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introduced and illustrated in several areas of Classical and Quantum physics based on the Least Action Principle: Mechanics,

I. INTRODUCTION

It is remarkable that the first variational problem in history to be solved was treated by a woman who was rejected by her father and that she tackled a complicated variational problem with constraints in a non-standard fashion like many other discoveries in Science that occurred serendipitously however along the harder approach. For instance, the first fabricated transistor by Bardeen, Brattain and Shockley was the Bipolar junction instead of the simpler Unipolar Field effect [START_REF] Kuhn | The structure of scientific revolutions[END_REF].

It is hence remarkable to acknowledge Dido (Alissar in Phoenician) Queen of Carthage who solved the first variational problem with constraints.

Her father, King of Tyre in Phoenicia repudiated her over her competition to power with her brother Pygmalion, assigning to her a ridiculous remote kingdom in North-Africa (currently in Tunisia) with a surface equivalent to a cow hide.

Bypassing the curse of her father, she cut a cow hide continuously in the form of a spiral string and asked herself the amazing question: What is the largest surface circumscribed by a string attached to two points, given that the string has a fixed length? In fact she already had figured a means to optimize the string length by closing the surface with a natural boundary like a coast. In the Appendix we derive the variational formulation of the Dido problem and its mathematical solution Dido found intuitively.

A. Least action principle

Physics is based on the Least Action Principle (LAP) (in fact it should be rephrased as "extreme" action). In this work we illustrate this notion with examples drawn from Mechanics, Electrostatics, Magnetostatics, Optics, Electromagnetism...

In most areas of physics, description of a problem starts with the expression of a Lagrangian L and the action is given by S = t2 t1 Ldt where t 1 , t 2 are two different instants. S should be extremized according to the rule: δS = 0 where δ is a variation and not a differential. This originates from D'Alembert principle of virtual work that means we perform a set of virtual displacements on the function S that are not real displacements as we would when a differential is required.

In addition one might say that given a function f (x), δf (x) acts on altering the function while preserving x (meaning δx = 0) in sharp contrast to the differential where f (x) is preserved and x is changed to x + dx along f (x) yielding df (x) = f (x + dx) -f (x) (see Appendix for mathematical details).

Note that virtual displacements should be performed at fixed time and be compatible with constraints present within the system (see pendulum example in next section).

Actually physics while based on LAP that could translate into least energy, least propagation time in Optics through Fermat principle (where least action is converted in least optical path or equivalently least propagation time), least surface or minimal surface (in soap bubble physics)... LAP yields Lagrange equations that can be transformed into Hamilton equations through a Legendre transformation as seen further below and the wealth of results of LAP are seen in classical as well as Quantum cases as in Quantum eigenvalues of Schrödinger equation as well as in Quantum electronic structure calculations such as DFT (Density Functional Theory), SDFT (Spin-dependent Density Functional Theory)... We review below the notion of LAP and its historical aspects and later apply variational calculus that is attached to it to several physical problems drawn from Classical as well as Quantum Physics.

A system is characterized with generalised coordinates q i that are independent and describe uniquely the behaviour of the system be it mechanical, electrical, optical, quantum... Let us consider firstly a classical system with s generalised coordinates q i of point Q in some s dimensional Euclidean space R s . Let us call Q (t) the motion in this space with components q i (t) describing the system at all times. Thus Q (t) is a curve in an s + 1 dimensional space (s for space and one for time).

A spacetime path between instants t 1 and t 2 is a curve linking Q (t 1 ) and Q (t 2 ). Consider a function L as depending on the generalised coordinates:

L (q 1 , q 2 , ..., q s ; q1 , q2 , ..., qs ; t) ≡ L Q, Q; t where qi = dqi dt .

Action S is defined from the integral over L between instants t 1 and t 2 :

S = t2 t1 L Q, Q; t dt
Thus the LAP can be phrased with the following: "All spacetime paths linking Q (t 1 ) to Q (t 2 ) are those that minimize (extremize in fact) the corresponding action".

B. Euler-Lagrange formulation

Let us consider a path infinitesimally close to Q (t 1 ) and Q (t 2 ), generalised coordinates of this path, thus the variation δS of the action between the paths are evaluated from the difference between those corresponding to q i and the close-by neighbour q i + δq i : δS = S (L (q 1 + δq 1 , ...; q1 + δ q1 ...; t)) -S (L (q 1 , ...; q1 , ...; t)) = 0 The variation should be null according to LAP nevertheless it is given by: Following the description depicted in fig. 1 x is the sole generalized coordinate. The kinetic energy is T = 1 2 m( ẋ) 2 whereas the potential energy is the spring's thus V = 1 2 kx 2 where k is the spring constant. The Lagrangian is L = T -V and Euler-Lagrange equation

δS = t2 t1 δL (
d dt ∂L ∂ ẋ - ∂L ∂x = 0 (1) 
yields: mẍ + kx = 0 which is exactly Newton equation of motion mẍ = F = -kx the restoring force.

II. APPLICATIONS TO PHYSICAL PROBLEMS A. Analytical Mechanics

The first significant development after Newton Classical Mechanics was made by D'Alembert with Virtual work, a concept targeted to transform any Dynamical Mechanical problem into a Static one by rewriting, say, Newton equation mr = F as (mr -F ) • δr = 0 where δr is a virtual displacement that ought to be compatible with constraint forces present in the system (2; 3).

Both Newton and D'Alembert versions of Mechanics suffered from the complication of accounting for contact and constraint forces that were later on completely rendered irrelevant and banned from Lagrange and Hamilton "Analytical Mechanics". m center of mass position is r = e r and its velocity ṙ = θe θ where e θ ⊥e r . Thus m angular momentum mr × ṙ = -J θy where J = m 2 and y is a unit vector along y direction perpendicular to the page. A virtual displacement δr is shown compatible with D'Alembert principle of virtual work, that is δr should be perpendicular to the constraint force f C yielding zero virtual work since δr

• f C = 0.
Let us illustrate this by applying Euler-Lagrange method to the pendulum problem depicted in fig. 2. Note that θ is the sole generalized coordinate. The kinetic energy is T = 1 2 m( ṙ) 2 with velocity ṙ = θe θ , thus T = 1 2 m 2 ( θ) 2 whereas the potential energy with origin at z = is V = mg (cos θ -1).

The Lagrangian is L = T -V and Euler-Lagrange equation are:

d dt ∂L ∂ θ - ∂L ∂θ = 0 (2) 
yields ml 2 θ + mg sin θ = 0 which is exactly the classical torque equation of motion relating angular momentum mr × ṙ = -J θy (y is a unit vector along y direction as in fig. 2) time change to the applied torque. J is the moment of inertia of mass m with respect to point O equal to m 2 and the forces F = mg + f C yields the torque r × F with respect to point O thus the torque equation of motion -J θy = r × F = -mg sin θy.

B. Electrostatics: Laplace equation

Laplace equation can be derived by minimizing electrostatic energy in 3D free space given by:

E e = 0 2 ∂V ∂x 2 + ∂V ∂y 2 + ∂V ∂z 2 dxdydz (3) 
since the electrostatic energy density in free space is given by 0

2 E 2 x + E 2 y + E 2
z and E = -grad V (x, y, z). Applying LAP to eq. 3 in the form δEe δV = 0 yields Laplace equation (see Appendix):

∆V (x, y, z) = ∂ 2 V ∂x 2 + ∂ 2 V ∂y 2 + ∂ 2 V ∂z 2 = 0 (4) 
Let us illustrate this with an example of a 2D rectangular domain with boundary conditions imposed on the potential V (x, y):

V (0, y) = V (a, y) = V (x, b) = 0, V (x, 0) = V 0 . Starting with 2D Laplace equation: ∆V (x, y) = 0 or ∂ 2 V ∂x 2 + ∂ 2 V ∂y 2 = 0 The problem is separable in x, y such that V (x, y) = X(x)Y (y) yielding X" + λ 2 X = 0 Y " -λ 2 Y = 0 with solutions: X(x) = A cos λx + B sin λx, Y (y) = C cosh λy + D sinh λy
When boundary conditions V (0, y) = V (a, y) = 0 are applied to X(x) at x = 0 and x = a we get X = B sin λx with λ = mπ a where m = 1, 2, 3....

Boundary conditions V (x, b) = 0, V (x, 0) = V 0 applied to Y (x) at y = 0 and y = b yield: Y (y) = V 0 cosh( mπ a y) - V0 tanh( mπb a ) sinh( mπ a y
). The potential finally becomes:

V (x, y) = V 0 ∞ m=1 B m sin mπ a x cosh mπ a y - sinh( mπ a y) tanh( mπb a ) (5) 
Using boundary conditions along line y = 0 we obtain:

V (x, y = 0) = V 0 ∞ m=1 B m sin mπ a x = V 0 (6)
or equivalently:

∞ m=1 B m sin mπ a x = 1 (7) 
Multiplying by sin nπ a x and integrating over [0, a] we get a null integral when m = n due to orthogonality of the terms sin mπ a x et sin nπ a x ). When m = n we have:

B n a 0 sin 2 nπ a x dx = a 0 sin nπ a x dx. Finally B n a 2 = [1-(-1) n ]
nπ/a . Thus B n = 0 for n even and B n = 4 nπ for n odd.

The potential is written as an infinite sum of Fourier components:

V (x, y) = 4V 0 π ∞ m 1 m sin mπ a x cosh mπ a y - sinh( mπ a y) tanh( mπb a ) ; m = 1, 3, 5... (8) 
In fig. 3 

V (0, y) = V (a, y) = V (x, b) = 0, V (x, 0) = V 0 .
C. Magnetostatics: Bloch domain wall Domains in a ferromagnetic material contain regions with the magnetization along a given direction, consequently total magnetostatic energy should be minimized given that many domains with different magnetizations pointing in different directions coexist.

When all these regions align along some common direction in presence of an external applied field, the total magnetization attains its saturation value M s .

Note that π A/K is the domain wall width to where A is the Heisenberg nearest neighbor exchange interaction and K the anisotropy constant. Domain wall energy is given by 4 √ AK highlighting competition between exchange and anisotropy as in the width of the domain wall.

Exchange energy density is given by ( 4) for an infinite volume to exclude shape related demagnetization energy:

A ik 2 ∂M l ∂x i ∂M l ∂x k (9) 
where Einstein summation convention is used for repeated indices i, k, l = 1...3. The uniaxial anisotropy energy is given by K ij M i M j with i, j = 1...3.

When we have a single uniform exchange constant A and x coordinate of all components of the magnetization M , i.e. M = (0, M s sin θ(x), M s cos θ(x)) (see fig. 4).

θ(x), the angle the magnetization makes with the z axis considered as the anisotropy axis. The sought profile is the function θ(x). M s is the saturation magnetization when all individual magnetic moments in the material are aligned along the same direction.

Integrating over all the volume, the total magnetostatic energy ( 5) is given by:

E m = ∞ -∞ A 2 ∂M ∂x 2 + K 2 M 2 y dx (10) 
This can be rewritten as:

E m = M 2 s 2 ∞ -∞ A dθ dx 2 + K sin 2 θ dx (11) 
The energy minimum is found by writing the variational derivative of E m with respect to θ as δEm δθ = 0 (see Appendix) yielding:

d 2 θ dx 2 -ξ sin θ cos θ = 0 (12) 
with ξ = K A . The Bloch wall profile is given by the solution to the above second-order ODE with boundary conditions:

lim x→-∞ θ(x) = π; lim x→∞ θ(x) = 0 (13) 
Actually, the Bloch wall problem is single scale and we can without performing the calculation for every ξ value, do it for one value and then change the scale accordingly. This is done as follows: The width of the domain wall is given by δ = 1/ √ ξ as explained previously. A scaling transformation to the x coordinate as: u = x/δ transforms the ODE into:

d 2 θ du 2 -sin θ cos θ = 0 (14) 
The exact analytical solution of the above equation is given by: θ(u) = 2 tan -1 (e -u ). The Lagrangian of a particle with charge e, mass m and velocity v in presence of an electric potential Φ(r, t) with associated potential energy V e = eΦ(r, t) and a magnetic vector potential A(r, t) with associated potential energy

V m = -eA • v is given by L = T -V where T = mv 2
2 is the kinetic energy and V = V e + V m the total potential energy:

L = T -V e -V m = mv 2 2 -eΦ + eA • v (15) 
Thus L depends on the generalised coordinates r, v with v = ṙ. Lagrange equation is given by:

d dt ∂L ∂v = ∂L ∂r (16) 
The derivatives of the Lagrangian are given by:

∂L ∂v = mv + eA (17) ∂L ∂r = egrad(A • v) -egradΦ (18) 
Using formula: grad(a

• b) = (a • ∇)b + (b • ∇)a + b × curla + a × curlb
where ∇ = ∂ ∂r and using (A • ∇)v = 0 as well as curlv = 0 since curlv = ∂ ∂r × v and ∂vi ∂rj = 0, ∀i, j, we finally get:

d dt (mv + eA) = e(v • ∇)a + ev × curlA -egradΦ (19) 
yielding the equation of motion (4):

F = m dv dt = -e ∂A ∂t -egradΦ + ev × curlA (20) 
that is equivalent to the Lorentz force e(E + v × B) since E = -∂A ∂t -gradΦ and B = curlA.

Let us confirm this result using Hamiltonian formalism. The Hamiltonian is obtained from the Lagrangian via the Legendre transformation (r, v) to (r, p) where p = ∂L ∂ ṙ = ∂L ∂v :

H = p • ṙ -L = p • v -L (21) 
Evaluating p = ∂L ∂v = mv + eA, the velocity is obtained as v = (p-eA) m . The Hamiltonian becomes:

H = (p -eA) 2 2m + eΦ (22) 
Another way to obtain the Hamiltonian simply is the use of Peierls substitution transforming p into p -eA such that the kinetic energy p 2 2m becomes (p-eA) 2

2m

.

Note that the Hamiltonian is given by H = T + V e and not H = T + V e + V m since the kinetic energy embodies the magnetic contribution through Peierls substitution.

Using Hamilton equations ṗ = -∂H ∂r , ṙ = ∂H ∂p , we obtain using Einstein summation rule:

ṗi = - 1 2m (2e 2 A j ∂A j ∂r i -2ep j ∂A j ∂r i
) -e ∂Φ ∂r i

ṙi

= 1 2m (2p j ∂p j ∂p i -2eA j ∂p j ∂p i ) = 1 m (p i -eA i ) ( 23 
)
Using independence of generalised coordinates ∂pj ∂pi = δ ij , we get the equation of motion after taking the time derivative of the velocity components ṙi = 1 m (p i -eA i ):

F = mr = ṗi -e Ȧi ( 24 
)
Using Hamilton equations and dAi dt = ∂Ai ∂t + ∂Ai ∂ri ṙj , we get:

F = mr = e(E + (p -eA) m × B) = e(E + v × B) (25) 
in agreement, with the Lagrangian picture, the Lorentz force where E = -∂A ∂t -gradΦ and B = curlA.

Note that the equation of motion is not obtained from the Newtonian formula F = dp dt but from F = m dv dt = mr since p = mv.

E. Ray tracing in a gradient-index atmosphere

Least action principle corresponds to Fermat's (6) dictating the extremality of time propagation along an optical path.

In high-frequency Electromagnetic waves (EMW) propagation problems, time is proportional to path, thus we have the variational problem (7; 8):

P ropagation time A → B ∝ B A n(r)ds ( 26 
)
where n(r) is the local refractive index and r is the ray position and ds is a differential displacement along the ray path, i.e. ds = |dr|, the norm of the vector dr as depicted in fig. 5.

In order to find the extremum of the above expression, introduce artificially the factor: Defining the tangent vector t = dr ds the extremum problem is expressed as:

δ B A n(r) √ t • t ds = B A δn(r) √ t • t ds + B A n(r)δ √ t • t ds (28) 
Performing the variation, we get: δn(r) = ∂n(r) ∂r • δr and δ

√ t • t = 2δt•t 2 √ t•t = δt • t since √ t • t = 1. The extremum problem is transformed into: B A ∂n(r) ∂r • δr ds + B A δt • [n(r)t] ds = 0 (29) 
This may be rewritten as: 

This can be rewritten as a system of two first order equations:

dr ds = t d(nt) ds = ∂n(r) ∂r ( 33 
)
where t is a unit vector tangent to the ray path of EMW (The geometry is depicted in Fig. 5).

They are solved with an order-4 Runge-Kutta method (9; 10) and the validity of the solution is monitored with the condition ||t|| = 1 at all times.

The refractive index function of the atmosphere is written as:

n = 1 + 10 -6 N (34) 
where N depends on the frequency used, humidity conditions and height above Earth surface. A model representing a disturbed atmosphere (Webster model) has an atmospheric refractive index function given by: (Color-online) Ray trajectories in the vertical plane with launch angle with respect to the horizontal plane of: -0.25, -0.20, -0.15, -0.10, -0.05, 0.0, 0.10, 0.20, 0.25 degrees. The atmospheric perturbation index is N = 300. + κh + ∆n π tan -1 (12.63 (h-h0) ∆h ) with κ = -39, ∆n = -20 (both in N units), h 0 =175 meters, ∆h =100 meters, the transmitter height is 100 meters and the TX-RX (transmit-receive antennas) separation is 50 kms.

N = 300. + κh + ∆n π tan -1 (12.63 (h -h 0 ) ∆h ) (35) 
where κ is the refractive index gradient with height h. The tan -1 term above is due to a disturbance located (8; 11) at a height h 0 having an extent ∆h and a refractive strength ∆n (for a normal atmosphere ∆n = 0). In fig. 6 the effect of the atmospheric disturbance is clearly seen in the alteration of the ray trajectory height with launch angle.

F. Density Functional Theory (DFT)

In order to describe a many-body system such as a Fermi liquid of interacting particles, Landau assumed the existence of a single parameter, the spatial density n(r) of quasi-particles representing the excitations in the liquid. The energy is expressed as a functional F [n(r)] leading afterwards to band-structure calculations of many spinless as well as magnetic condensed matter systems by extending DFT to SDFT (Spin DFT). Nevertheless it does not apply to 3D strongly interacting fermion system, superconducting systems and to Luttinger-Tomonaga [START_REF] Mattis | Exact solution of a many-fermion system and its associated boson field[END_REF] Fermions in 1D.

The electrostatic energy F e of the Fermi liquid is given by the Coulomb interaction based on the spatial density n(r) such that:

F e = 1 2 dr dr n(r)n(r ) |r -r | (36) 
Suppose we want to evaluate the functional derivative of F e with respect to δn(r) such that:

δF e δn(r) = δ δn(r) 1 2 dr dr" n(r )n(r") |r -r"| (37) 
This is rewritten as:

δF e δn(r) = 1 2 dr dr" δ[n(r )n(r")] δn(r) 1 |r -r"| (38) 
Using δ[n(r )n(r")] = δn(r )n(r") + n(r )δn(r") and δn(r ) δn(r") = δ(r -r") we have finally the result:

δF e δn(r) = dr n(r ) |r -r | ( 39 
)
APPENDIX A: Variational methods and Functional calculus

In this section and the next generalized coordinates are f (x) or y(x) instead of q(t) with x replacing time t. In addition y = dy dx replaces q(t).

Variational calculus with constraints

We consider the Euler-Lagrange problem with a single constraint. The problem is to find the shape of a chain attached to two points x 1 , x 2 . The chain linear mass density is σ such that a mass element is dm = σds where ds = dx 2 + dy 2 an infinitesimal element on the chain represented by curve y(x) (see fig. 7) and the corresponding potential energy is dV = gydm with origin at y = 0.

The Lagrangian contains only potential energy since the chain does not move:

L = x2 x1 gyσ dx 2 + dy 2 (A1)
The length of the chain is thus the constraint is

= x2 x1 dx 2 + dy 2 (A2)
Let us introduce a Lagrange multiplier in order to account for the length constraint thus the LAP becomes: δ(L + λ ) = 0. As discussed before one needs the variation δy to be arbitrary but the constraint = x2 x1 dx 2 + dy 2 does not allow it. Thus we introduce the Lagrange multiplier λ to release δy from being constrained, nevertheless the variational problem to deal with this situation has to account for the Lagrange multiplier turning the variational problem into the form below:

δ x2 x1 gyσ dx 2 + dy 2 + λ dx 2 + dy 2 = 0 (A3) That is δ x2 x1 [gyσ 1 + (y ) 2 + λ 1 + (y ) 2 ]dx = 0 (A4)
This is of the form δ x2 x1 f (y, y )dx = 0 with f (y, y ) = gyσ 1 + (y ) 2 + λ 1 + (y ) 2 . Since x does not appear explicitly in f (y, y ) formal integration of the Euler-Lagrange equation yields: f (y, y ) -y ∂f ∂y = C where C is a constant [START_REF] Weinstock | Calculus of Variations with applications in Physics and Engineering[END_REF].

This is equivalent to:

C 1 + (y ) 2 -σgy = λ (A5)
which is integrated ( 14) as: y(x) = C σg cosh( σg C ) + D) -λ σg . The constants C, D, λ are found from the constraints: y(x 1 ) = a, y(x 2 ) = b and =

x2 x1 1 + (y ) 2 dx. 2. Functional derivatives δF [f (x)] δf (x ) = lim →0 F [f (x) + δ(x -x )] -F [f (x)] (A6) 
Examples:

• δf (x) δf (x ) δf (x) δf (x ) = lim →0 f (x) + δ(x -x ) -f (x) = δ(x -x ) (A7) • δF [f ] δf (x) with F [f ] = f (x )dx δF [f ] δf (x) = δf (x )dx δf (x) = δ(x -x )dx = 1 (A8) • δF [f ] δf (x) with F [f ] = K(x, x )f (x )dx δF [f ] δf (x) = K(x, x ) δf (x )dx δf (x) = K(x, x )δ(x -x )dx = K(x, x) (A9) • F [f ] = df dx 2 dx δF = δ df dx 2 dx = 2 df dx δ df dx dx (A10)
This can be rewritten as:

δF = 2 df dx d dx δf dx (A11)
Using integration by parts formula, we get:

δF = 2 df dx δf dx -2δf d 2 f dx 2 dx (A12)
The first RHS term is 0 from zero boundary conditions imposed over δf , thus we have:

δF = -2δf d 2 f dx 2 dx (A13)
Finally we have: • Taylor expansion of a functional: Using δf = dδf dx we get the second term as:

δF [f ] δf (x) = -2 d 2 f dx 2 dx ( 
F [f ] = F [0] + dx 1 δF [f ] δf (x 1 ) f =0 f (x 1 ) + 1 2! dx 1 dx 2 δ 2 F [f ] δf (x 1 )δf (x 2 ) f =0 f (x 1 )f (x 2 ) + 1 3! dx 1 dx 2 dx 3 δ 3 F [f ] δf (x 1 )δf (x 2 )δf (x 3 ) f =0 f (x 1 )f (
2a 0 dx f 1 + f (x) 2 dδf dx (B2)
The integration is carried in parts as u = f √ 1+f 2 et v = δf to obtain:

[uv] 2a 0 - In order to evaluate the derivative : d dx f √ 1+f (x) 2 , we take:

U = f , V = 1 + f (x) 2 .

Fig. 1 :

 1 Fig.1: Simple harmonic oscillator with spring and mass.

Fig. 2 :

 2 Fig.2: Simple pendulum with force F = mg + f C applied to mass m yielding torque r × F with respect to point O.m center of mass position is r = e r and its velocity ṙ = θe θ where e θ ⊥e r . Thus m angular momentum mr × ṙ = -J θy where J = m 2 and y is a unit vector along y direction perpendicular to the page. A virtual displacement δr is shown compatible with D'Alembert principle of virtual work, that is δr should be perpendicular to the constraint force f C yielding zero virtual work since δr • f C = 0.

  we display the resulting potential for 50 Fourier terms:

Fig. 3 :

 3 Fig.3:(Color-online) V (x, y)/V 0 potential evaluated with 50 Fourier terms displaying required boundary conditionsV (0, y) = V (a, y) = V (x, b) = 0, V (x, 0) = V 0 .

Fig. 4 :

 4 Fig.4: (Color-online) Bloch wall solution θ profile as a function of x for various values of ξ = K A = 1, 10, 100, 1000.

Fig. 5 :

 5 Fig.5: Frenet-Serret t, n, b coordinates (resp. tangent, normal and binormal) used for ray propagation. Note that |dr| = ds

  term by parts, we end up with: equation (assuming the variation δr arbitrary except at the path end points (δr) A = (δr)

Fig. 7 :

 7 Fig.7: Catenary problem with a chain possessing a fixed length and a linear mass density σ in presence of gravitation. ds has mass dm = σds and potential energy dV = gydm with origin at y = 0.

  A14)Generalizing to 3D with f (x) → f (r) and d dx → grad = ∂ ∂r , we get:F [f ] = (gradf (r))2 dr and:δF [f ] δf (r) = -2 ∆f dr (A15)• Generalization of the Chain rule:δF [g(f )] δf (x) = dy δF [g] δg(y) g=g[f ] δg(y)[f ] δf (x) (A16)

Fig. 8 :

 8 Fig.8: (Color-online) Geometry of the problem of optimizing a surface located under a string of fixed length L attached at two fixed points and naturally bound by the sea (located to the North of the land) coast.

  δq 1 , ..., δq N ; δ q1 , ..., δ q

															N ; t) dt
			=	t2 t1	s i=1	∂L ∂q i	δq i +	s i=1	qi	∂L ∂ qi	dt
	Using δ ( qi (t)) = d(δqi(t)) dt	, we integrate by parts:								
		δS =	s i=1	∂L ∂t	δq i	t2 t1	+		t2 t1	s i=1	δq i	∂L ∂q i	-	d dt	∂L ∂ qi	dt
	Note that δq i (t 1 ) = δq i (t 2 ) = 0 since all paths originate from the same location and converge to the same final
	condition.													
	Thus, to extremize action we should have δS = 0, yielding Lagrange equations:
				d dt	∂L ∂ qi	-	∂L ∂q i	= 0; ∀i ∈ {1, ..., s}
	Let us simply illustrate the use of Euler-Lagrange equations with a very simple mechanical example: the 1D
	harmonic oscillator.													

Given the derivative dV dx = f f √ 1+f (x) 2 , we get collecting all terms:

Consequently the extremum of F + λG with respect to f given by eq. (B1) becomes:

After getting rid of the constraint with the Lagrange multiplier, δf is now arbitrary yielding:

which is equivalent to:

Integrating with respect to x yields:

Thus f (x) is a half-circle with radius λ.

From the problem geometry depicted in Fig. 8, we infer that λ = a and the string length L = πλ implying λ = L/π.

Conclusion:

A half-circle of radius a = λ = L/π maximizes an area below a string of fixed length L. After Dido solved the problem she founded Carthage (in present Tunisia). Later Hannibal took power over Carthage and declared the Punic war on Rome. Finally Hannibal was defeated and Carthage was entirely razed by the Roman commander Scipio.