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Abstract11

Equivalent or condensed plate models are being used in various industries to
reduce the computation time in finite element modelling. Out of the avail-
able equivalent plate models, the model developed by J.L.Guyader in 1978
exhibits high agreement with Lamb wave theory but it requires some time
for implementation. Therefore, in this paper, a simple model is proposed to
quickly compute the dynamic equivalent parameters of a three-layer sandwich
panel. Although the model is formulated from only four parameters, which
could be easily computed via the asymptotic and transition behaviours of
the sandwich panel, it is shown to be able to capture the equivalent dynamic
response for the entire frequency range.
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Nomenclature14

Symbol Unit Definition
h mm Thickness
ht mm Total thickness
ρ kg m−3 Density
M kg m−2 Total surfacic mass
E GPa Young’s modulus
Eeq GPa Dynamic Young’s modulus
G GPa Shear modulus
ν - Poisson’s ratio
η - Loss/damping factor
ηeq - Dynamic loss/damping factor
D N m Bending stiffness
Deq N m Dynamic bending stiffness
Dlow N m Low-frequency asymptote of dynamic bending stiffness
Dhigh N m High-frequency asymptote of dynamic bending stiffness
DT N m Bending stiffness at transition frequency
f Hz Frequency
ω rad s−1 Cyclic frequency
fT Hz Transition frequency

f̃T Hz Approximate and simpler form of transition frequency
R - Slope factor at transition frequency
k rad m−1 Wavenumber
keq rad m−1 Equivalent bending wavenumber

1. Introduction15

Multi-layered partitions have been commonly used in recent years to en-16

hance sound comfort and noise attenuation. Sandwich composites which can17

exhibit high stiffness and damping with lightweight are widely employed in18

the transportation and building industries. This type of multi-layer is also19

called laminate and is often made up of three layers. One soft layer em-20

bedded between two hard skins. This kind of laminate enables to ensure21

a bending rigidity while increasing the dissipation by forcing the shear of22

the viscoelastic core. Automotive [1] and aerospace [2] industries also use23

sandwich structures as a passive way to reduce the structure-borne noise.24

Constrained layers are typically used in automobile, aircraft and railway in-25

dustries to improve the damping response of the vibrating systems. In civil26

applications, acoustic plasterboards (with high-density core) are used to im-27

prove the sound insulation performance.28
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Due to the increasing number of applications of multi-layer structures,29

there are many models available in the literature to predict their responses30

and these models are broadly categorized into three groups [3, 4]. They are31

1) Equivalent Single Layer (ESL) models that describe the motion of multi-32

layer plate as a displacement field of a single layer [5–10], 2) Layer-Wise (LW)33

models that describe the kinematics field in each layer [11–18] and 3) Hybrid34

or Zig-Zag models that make use of the advantages of the two other groups35

theories [19–24]. These models are applied to describe the behaviour of the36

multilayer. Then, from the results of these models, equivalent methodologies37

are applied to condense the behaviour of the multi-layer structure into an38

equivalent single-layer governed by frequency-dependent properties. These39

equivalent properties (or apparent properties [25, 26]) serve the advantage40

of reducing the computation time when they are used in a finite element41

modelling for example.42

Based on the strain energy approach, a simple equivalent thin plate model43

was developed [27–29] (typically known as RKU model in the field) for a44

three-layer structure where the core layer is assumed to behave only with45

shear motion (which contributes for energy dissipation) and other two layers46

are assumed to behave only with bending motion. Due to this assumption,47

RKU model requires to know beforehand if each layer works in bending or48

shear and usually overestimates the equivalent bending stiffness and under-49

estimates the equivalent loss factor [30]. Kurtze and Watters [31] developed50

a theoretical model to analyse the natural wave propagation inside a sym-51

metric sandwich panel made of thicker core, compared to skins, based on the52

total impedance obtained from the bending and shear contributions of skins53

and core respectively. The speed of the propagating wave was computed54

from impedance-based dispersive relation and dynamic bending stiffness was55

computed from the wave speed. Recently, Zarraga et al. [32, 33] proposed a56

new equivalent plate model for a three-layer system based on the considera-57

tion of the low-frequency bending and shear contributions. It may be noted58

that this model does not account for the high-frequency bending behaviour59

controlled by the inner bending of the skins and does not exhibit the correct60

behaviour of a three-layer system at higher frequencies. Boutin and Viverge61

[34] used the homogenization of symmetric sandwich structure to analyse the62

asymptotic behaviours but this approach does not provide a dynamic model63

valid for the entire frequency range. Guyader and Cacciolati [35] developed64

an equivalent plate model (which would be referred to as Guyader model in65

this work hereafter) based on the previous work by Guyader and Lesueur66

[19, 20] of a hybrid model for multi-layer structures of n−layers. The equiva-67

lent methodology consists in assuming that the multilayer behaves as a thin68

plate under Love-Kirchhoff’s theory. As a result, an equivalent parameter69
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corresponding to the flexural rigidity of the thin plate can be identified as a70

function of frequency. It may be noted that, even though the equivalent plate71

models assume the multi-layer plate as equivalent Love-Kirchhoff plate, they72

account for both bending and shear motions of multi-layer plate (but not73

necessarily in each layer) through the frequency dependant flexural rigidity.74

Since Guyader model describes two anti-symmetric motions (bending and75

shear) in each layer, it exhibits high agreement with an exact model based76

on Lamb waves [36] until the frequencies where symmetric motions are no77

longer negligible. Marchetti et al. [37] have recently extended the Guyader78

model for composite structures of orthotropic layers.79

Among the above mentioned analytical models available, Guyader model80

might be more appropriate to analyse the vibroacoustic performance of a81

three-layer system of isotropic materials which are commonly used across var-82

ious industries. Although Guyader model performs better compared to the83

other equivalent plate models, it often requires some initial work for imple-84

mentation as it requires many constant coefficients to be defined. Addition-85

ally, it also requires the symbolic computation of solutions from a non-linear86

equation which further requires solution tracing techniques to correctly cap-87

ture the physically meaningful solution for the dynamic bending stiffness.88

Therefore, in this paper, a simple dynamic model for sandwich structure89

based on its asymptotic behaviours is proposed to reconstruct the dynamic90

response of the structure in a similar manner of the principles used for the91

modelling of porous media [38] or the length correction of perforated plates92

[39].93

The present work is organised with two main sections: first, development94

of a simple model to find the dynamic equivalent bending stiffness of a three-95

layer sandwich panel is presented; then the results obtained using this new96

model are compared with the Guyader model for validation.97

2. Development of a simple model to compute equivalent bending98

stiffness of a three-layer sandwich panel99

2.1. Dynamic behaviour of a three-layer sandwich panel100

For the theoretical development of the proposed model, Fig. 1 is used to101

schematically represent a generic three-layer sandwich panel of infinite extent.102

The i−th layer of the sandwich panel is assumed to be made of isotropic ma-103

terial with thickness hi, Young’s modulus Ei, mass density ρi, Poisson’s ratio104

νi and loss/damping factor ηi. It is further assumed that only anti-symmetric105

motions (i.e, bending, shear and membrane motions) are considered for the106

analysis. Different configurations of layers are considered in this work using107

the materials (aluminium, steel, plasterboard, shear layer and polymer) listed108
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Figure 1: Schematic representation of the cross-section of a generic three-layer sandwich
panel. The panel is assumed to be of infinite extent along the x−axis.

in Table 1. The shear layer corresponds to a layer that is sufficiently soft109

to exhibit shearing effects but still rigid enough to avoid compressional or110

dilatational effects. The asymptotic behaviours on the natural propagating111

wavenumber of the sandwich panel for different configurations are observed.112

If all three layers are of the same material, the sandwich could be considered113

as a homogeneous isotropic single layer. For this configuration, the natural114

propagating wavenumber is computed from the first-order shear deformation115

plate theory [5–7] and it is observed from Fig. 2a that the natural propagat-116

ing wavenumber has low and high frequency asymptotes corresponding to the117

bending and shear motions of the panel. In case of a sandwich panel made

Table 1: Material properties of few typical elastic isotropic layers used in this paper

Properties Aluminium Steel Plasterboard Shear layer Polymer
ρ (kg m−3) 2780 7800 700 200 580
E (GPa) 71 210 3 0.1 0.25

η 0.01 0.005 0.08 0.5 0.05
ν 0.3 0.3 0.22 0.33 0.33

118

of two stiff skins (5 mm aluminium each) bonded together with a shear layer119

of thickness 10 mm, the asymptotic behaviour of the natural propagating120

wavenumber is observed to be different from that of the isotropic single layer121

as shown in Fig. 2b. Furthermore, the natural propagating wavenumber of a122

three-layer sandwich panel could be characterized by the properties of three123

zones namely low-frequency, transition and high-frequency regions [40].124
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(a) (b)

Figure 2: Natural propagating wavenumbers for (a) plasterboard of 25 mm (b) aluminium
(5 mm)/shear layer (10 mm)/aluminium (3 mm) sandwich structure of infinite extent
(material properties are listed in Table 1).

The low and high frequency asymptotes correspond to the global and125

inner bending behaviours respectively [34]. The term “global bending” de-126

scribes the bending behaviour of a three-layer sandwich panel where each127

layer contributes for the total bending. In case of “inner bending”, only the128

outer layers (i.e, skins) contribute for the bending behaviour. One could note129

that the natural propagating wavenumber of the sandwich panel in Fig. 2b130

is computed from the equivalent plate model by [19, 20, 35] and this can also131

be computed from other models [17, 27–29] in the literature.132

2.2. Proposal of a sigmoid model133

We can observe that the equivalent bending stiffness, computed from134

Guyader model, has the shape of a sigmoid function for both symmetric and135

asymmetric sandwich structures of different configurations (Fig. 3). Thus,136

the goal of this paper consists in describing the equivalent parameter using137

this function. The sigmoid function is defined by four characteristic parame-138

ters (Dlow, Dhigh, fT and R) as shown in Fig. 4. Hence, the following expres-139

sion is proposed for the equivalent bending stiffness of a sandwich structure140

made of isotropic layers,141

log10Deq(f) =
fR
T log10Dlow + fR log10Dhigh

fR + fR
T

, (1)

where f = ω/(2π), Dlow, Dhigh, fT andR are excitation frequency, low-frequency142

and high-frequency dynamic bending stiffness asymptotes, transition fre-143

quency and slope factor at transition frequency respectively.144
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(a) (b)

Figure 3: Equivalent bending rigidity profile obtained from Guyader equivalent plate model
for (a) aluminium (5 mm)/shear layer (10 mm)/aluminium (5 mm) (b) steel (1 mm)/shear
layer (10 mm)/aluminium (5 mm) sandwich structures of infinite extent.

1

2

3

4

Low-frequency asymptote (Dlow)

High-frequency asymptote (Dhigh)

Transition frequency ( fT)

Slope factor at transition frequency (R)

Figure 4: Schematic representation of the profile of the proposed sigmoid model and
its four characteristic parameters to describe equivalent bending stiffness of a sandwich
structure made of isotropic layers.
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In the following subsections, these characteristic parameters will be de-145

rived based on the relationship between the equivalent bending stiffness and146

material properties of the sandwich panel (Eq. (2)), given by Guyader and147

Cacciolati [35] to compute the equivalent bending stiffness of a multi-layer148

structure.149

A4D
3/2 + A3D − A1A4D

1/2 − A1A3 + A2 = 0, (2)

whereA1 = λ1−
λ25
λ3
, A2 = ω

√
M

(
λ4 −

λ5λ6
λ3

)2

, A3 = ω
√
M

(
λ2 −

λ26
λ3

)2

, A4 =150

λ37. M =
∑
ρihi is the total mass per unit area and the constants λi are151

defined in the Appendix A. Deq obtained from Eq. (2) is substituted in152

the following expression to find the equivalent bending wavenumber of the153

multi-layer structure.154

keqbending =

√√√√ω

√
M

Deq

. (3)

Additionally, the equivalent Young’s modulus, density, Poisson’s ratio and155

loss factor are computed with the following relations.156

Eeq =
12Deq(1− ν2eq)

h3t
; ρeq =

M

ht
; νeq =

∑
νihi
ht

; ηeq =
Im(Eeq)

Re(Eeq)
, (4)

where ht =
∑
hi is the total thickness of the multi-layer structure.157

2.3. Low-frequency asymptote158

The lower frequency asymptote of the equivalent bending stiffness could159

be obtained by letting ω → 0 in the Eq. (2). This results in160

A4D
3/2 − A1A4D

1/2 = 0⇒ D = Dlow = A1. (5)

One may note that A1 is equal to the sum of bending stiffness contribution161

from each layer with respect to the neutral layer position of the multi-layer162

structure. Assuming the top layer as the reference layer (denoted with the163

subscript ”ref”) with unit width, the transformed widths (bi) of the remaining164

layers are found with the relation [41]165

bi =
Ei (1− ν2ref)
Eref (1− ν2i )

. (6)

By keeping the origin of the z−axis at the midplane of the multi-layer plate,166

the neutral axis location is computed as,167

z̄ =

∑
zibihi∑
bihi

. (7)
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Finally, Dlow is computed by adding the flexural rigidities of all the layers:168

Dlow =
n∑

i=1

Ei

1− ν2i
(zui − z̄)3 − (zli − z̄)3

3
, (8)

where zi, zui and zli are the middle, upper and lower coordinates respectively169

of i−th layer along z−direction.170

In case of a symmetric sandwich panel, Dlow would reduce to the form:171

Dlow = D1

(
8 +

12h2
h1

+
6h22
h21

)
+D2, (9)

where Di represents the bending stiffness of the i−th layer. If the core172

layer of the sandwich is soft compared to the skins (or outer layers), then173

D1, D3 � D2 which gives the following form for the low-frequency asymptote174

(Dlow) of the equivalent bending stiffness (Deq) of the sandwich panel.175

Dlow = D1

(
8 +

12h2
h1

+
6h22
h21

)
(for soft core). (10)

It may be noted that this asymptotic limit can be deduced from the work176

by Boutin and Viverge [34] and Dlow can be understood as the result due177

to a phenomenon where all the layers in the sandwich panel behave as a178

monolithic plate governed by the global bending.179

2.4. High-frequency asymptote180

The high-frequency asymptote of the equivalent bending stiffness could181

be obtained by letting ω →∞ in the Eq. (2). This results in182

A3D − A1A3 + A2 = 0⇒ D = Dhigh = A1 −
A2

A3

. (11)

If the core layer of the sandwich is soft compared to the skins (or outer layers),183

then D1, D3 � D2 and this gives the following form for the high-frequency184

asymptote (Dhigh) of the equivalent bending stiffness (Deq) of the sandwich185

panel:186

Dhigh = D1 +D3. (12)

Dhigh can be understood as the result due to a phenomenon where all three187

layers in the sandwich panel slide on each other and the value of Dhigh is188

governed by the intrinsic bending of each skin layers [34].189
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2.5. Transition frequency190

Since the proposed sigmoid curve in Eq. (1) changes its sign of curvature191

at the geometric mean value (DT ) of the curve (or arithmetic mean value in192

the log-log scale (Fig. 3)),193

log10DT =
log10Dlow + log10Dhigh

2
⇒DT =

√
DlowDhigh, (13)

the transition frequency (with respect to the curvature sign of the sigmoid)194

is computed by substituting D = DT in Eq. (2) as,195

fT =
1

2π

A4
4
√
DT (
√
DT − A1)

A′3DT + A′2 − A1A′3
, (14)

where A′2 =
√
M

(
λ4 −

λ5λ6
λ3

)2

andA′3 =
√
M

(
λ2 −

λ26
λ3

)2

.196

For softer core (D1, D3 � D2), the transition frequency takes the follow-197

ing form.198

fT =
1

2π

G2

12h2

Dlow√
MDT

(
h21
D1

+
h23
D3

)
. (15)

In case of symmetric sandwich panel, the above expression can be written199

as,200

fT =
1

2π

G2h
2
1

3h2

Dlow

Dhigh

1√
MDT

. (16)

From the wavenumber analysis of the sandwich panel with a thicker core201

(h2 � h1, h3), an alternate and simpler expression for the transition fre-202

quency could be derived. From Fig. 5a and 5b, it is observed that both203

equivalent bending (Eq. (3)) and shear wavenumbers (Eq. (17)) are equal at204

the transition zone when the core thickness is greater than that of the skins.205

keqshear = ω

√
M

G2ht
. (17)

On the contrary, it is also observed that this may not be valid when the core206

thickness is lower or equal to that of the skins. For example, from Fig. 5c,207

it is seen that both equivalent bending and shear wavenumbers do not have208

the same values at the transition zone. From the parametric study, it is209

further observed that the influence of the material properties of the core is210

less significant than the influence of the core thickness to have the equal211

values of equivalent bending and shear wavenumber at the transition zone.212

This is also complying with impedance and wave speed analysis of symmetric213

sandwich panel by Kurtze and Watters [31].214
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(a)

(b) (c)

Figure 5: Equivalent bending and shear wavenumbers for a sandwich panel of infinite
extent with steel skins of 1 mm and shear layer as core with thickness (a) 10 mm (b)
3 mm (c) 0.5 mm. Influence of core thickness on the transition zone can be observed from
these plots.
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Hence, for a thicker core, the transition frequency takes the following215

simpler form.216

keqbending = keqshear ⇒

√
ωT

√
M

DT

= ωT

√
M

G2ht
⇒ f̃T =

1

2π

G2ht√
MDT

. (18)

It may be noted that, for a typical sandwich panel with a soft core, the217

deviation percentage of Eq. (18) from Eq. (15) would serve as an indicator218

on the influence of core layer in determining the transition frequency.219

2.6. Slope factor at the transition frequency220

Slope of the sigmoid curve at the transition frequency is given by (from221

Eq. (1)),222

dDeq

df

∣∣∣∣
f=fT

= R

[
DT

4fT
ln

(
Dhigh

Dlow

)]
(19)

Since analytical computation of the slope ,
dDeq

df

∣∣∣∣
f=fT

, from Guyader model223

is cumbersome, a parametric study is preferred to compute the slope factor224

(R). Following range of values are used for this parametric study (with225

symmetric case) for Young’s modulus and density of the core respectively:226

1 × 10−5Es < E2 < 0.1Es, 0.2ρs < ρ2 < 2.4ρs where Es and ρs are the227

reference values for Young’s modulus and density for the skin respectively228

and Gamma distribution is considered for each parameter. As an example,229

the mechanical properties of aluminium could be taken for the skin to decide230

the range of values for the mechanical properties of the core.231

From the parametric study, the envelope of the values of R and its mean232

value are plotted in the Fig. 6 and for the practical values of core to skins233

thickness ratio, mean curve of R is fitted into the following polynomial.234

R = 1.16− 27φ6 − 52φ5 − 189φ4 + 275φ3 + 995φ2 + 291φ

104
, (20)

where φ = log10

(
h2

h1 + h3

)
. It is to be noted that the parametric study is235

also conducted for the asymmetric case by varying the material and geometric236

parameters of the core and skin layers (for example, 0.5h1 < h3 < 3h1). The237

mean curve for R-value obtained for asymmetric case results in maximum238

deviation to be lower than 1.5% to that of the symmetric case. Therefore,239

the polynomial fit for R-value given by the Eq. (20) could be applied for240

asymmetric configurations as well.241
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Figure 6: Envelope of R and its mean against the ratio between thicknesses of core and
skins.

3. Numerical examples242

In this section, numerical examples of the proposed sigmoid model to243

compute equivalent bending stiffness (from Eq. (1)) of a sandwich panel244

and the corresponding equivalent bending wavenumber (from Eq. (3)) are245

presented. For the reasons mentioned and demonstrated by Ege et al. [30],246

Guyader model [35] is taken as a reference to compare the results of the247

proposed model.248

In Fig. 7, for a symmetric sandwich panel made of aluminium (5 mm)/soft249

core (10 mm)/aluminium (5 mm), Deq and keqbending computed from the sig-250

moid model are presented for comparison, along with the transition frequency251

computed from Eq. (15). It can be seen from these plots that, the sigmoid252

model is in high agreement with the Guyader model throughout the frequency253

range and the observed maximum error percentage is 4.9% in comparison254

with Guyader model. Furthermore, it is observed from Fig. 7b that the tran-255

sition frequency zone is controlled by the shear of the sandwich core as the256

core has double the thickness of the skin. Due to this reason, the simpler257

expression from Eq. (18) estimates the transition frequency as 237 Hz which258

is deviated around 14% from the value (276 Hz) computed by Eq. (15). One259

may note that this percentage of deviation would be further reduced if the260

thickness of the core layer is increased.261
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(a) (b)

Figure 7: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained from
the proposed sigmoid model for aluminium (5 mm)/shear layer (10 mm)/aluminium
(5 mm) symmetric sandwich panel of infinite extent. Guyader model is taken as refer-
ence to compare the proposed model.

In Fig. 8, for an asymmetric sandwich panel made of steel (1 mm)/shear262

layer (0.5 mm)/aluminium (5 mm), Deq and keqbending computed from the263

sigmoid model are presented for comparison, along with the transition fre-264

quency computed from Eq. (15). From these plots as well, it can be seen that265

the sigmoid model is in high agreement with the Guyader model throughout266

the frequency range and the observed maximum error percentage is 2.1% in267

comparison with Guyader model. Unlike the previous sandwich configura-268

tion, it is observed from Fig. 8b that the transition frequency zone is not269

controlled by the shear of the sandwich core as the core has a lesser value of270

thickness to that of the skins. This also reflects with a greater percentage271

of deviation (around 83%) for the simpler expression of transition frequency272

from Eq. (18) with that of the same from Eq. (15).273
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(a) (b)

Figure 8: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained from
the proposed sigmoid model for steel (1 mm)/shear layer (0.5 mm)/aluminium (5 mm)
asymmetric sandwich panel of infinite extent. Guyader model is taken as reference to
compare the proposed model.

4. Experimental validation and further observation274

In this section, the proposed model is compared with the experimental275

data, measured by Ege et al. [30], for the purpose of validation. A sym-276

metric sandwich plate made of steel (0.18 mm)/polymer (0.69 mm)/steel277

(0.18 mm) with in-plane dimensions 300 × 400 mm2, is considered for the278

experimental study and the data are measured through the contactless mea-279

surements (scanning laser vibrometer). Further, the CFAT (Corrected Force280

Analysis Technique) [42] methodology is used to estimate the bending stiff-281

ness of the structure. The dynamic bending stiffness can be quickly con-282

structed, through the proposed sigmoid model, using only four parameters283

from Eqs. (8), (12), (15) and (20) which are substituted in Eq. (1). Finally,284

the equivalent Young’s modulus, Eeq, is computed from Eq. (4) and compared285

against experimental data as shown in Fig. 9. A high agreement is observed286

between the estimation by equivalent plate models and the measured data287

which validates the applicability of the proposed model.288

15



Figure 9: Comparison of equivalent plate models (proposed sigmoid model and Guyader
model) with experimentally measured data of the equivalent Young’s modulus for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimensions
300× 400 mm2.

Through these numerical examples discussed in this work, on the im-289

plementation side, the proposed model has its advantage of using only five290

equations (i.e, Eqs. (1), (8), (12), (15) and (20)) whereas Guyader model291

requires to define seven constants and few other matrix definitions to com-292

pute the equivalent bending stiffness (see Appendix A). Further, in the293

Guyder model, Eq. (2) need to be solved symbolically to obtain the solutions294

and solution tracing techniques have to be applied to correctly capture the295

physically meaningful solution for Deq. Such complexities do not present in296

the proposed model and it gives a straightforward solution for Deq. On an297

additional note, although the proposed model focuses on reconstructing the298

equivalent dynamic bending stiffness values of Guyader model, it is observed299

from the Figs. 10 and 11 that the new model captures the equivalent dynamic300

loss factor of the system with the high agreement with Guyader model and301

experimental data. It may be noted that the noise in the measured data of302

Fig. 11 may be due to the instability of experimental method at low frequen-303

cies. Further, it is also observed that a slightly different Young’s modulus304

(300 MPa) is used for the polymer by Ege et al. [30] to improve their fit305

on the damping loss factor. The reader may note that, although equivalent306

16



plate models account for both bending and shear motions of the multi-layer307

structures through dynamic bending stiffness, they overestimate the equiva-308

lent loss factor at high frequencies. Nevertheless, it can be corrected by the309

ratio between the phase and group velocities of the structure [37].310

(a) (b)

Figure 10: Equivalent loss factor for (a) symmetric aluminium (5 mm)/shear
layer (10 mm)/aluminium (5 mm) (b) asymmetric steel (1 mm)/shear layer
(0.5 mm)/aluminium (5 mm) sandwich panel of infinite extent. Guyader model is taken
as reference to compare the proposed model.

Figure 11: Comparison of equivalent plate models (proposed sigmoid model and Guyader
model) with experimentally measured data of the equivalent loss factor for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimensions
300× 400 mm2.
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Considering all the observations made in this work, the proposed model311

has its following advantages over the existing models in the literature: first,312

this model can be quickly implemented compared to the other equivalent313

plate models to compute the equivalent parameters of a three-layer sandwich314

panel (symmetric and asymmetric configurations); second, since the model315

is based on the asymptotic behaviours at different frequency regimes (low,316

high and transition), it can be used to understand the physics behind the317

response of a three-layer sandwich system at those frequency regimes and to318

identify the corresponding governing parameters; third, the new model will be319

a handy tool to optimize the layer parameters to achieve the desired damping320

performance of the three-layer sandwich panel due to its straightforward321

formulation. The reader may refer to Table 2 for the summary of all the322

expressions for the proposed sigmoid model.323
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5. Concluding remarks324

A simple equivalent plate model is proposed to compute the dynamic325

equivalent properties of a three-layer sandwich panel of infinite extent and326

made of isotropic materials. Though the formalisation of the proposed model327

is based on the physical behaviours at only three frequency regimes (low, high328

and transition), described by Fahy and Gardonio [40], it is showed that the329

simple model is indeed valid for the entire frequency range. In comparison330

with other existing equivalent plate models, the new model will be easier to331

implement and would serve as a tool to quickly optimize the sandwich panel332

parameters to obtain the desired performance.333
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Appendix A. Definitions of constants used in Guyader model337

For n−layer multi-layer structure, the constants used in Guyader model338

[35] to compute equivalent bending stiffness are,339

λ1 =
n∑

i=1

Ci
11

(
h3i
12

+ hiβ
2
i

)
(A.1)

340

λ2 =
n∑

i=1

Ci
11

(
h3iα

2
i

12
+ hiγ

2
i

)
(A.2)

341

λ3 =
n∑

i=1

Ci
11hi (A.3)

342

λ4 =
n∑

i=1

Ci
11

(
h3iα

2
i

12
+ hiβiγi

)
(A.4)

343

λ5 =
n∑

i=1

Ci
11hiβi (A.5)

344

λ6 =
n∑

i=1

Ci
11hiγi (A.6)

345

λ37 =
n∑

i=1

Ci
55hiα

2
i (A.7)
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where Ci
11 =

Ei

1− ν2i
andCi

55 =
Ei

2(1 + νi)
.346

The constants αi, βi and γi are computed as follows:347

For i = 1,348 
α1

β1
γ1

 =


1
0
0

 (A.8)

For i ≥ 2,349 
αi

βi
γi

 =


Ni(2, 2)
Ni(3, 1)
Ni(3, 2)

 (A.9)

where350

Ni =

 1 0 0
0 Bi 0
Ci Fi 1

Ni−1 (A.10)

with N1 being the unit matrix and the constants Bi, Ci and Fi are defined351

as,352

Bi = Ci−1
55 /Ci

55 (A.11a)
353

Ci = −(hi−1 + hi)/2 (A.11b)
354

Fi = −(hi−1 + Aihi)/2 (A.11c)
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