃗2

() =
∮

>
p⃗2p⃗3

().
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Non-Antipodal Contour Integrals Result.

Theorem 11 Let ϕp, ϕ
′
p′ be the Wodehouse contour integral over a twistor

curve ℓ and let p, p′ be any two distinct points on ℓ. Then there are ϕ, ϕ′

such that ϕp = ϕ′
p′ .

Proof Again, replace the Feynman path integral with the Wodehouse con-
tour integral in the proof of Theorem 9, and the desired result follows.
That is, we can always find a point q between p, p′ on the twistor ℓ such
that ϕp = ϕ′

p′ .

Remark 9 Theorem 11 covers a broader spectrum of twistor length mea-
surements than Theorem 10. That is, for any pair of distinct vectors on
a twistor curve, we can always find an intermediate vector so that the
contour integrals over the resulting twistor sub-arcs have equal value.
�

Example 13 Sample contour integrals on sub-twistor curves
>
p⃗, q⃗,

>
p⃗′, q⃗ with end

points p⃗, p⃗′ that may or may not be non-antipodal are shown in Fig. 6. �

7 Concluding Remarks

The Borsuk-Ulam Theorem is topological with an implicit surface geometry.
That is, the focus in the Borsuk-Ulam Theorem is on a continuous map from
the surface of a sphere Sn to real values of antipodes in Rn. The geometry
underlying the Borsuk-Ulam Theorem looms up, when we consider where to
look for antipodes such as the endpoints on an arc stretching over the curved
surface of the Earth between a place such as the University of Manitoba and
another place at varying space-times with the same latitude and longitude.

The beauty of the Borsuk-Ulam Theorem is that it serves as a roadmap,
telling us how to look for surface antipodes (with continuous maps), where to
look (e.g., endpoints of twistor curves that are antipodal) and how to measure
antipodal distances. In this paper, the Borsuk-Ulam Theorem is an emperor
with new clothes to wear, namely,
1o How to look: consider either a discrete or continuous map.
2o Where to look: endpoints of twistor curves that are either antipodal or

non-antipodal.
3o Length-of-arc measure: e.g., measure with either a Feynman path inte-

gral or Wodehouse contour integral over arcs having antipodal endpoints.
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