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Abstract12

Computational models offer a unique setting to test strategies to mitigate the spread of in-13

fectious diseases, providing useful insights to applied public health. To be actionable, models14

need to be informed by data, which can be available at different levels of detail. While high15

resolution data describing contacts between individuals are increasingly available, data gathering16

remains challenging, especially during a health emergency. Many models thus use synthetic data17

or coarse information to evaluate intervention protocols. Here, we evaluate how the representation18

of contact data might affect the impact of various strategies in models, in the realm of COVID-1919

transmission in educational and work contexts. Starting from high resolution contact data, we use20

detailed to coarse data representations to inform a model of SARS-CoV-2 transmission and simu-21

late different mitigation strategies. We find that coarse data representations estimate a lower risk22

of super-spreading events. However, the rankings of protocols according to their efficiency or cost23

remain coherent across representations, ensuring the consistency of model findings to inform public24

health advice. Caution should be taken, however, on the quantitative estimations of those benefits25

and costs triggering the adoption of protocols, as these may depend on data representation.26

1 Introduction27

Computational models and numerical simulations are essential tools for the understanding of epidemic28

spread [1, 2], at scales ranging from global to local [3, 4, 5, 6]. They have been used in the past to29

examine pandemic scenarios, and more extensively during the current COVID-19 pandemic, to evaluate30

the potential impact of non-pharmaceutical interventions (NPIs) ranging from international travel31

restrictions [5, 4, 7, 8, 9] to lockdowns or curfews aiming at reducing global mobility and interactions32

[10, 11, 12, 13], to more targeted measures such as isolation of positive cases, contact tracing, telework,33

partial closures of schools or surveillance by regular testing [14, 15, 16, 17, 18, 19, 20, 21, 22].34

Epidemic models of infectious diseases rely both on the disease progression within hosts and on the35

description of how the disease can propagate from host to host, i.e., of the interactions between hosts.36

These interactions can be described at various levels of detail: at the coarsest level, homogeneous37

mixing [1] assumes that individuals potentially interact with others in a uniform way; contact matrices38

divide individuals into classes, and give the average duration of contacts between individuals of given39
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classes [23]; contact networks describe specifically which pairs of hosts are in contact [24, 25, 26].40

Regardless of the level of description chosen, a model needs to be informed by data in order to be41

actionable, i.e., to provide scenarios that can inform public health decisions. These data are typically42

collected by surveys or diaries [27, 28, 23, 29] or, more recently, using wearable sensors able to detect43

close-range proximity between individuals with high spatial and temporal resolution [30, 31, 32, 33, 34].44

Gathering data is however expensive, time-consuming and implies logistical challenges, which be-45

come particularly prohibitive for large-scale populations or multiple coupled settings, especially for46

high-resolution data [25, 35]. The question of how much detail should be included in computational47

models arises therefore naturally [28, 6, 36]. For instance, the estimation of superspreading events48

needs to be informed by the heterogeneity of contact patterns [37]. Coarse representations can also49

yield higher estimates of epidemic risk and attack rates of specific groups than more detailed repre-50

sentations [6, 38, 39], even if a rescaling of parameters can enhance the accuracy of models based on a51

homogeneous mixing hypothesis [40]. To overcome the limitations of coarse representations, interme-52

diate data representations informed by statistical heterogeneities of contact numbers and durations,53

and yielding a good estimation of the epidemic risk, have been put forward [38, 39].54

Although data with a limited resolution were shown to be insufficient to inform interventions at55

individual scale [41], they are still useful to inform strategies at intermediate scales [42, 43, 14, 15, 44].56

In practice however, a general issue faced by models concerns the comparison of strategies or control57

measures, in terms of both costs and benefits. In the case of COVID-19 for instance, the computational58

models mentioned above have considered a wide variety of measures (contact tracing, regular testing,59

telework, class or school closures), with each study using specific empirical or synthetic data and a60

specific representation of contacts [17, 20, 45, 46, 22, 19, 47, 48, 49, 21, 44]. However, just as the data61

representation can affect the identification of risk groups [38], it might also impact the assessment of62

different strategies. Here we tackle this issue by leveraging high-resolution data describing contacts63

between individuals in several settings (offices, schools, hospital). We consider several representations64

of the data, from fine-detailed to coarse-grained ones [38], and use them to inform an agent-based model65

of SARS-CoV-2 transmission in these settings. We simulate several strategies (reactive and regular66

testing, telework, reactive class closures) and evaluate their cost and benefit for each representation,67

highlighting differences and similarities in the outcomes.68

2 Methods69

We consider a model for SARS-CoV-2 spread in different settings, namely two schools, an office setting70

and a hospital ward. In this section, we first present the compartmental model used and the pharma-71

ceutical (vaccination) and non-pharmaceutical interventions (NPI) considered. We then describe the72

high-resolution data on interactions between individuals that we use, as well as the hierarchy of coarse-73

grained representations of the contact patterns that preserve the temporal and structural information74

of the data at different levels of detail.75

2.1 Compartmental model76

We use an agent-based model in which the progression of the disease within each host follows discrete77

states, as sketched in Figure 1a [20]. Infectious individuals can transmit the disease to susceptible78

(healthy) individuals (S), who first enter the exposed (non-infectious) state (E) and then a pre-79

symptomatic infectious state (Ip) after a time τE . The pre-symptomatic phase lasts τp, after which80

individuals either evolve into a sub-clinical infection (Isc) or manifest a clinical infection Ic, with81

respective probabilities 1−pc and pc. The infectious state leads finally to the recovered state R after a82

time τI . The disease state durations τE , τp and τI are distributed according to Gamma distributions,83

with average values and standard deviations given in Table 1 (See also Supplementary Material - SM,84

Section S1.2.4). We explore in SM Section 2.5.1 a wide range of values of the infectious period τp + τI85

as sensitivity analysis.86
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Table 1: Parameters of the compartmental model, taken from [20]

SEIR parameter value
mean (std) [days]

τE 4 (2.3)
τp 1.8 (1.8)
τI 5 (2.0)
R0 1.5, 3.0
pc 0.5
σ 1.0
rpβ , r

sc
β 0.55

rcβ 1.0

Table 2: Reduction in susceptibility σ, probability of clinical infection pc and relative infectiousness
rβ for children and adolescents, with respect to their values for adults. Taken from [20]

parameter reduction for reduction for
children adolescents

σ 50 % 25%
pc 60 % 60%
rβ 27 % 0 %

Transmission of the disease can occur upon contact between a susceptible and an infectious (Ip, Isc87

or Ic). The probability of transmission per unit of time depends on the product of the transmission88

rate β, the relative infectiousness rβ of the infectious individual and the susceptibility σ of the agent.89

The parameter β is tuned to obtain a desired specific value for the basic reproductive number R0, as90

detailed in the SM Section S1.3. The relative infectiousness rβ depends on the compartment of the91

infectious individual, with a larger rcβ value for infectious individuals in the clinical state Ic, and lower92

values rpβ and rscβ for Ip and Isc (Table 1). It also depends on the age class of the infectious, with93

adults and adolescents more infectious than children (Table 2). The susceptibility σ also depends on94

the age of the susceptible individual, with adults more susceptible than other groups (adolescents and95

children have a susceptibility reduced by respectively 25% and 50% with respect to adults, see Table96

2). Finally, the probability to develop a clinical infection is also reduced by 60% for both adolescents97

and children.98

We can further enrich the compartmental model of Figure 1a by considering that individuals can99

be vaccinated. Here we do not consider a dynamic vaccination rollout, and assume that vaccination100

coverage is fixed throughout the simulation. We also assume full vaccination of individuals. We assume101

vaccination to reduce rβ by 50%, σ by 85%, and pc by 93% We consider (in the SM, Section S2.4)102

levels of vaccination coverage of 25%, 50%, and 75%. As sensitivity analysis, we also consider a less103

effective vaccine (see SM Section S2.5.4).104

2.2 Non-pharmaceutical interventions105

We consider several interventions based on testing and isolation of cases, as well as closure of classes106

in school settings, and telework in offices.107

We use as baseline the protocol of symptomatic testing and case isolation: Clinical cases108

have a probability pD = 0.5 (pD = 0.3 for children) to take a test and then isolate for ∆Q = 7 days109

after receiving the result of the test. Tests are performed outside work/school hours. Symptomatic110
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Figure 1: Model and data sets. (a) Schematic illustration of the epidemic model. After contact
with an infectious individual, a susceptible individual can become exposed, then transition to a pre-
symptomatic state. The individual can then develop either a clinical or a sub-clinical infection before
recovering. (b,c,d,e) Weighted networks of contacts for the office, hospital, primary and high school,
respectively. For each setting, interactions are aggregated over the first data collection day. The
width of an edge is proportional to its weight, i.e., the total contact time between the individuals
connected. For each setting, the individuals belonging to the same category are represented in a
circle; the categories correspond to: departments in offices, roles in the hospital (doctors, nurses,
administrative staff and patients), classes in the school settings. (f,g,h,i) Contact matrices showing the
average daily density of links between categories respectively in the offices, hospital, primary school
and high school.
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individuals remain isolated while they wait for their test results. This protocol is used as a reference111

protocol against which all other protocols are compared.112

With symptomatic testing and case isolation always implemented, we consider the following addi-113

tional NPIs:114

• Regular testing: Non-vaccinated individuals are periodically tested. We explore weekly, semi-115

weekly (twice per week) or biweekly (once every two weeks) testing with an adherence α (fraction116

of the population accepting to get tested). Positive cases remain in isolation for ∆Q = 7 days.117

Tests are performed during work/school hours.118

• Telework: Telework is implemented only in the office setting. We explore weekly, semiweekly119

(twice per week) or biweekly (once every two weeks) telework. For each individual, we fix at120

random the days of the week in which they work remotely and have no contact with the other121

office workers.122

• Class quarantine: This protocol is implemented only in the school settings. When an individual123

is tested positive upon symptomatic testing, the whole class goes into isolation for ∆Q = 7 days.124

• Reactive testing: This protocol is implemented in the school settings and in the office setting.125

When an individual tests positive upon symptomatic testing, the non-vaccinated students of the126

same class (for schools) or the members of the same department (for offices) are tested after a127

time ∆r1 = 1 day, with an adherence α. A second test is performed after ∆r2 = 4 days. Positive128

cases are quarantined during ∆Q = 7 days.129

In the office setting, we additionally consider a protocol in which regular testing is combined with130

telework. Further details of the implementation can be found in the SM Section S1.2.131

The efficacy of a protocol is quantified in terms of relative reduction of cases with respect to the132

symptomatic testing protocol at the end of 60 simulation days. The cost is measured as the average133

number of days spent in quarantine per individual after 60 days. In addition, we measure the number134

of tests performed after 60 days. Costs and benefits are also evaluated at additional points in time135

(after 30, 90 or 120 days), see SM Section S2.5.5.136

In all scenarios, we consider self-administered antigenic tests with turnaround time ∆w = 15137

minutes [20]. We assume the tests to have a 100% specificity, and a sensitivity θ which depends on138

the infectious compartment, with θp = 0.5, θc = 0.8, and θsc = 0.7 for the pre-symptomatic, clinical139

and sub-clinical compartments respectively. As sensitivity analysis, we consider in the SM the case of140

PCR tests with higher sensitivity and longer turnaround time (see SM Section S2.5.2).141

2.3 Empirical contact data142

We use high-resolution face-to-face empirical contacts data collected using wearable sensors in four143

different settings, two workplaces and two educational contexts: an office building, an hospital, a144

primary school and a high school. The data sets are publicly available on the website http://www.145

sociopatterns.org/datasets.146

• The office data set gathers the contacts among 214 individuals, measured in an office building in147

France during two weeks in 2015 [41]. Individuals are divided in 12 departments with different148

sizes.149

• The hospital data set describes the interaction among 42 health care workers (HCWs) and 29150

patients in a hospital ward in Lyon, France, gathered during three days in 2010 [32]. HCWs are151

divided in three roles: nurses, doctors, and administrative staff.152

• The primary school data set describes the contacts among 232 children and 10 teachers in a153

primary school in Lyon, France, during two days of school activity in 2009 [42]. The school is154

composed of 5 grades, each of them comprising 2 classes, for a total of 10 classes; there is a155

teacher for each class.156
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• The high school data set describes the contacts among 324 students of "classes préparatoires" in157

Marseille, France, during one week in 2013 [50]. These classes are located in high schools and are158

specific to the French schooling system: they gather students for 2-year studies at the end of the159

standard curriculum to prepare for entry exams at specific Universities. Students are grouped160

in 9 different classes, and classes are divided in three groups, each focusing on a specialization161

(mathematics and physics; physics, chemistry, engineering studies; biology).162

Data sets are available as lists of contacts over time between anonymized individuals, with a163

classification by department (for the office setting), role (for the hospital) or class (for the school164

settings), and in terms of students/teachers (for the primary school). From the raw data, we built165

the corresponding temporal contact networks, composed of nodes representing individuals, and links166

representing empirically measured proximity contacts occurring at a given time (see SM Section S1.1.1).167

Figure 1b-e displays for each setting a graph of the links aggregated over one day for each data set168

(where the weight of a link between two individuals is given by the total contact time between them).169

The corresponding contact matrices representing the daily average density of interactions are shown170

in Figure 1f-i. In school settings and in offices, contacts occur preferentially within groups [42, 50, 41].171

2.4 Data representations172

The empirical data describes contacts at high resolution, giving temporally resolved information on173

who has been in contact with whom. These data can be aggregated into representations at different174

levels of detail, i.e., retaining only selected features of the empirical temporal contact network while175

aggregating over the others.176

A first type of representations, which we denote by individual-based representations, preserve the177

empirical structure of the contact network (who has met whom).178

• Dynamical network: Contacts are aggregated into a different weighted graph for each succes-179

sive time window of 15 minutes (The weight of a link between two nodes is given by the time in180

contact of the two corresponding individuals during this time window). This representation is181

the closest to the raw empirical data (that has a temporal resolution of 20 seconds), and will be182

considered as the reference against which the other representations will be compared.183

• Heterogeneous network: Contacts measured during the whole data collection are aggregated184

into a single weighted network. The weight of a link (i, j) is given by the average daily contact185

time between i and j.186

• In addition, we consider in the SM Section 2 the daily heterogeneous network representa-187

tion: Contacts are aggregated into a different weighted graph for each of the ddata days of data188

collection. The weight wij,d of a link (i, j) on day d is given by the total contact time registered189

between i and j during the corresponding day.190

In a second type of representations, the category-based representations, we aggregate individuals into191

categories, corresponding to departments for the office data, to roles for the hospital data, and to classes192

in the school settings (and a category for teachers in the primary school data). Individuals belonging193

to a given category are considered as a priori equivalent. For each pair of categories X and Y , we194

summarize the interactions between individuals of these categories by the list of daily contact weights195

DXY = {wij,d|i ∈ X, j ∈ Y, d ∈ [1, ddata]}. The average daily number of links between individuals of196

categories X and Y is EXY = |DXY |/ddata, and the quantity WXY =
∑
i∈X,j∈Y,d wij,d/ddata gives the197

average daily total time in contact between individuals of categories X and Y . We define the three198

following data representations based on the concept of contact matrix [38]:199

• Contact matrix: Each individual from category X is connected with all individuals of category200

Y with a weight equal to wXY = WXY /(NXNY ) (NX is the number of individuals in category201

X; for X = Y we set wXX = WXX/(NX(NX − 1)/2)). This representation only retains the202
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Table 3: Number of days ddata of the data set, number of individuals N , initial hour (ti) and final
hour (tf ) of each day, and days of activity in each week (indicated with an X) for each setting.

Setting ddata N ti tf M T W T F S S
offices 10 214 8:00 20:00 X X X X X
hospital 3 71 5:00 00:00 X X X X X X X
primary school 2 242 8:30 17:15 X X X X
high school 4 324 9:00 18:00 X X X X X

average time spent in contact between members of given categories. For instance in the hospital203

data,WNUR,ADM gives the total contact time between nurses and members of the administrative204

staff.205

• Contact matrix of distributions: This representation preserves the information about the206

density of links between categories and the statistical heterogeneity of the daily contact durations207

between pairs of individuals. First, we create for each day a random graph assigning EXY random208

links connecting individuals of categories X and Y . The weight of each link between individuals209

of categoriesX and Y is then drawn from a negative binomial distribution, obtained by fitting the210

empirical distribution DXY through a maximum likelihood procedure. In the hospital data for211

instance, for the contacts between nurses and administrative staff members, this representation212

retains the actual average daily number ENUR,ADM of links between these categories, and it also213

uses the fitted distribution of all observed daily contact times between nurses and staff members.214

• In addition, we consider in the SM Section 2 the contact matrix of bimodal distributions:215

Similarly to the contact matrix of distributions, this representation retains the information about216

the density of links between categories, but it disregards the heterogeneity of link weights. We217

thus create for each day a graph with EXY random links connecting individuals of categories X218

and Y . However, only the average of each distribution DXY is retained: each link is assigned219

a weight w̃XY = WXY /EXY . In the hospital data for instance, w̃NUR,ADM gives the average220

contact time on a link between a nurse and a member of the staff.221

We also consider for reference a very coarse representation informed only by the total daily contact222

time:223

• Fully connected: Individuals are all connected with each other. The weight of each link is224

equal to the daily contact time averaged over the whole data set w =
∑
XY WXY /(N(N −1)/2),225

where N =
∑
X NX is the total number of individuals.226

Only the dynamical network representation retains information on the temporal evolution of contact227

activity along each day. However, we inform all other representations by the office or school hours and228

by the alternation of weekdays and week-ends, as reported in Table 3: no contacts occur outside of229

these hours. In particular, no contacts occur during the week-ends in the office and school settings.230

During the nights, week-ends (and on Wednesdays for the primary school), nodes are thus isolated in231

the simulations.232

2.5 Simulation setup233

Simulations are initialized at a random time with one exposed individual chosen at random. Simu-234

lations then unfold stochastically (see SM Section S1.2), with transmission events occurring, for each235

representation, along the contacts available in that representation of the data. To simulate the dis-236

ease spreading on longer time scales than the available data (Table 3), copies of the initial data are237

repeated over time. Periodic introductions are considered to model infections from community. At238

regular intervals a susceptible individual in the considered setting is chosen at random and switched239
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to the exposed compartment (see SM Section S1.2.5). To simulate a limited adherence to testing,240

the individuals accepting to perform tests are randomly chosen at the beginning of each simulation.241

Finally, we also explore in the SM Section S2.2 the effect of initial immunity, simulated by the fact that242

a fraction of the population, randomly chosen at the start of each simulation, cannot be contaminated.243

As discussed in [38, 39], simulations using a given rate of transmission β performed on different data244

representations yield different outcomes: less detailed representations tend to yield a higher epidemic245

final size compared to the dynamical network representation [38], as they make more transmission246

paths available. Therefore, we fix a target basic reproductive number R0 in the absence of any control247

measures and starting with one random seed in an otherwise susceptible population, and calibrate for248

each representation the rate of transmission β needed to obtain the target R0 (see SM Section S1.3).249

We consider two types of simulations. On the one hand, we study the dynamics of the spreading250

process in the absence of interventions, starting from one random seed and with no introductions, and251

running simulations until no infectious individual is present in the population (Section 3.1). Results are252

averaged over 2000 simulations, except the distributions of number of secondary infections for which we253

use 6000 simulations. On the other hand, to evaluate NPIs, we consider in Section 3.2 simulations of a254

spread starting from one initial seed, with in addition bi-weekly introductions of exposed individuals.255

We simulate the spread for 60 days and compute the final epidemic size as well as the number of days256

that individuals spent in quarantine and the number of tests performed. Each result corresponds to a257

median over 2000 simulations, with bootstrapped confidence intervals (see SM Section S1.4).258

3 Results259

3.1 Unmitigated spread on different data representations260

We present here the results concerning the unmitigated spread with R0 = 3 in the office data set, and261

we show in the SM Section S2.2 the results for the other data sets and both R0 = 1.5 and R0 = 3.262

Figure 2 highlights differences and similarities between the processes taking place on different rep-263

resentations of the same data set. Figure 2a shows the distributions of the number of secondary cases264

resulting from one random seed, R0,i (the basic reproductive number R0, which takes by construction265

the same value in all cases, being the average of this distribution), obtained on the various data repre-266

sentations. All distributions span a rather wide range of values, with events reaching almost four times267

the average. However, the curves exhibit distinct shapes depending on the type of representation.268

In the category-based representations, both small and large values of R0,i have a lower probability269

than for individual-based representations, i.e., both the probability that the spread never starts and270

the probability that super-spreading events occur are lower. Fitting the distributions with negative271

binomials yields indeed values of the over-dispersion parameter k larger for the individual-based rep-272

resentations (≈ 0.5 for R0 = 3 in the office data set, see SM Section S2.2) than for the category-based273

ones (≈ 0.25 for the contact matrix representations and ≈ 0.22 for the fully connected representation,274

for R0 = 3 in the office data set, see SM Table S4).275

Another interesting difference between the two types of representations arises from the investigation276

of how the spread evolves within the population. Figure 2b shows the temporal behaviour of the fraction277

of infected individuals for the various representations. The growth is slightly faster at short times for278

individual-based representations with respect to category-based ones, saturating at earlier times and279

smaller final epidemic sizes. These differences in dynamics can be understood by examining which280

nodes are infected at early and late stages of the spread. Indeed, a spreading process on a network281

tends first to reach the most connected nodes, with a following cascade towards the less connected282

nodes, so that the average number of neighbours of newly infected nodes decreases with time [51]. Here,283

as heterogeneities concern contact times rather than numbers of neighbours [35], we show in Figure 2c284

the average daily strength < snew > (w) of individuals who are infected and become exposed during285

week w (the strength s of an individual is the average daily time in contact with other individuals).286

The cascading process from individuals with large s towards individuals with lower s is seen as a287
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decreasing trend of < snew > (w) for the individual-based representations. For the category-based288

representations, the cascade still exists, but the effect is weaker: all individuals within a category are289

equivalent, but some categories are more connected than others, so that some heterogeneity remains290

in the population. Overall, at early times the newly infected individuals are more connected in the291

individual-based representations than in category-based ones, leading to a faster spread. At later times,292

the tendency is inverted, with a slower spread on individual-based representations; moreover, as the293

remaining susceptible individuals tend to be less well connected, and as less paths are available to reach294

them, the final epidemic size is also smaller. On the other hand, simulations using the fully connected295

representation cannot show any such effect as all individuals are equivalent. An additional difference is296

observed between the heterogeneous network and the dynamical network representations: more causal297

propagation paths are present in the heterogeneous network case (where the same network of contacts298

is present every day) so that more nodes with smaller strength can be reached by the cascade and a299

larger epidemic size is obtained (as seen in Figure 2b).300

Similar results across representations are obtained considering a partially immune population (SM301

Section 2.2).302
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Figure 2: Spreading dynamics on different representations of the office data set, for R0 = 3.0, starting
from a single initial exposed seed and no initial immunity. (a) Distribution of the number of secondary
infections produced by the initial seed. (b) Temporal evolution of the median attack rate (fraction
of individuals who have been infected), starting from one single exposed individual in an otherwise
susceptible initial population. (c) Average strength (daily time in contact) of newly infected individuals
infected in a given week vs. time. For individual-based representations, a cascade from more connected
individuals to less connected ones is observed. The cascade is less pronounced for category-based
representations and absent for the fully connected case. Shaded areas correspond to the estimated
error, obtained as a bootstrapped CI (see SM Section S1.4).

3.2 Robustness of the evaluation of NPIs303

We show here the results of simulations implementing NPIs for R0 = 1.5, and present additional304

results and sensitivity analysis in the SM Sections S2.3-S2.5. We illustrate the numerical simulations305

in the Supplementary videos SV1 and SV2: each video shows a single run in the office data set, with306

the symptomatic testing protocol (SV1) and the regular testing protocol (SV2, with weekly testing307

and 75% adherence). In each video, we present side-by-side runs on three different representations of308

the data: the dynamical network, the heterogeneous network and the contact matrix of distributions.309

This shows how the links of the dynamical network change at every time step, while the heterogeneous310

network links are fixed (disappearing only during nights and weekends) and the links of the contact311

matrix of distributions representation are renewed daily.312
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We consider testing and isolation of symptomatic individuals to be the minimal strategy at play,313

and focus on a comparison of all protocols with respect to this strategy (the impact of this baseline314

intervention with respect to the absence of intervention is shown in the SM section S2.3). We present315

the results for the office and primary school data sets in Figure 3, and show the results for other data316

sets in the SM Section S2.3, as well as additional values of the protocols’ parameters. Figure 3a-b317

shows the reduction in the median epidemic size after 60 days for several protocols, with respect to318

the symptomatic testing, with protocols ranked in order of increasing reduction. Strikingly, even if the319

precise values of the efficacy of each protocol depend slightly on the data representation used in the320

simulations, the ranking of protocols remains almost always the same, both for benefits (Figure 3a,b)321

and costs (Figure 3c,d). In particular, telework in the offices is particularly efficient, as it reduces the322

number of contacts of all individuals [19], whereas reactive strategies at school are less efficient than323

regular testing, because asymptomatic transmissions mostly go undetected, as shown in [20]. These324

conclusions are reached for all the data representations. Note that the robustness of the ranking with325

respect to the representation is very strong but not perfect: if two protocols yield very close average326

efficacy values, one can seem slightly better than the other for one representation and slightly worse327

for another. Moreover, some exceptions can be observed, such as the case of the fully connected328

representation, giving a lower efficacy of the reactive testing protocol compared to biweekly regular329

testing with 25% adherence, while the other representations yield the opposite ranking (see SM Section330

S2.3.1). Figure 3e-f show that the impact of a protocol on the distributions of epidemic sizes is also331

similar across representations: here, regular testing yields a strong reduction of the probability of332

having a large epidemic size and a higher peak at small sizes. We also show in the SM Section S2.3333

how, when two protocols have similar efficacies, the resulting distributions of epidemic sizes are also334

very similar, and that this similarity holds across representations.335
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Figure 3: Evaluation of several NPIs in offices and primary school settings, for R0 = 1.5 and simulations
performed using different data representations. (a,b) Efficacy of NPIs in offices and primary school,
sorted by increasing order of efficacy in the dynamical network representation. Efficacy is defined as
the relative reduction in median size compared with symptomatic testing alone, after a period of 60
days. (c,d) Average number of days in quarantine per individual under different protocols (Same x-
axis as panels a and b). (e-f) Epidemic size distributions for the symptomatic testing protocol (dotted
lines), and for weekly regular testing with 75% adherence (continuous line).
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We illustrate these results further in Figure 4, where we investigate the question of the adherence336

to regular testing needed in offices to obtain the same efficacy as telework, for a given testing frequency337

(Figure 4a). Although the value of the median size reduction obtained by telework slightly depends338

on the data representation (one day per week of telework yields a 59± 3% and 60± 3% reduction for339

contact matrix and dynamical network representations, respectively), we estimate that regular testing340

with the same frequency becomes as efficient as telework for adherence values that remain similar across341

data representations, ranging from 84% (contact matrix representation) to 81% (dynamical network342

representation). Figure 4b considers instead the comparison between the regular testing and the class343

quarantine protocol: the estimation of the adherence needed for regular testing to become more efficient344

than class quarantine is also consistent across data representations. Another interesting point concerns345

the effect of increasing the number of tests, either by increasing adherence or by increasing frequency,346

within the regular testing protocol. First, the increase in efficacy faces diminishing returns (the efficacy347

grows less fast than proportionally to the number of tests). Second, and as already noted in [20] with348

simulations on the dynamical network representation of a school data set, increasing adherence has349

a bigger impact than an increase in frequency (at equal additional number of tests). Figure 4c-d350

illustrates these points by showing the average size reduction per test for the weekly testing protocol351

with adherence 50%, and comparing it with the additional size reduction per test obtained for twice352

the number of tests, obtained either by doubling the adherence at the same frequency, or by doubling353

the frequency at the same adherence. We show in the SM Section S2.3.3 that this property holds in354

all settings, and for all data representations.355
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Figure 4: Effect of increasing adherence and frequency in regular testing protocols. (a) Effect of the
adherence α for a given frequency (once per week or every two weeks) in the regular testing protocol for
the office data set and R0 = 1.5, compared with telework, for several data representations. Horizontal
lines correspond to the performance of telework at the same frequencies. (b) Effect of the adherence α
for a given frequency (once per week or every two weeks) in the regular testing protocol, compared with
the class quarantine protocol, for the school data set and R0 = 1.5. Horizontal lines correspond to the
class quarantine protocol. (c,d) Effect of improving adherence or frequency, for R0 = 1.5 for offices (c)
and primary school (d). We consider weekly regular testing and α = 50%, and we measure the average
size reduction (w.r.t. symptomatic testing) per test (in blue), and the additional size reduction per
additional test when doubling the adherence (in orange), and when doubling the frequency (in green).

In the SM Section S2.3.2 we examine the impact of the reproductive number R0. As also observed356

in [20, 48], the efficacy of each protocol depends in a non-monotonic way on R0. At small R0, even the357

symptomatic testing protocol leads to small epidemic sizes, so that additional protocols have a limited358

impact. At very large R0 instead, even the best protocols reach their limits and the spread cannot359

be well mitigated. These arguments hold for any data representation, and we indeed observe this360

non-monotonicity for all data representations. However, the optimal range of R0 depends on the data361

representation, with a larger value of the optimal R0 for the category-based representations. Moreover,362

the differences between the efficacy values of a given protocol by using different data representations363

become larger at large R0, with a larger estimated efficacy when using category-based representations.364

Different protocols have different efficacies but also different costs, which need to be taken into365

account in decision making processes. We thus compare in Figure 3c-d the cost of each protocol366

simulated on each data representation, computed as the average number of days spent in quarantine367

per node. As for the efficacy, the precise evaluation of the cost depends on the data representation,368

but the ranking of protocols according to their cost does not (this is also true for the cost in terms369
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of number of tests, as shown in the SM Section 2.3). In particular, regular testing at school avoids a370

large fraction of the number of days of class lost, with respect to reactive class closures. In the offices,371

regular testing is more costly than telework, as the latter simply decreases the number of contacts372

without quarantining individuals.373

Overall, Figure 3 indicates that a coherent picture of the relative efficacy and cost of different374

protocols is obtained when using different representations of the data in the numerical simulations,375

even if quantitative differences in the precise evaluation are observed. Additional results shown in376

the SM Section S2.5 indicate that these conclusions are robust with respect to changes in disease377

and protocol parameters: even if the values of the efficacy and costs of each strategy depend on the378

parameters, and the ranking of strategies can even vary (e.g., for different values of the infectious379

period), this ranking remains independent of the data representation. We also explore in the SM380

Section S2.4 the combined effect of NPIs and vaccination. Using any data representation, vaccination381

alone reduces the final epidemic size even in absence of NPIs or for the symptomatic testing protocol,382

and decreases the costs in terms of quarantines. Considering vaccination coupled to NPIs, results383

confirm the robustness of the ranking of protocols, when evaluated in terms of costs and benefits,384

highlighting the supplementary control that these strategies may have at intermediate vaccination385

coverages [20, 44].386

4 Discussion387

We used high-resolution contact data sets to build aggregated representations and evaluate how loss388

of resolution informing epidemic models can influence the evaluation of prevention and control strate-389

gies. Numerical simulations of a model for the spread of SARS-CoV-2 in educational and professional390

contexts show that detailed representations are needed to correctly account for over-dispersion of re-391

production numbers and for an accurate evaluation of the efficacy and costs of each strategy. However,392

coarse representations containing only very summarized information are good enough to rank protocols,393

and thus to provide insights on better options given the context.394

Models offer a unique opportunity to evaluate strategies for prevention and control of epidemics,395

anticipating their expected advantage and costs associated to inform public health decisions. Depend-396

ing on the context and the question to be addressed, models need to integrate an accurate description397

of the population under study and of the contacts along which disease transmission occurs. In recent398

years, the increasing availability of data sets describing contacts between individuals has made it pos-399

sible to devise models exposing the complexity of human interactions in terms of number of contacts,400

repeated contacts, frequency, duration, etc. For instance, models integrating data describing interac-401

tions with high temporal and spatial resolutions can be used to design and study measures tailored402

to specific contexts such as schools, where repetition of contacts because of friendships and structural403

organization of contacts due to classes impact the resulting epidemic dynamics [14, 47, 21, 20]. Com-404

plex models are however data hungry, might be difficult to interpret, and are more time-consuming in405

terms of development and simulations. Moreover, detailed data are not always available, and data sets406

in specific settings may provide a narrow vision of the interaction patterns occurring in those contexts407

that may be difficult to generalize. By loosing some of these specificities, aggregated representations408

may become more generally applicable.409

Our results show that some differences emerge in the disease spread simulated on different data410

representations, even when calibrating the simulations to yield the same basic reproductive numbers.411

In particular, category-based representations tend to find a lower over-dispersion of the distribution412

of the reproductive number, and could thus lead to difficulties in correctly estimating the role of413

superspreading events. This is in line with recent results highlighting the role of contact heterogeneities414

in superspreading [37]. As they ignore individual differences, these representations cannot inform415

strategies targeted towards specific individuals, they are also less able to describe the cascading of a416

spread from individuals with a high connectivity to less well connected ones [51], and differ in the417

estimation of the final epidemic size [38].418
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The picture is more complex when dealing with the evaluation of control protocols. On the one419

hand, the ranking of protocols according to their efficacy or their cost does not depend on the data420

representation. The picture of which protocol is most efficient in each context remains coherent. When421

a protocol depends on several parameters, the information on which parameter is the most important422

to act upon is also coherent across data representations (e.g., increasing adherence for regular testing423

protocols has a larger impact than increasing frequency, at given number of tests). It is even possible to424

use coarse data representations to quantify the adherence needed for the regular testing to become more425

efficient than e.g. telework or class quarantine. On the other hand, using various data representations426

can lead to quantitative differences in the precise values of benefit and cost. This can be a limitation for427

coarse representations when decisions require accuracy in the estimate of the benefit/cost – for example,428

to define a minimum benefit that would trigger the application of the measure. Such decisions should429

thus take into account an inherent uncertainty in the model outcomes due to the limited information430

contained in the data.431

We found that regular testing with high enough adherence is a very efficient strategy allowing432

to limit spread in school contexts while minimizing the number of lost school-days, confirming prior433

works [20, 52, 21]. In offices, telework is also very efficient [19]. Reactive class closure or reactive434

testing instead have limited efficacy. The robustness of such results across data representations is435

explained by the fact that these NPIs reduce the epidemic size through mechanisms that do not depend436

on the data description. Indeed, the efficacy of reactive measures is limited by the infectiousness of437

pre-symptomatic and asymptomatic individuals: for instance, due to the resulting silent propagation,438

many other classes can already have been reached by the infection when one class is closed upon the439

detection of a case at school [20]. In contrast, regular testing is a proactive approach that allows to440

detect also pre-symptomatic and asymptomatic cases. Telework on the other side simply reduces the441

time in contact, reducing the probability of contagion events whatever the data representation. Overall,442

our results support the use of even coarse representations of the interactions between individuals in443

settings such as schools or workplaces when evaluating NPIs and potentially choosing between possible444

protocols.445

Individual data such as the ones used in this study across different settings are rarely available.446

Moreover, the existing data sets are each specific to a context and potentially to the time of the447

data collection campaign. In emergency situations or during a crisis such as the current pandemic,448

gathering such data in real time encounters many challenges, and more coarse-grained representations449

are generally opted for. Indeed, summarized data is more accessible, and can be enriched by some450

robust statistical features of contact data, such as the heterogeneities in contact durations [30, 38,451

43, 35]. In particular, the division of a population into categories with e.g. different mixing patterns452

and/or schedules can be performed from limited information such as the existence of classes in a school453

or of departments in offices. A population can also be separated in groups according to an expected454

diversity of behaviours, as for instance in [44] that singles out the group of "more social" students in a455

US campus as the ones belonging to fraternities and shows that targeted testing of this category can456

be an efficient strategy.457

Our work comes with several limitations. First, the data we used describe contacts collected during458

only few days. Here, we have used the simplest method of repeating the data set in order to simulate the459

contacts in the population during an extended time, whereas contacts are not repeated identically in the460

real world. However, the simulations performed in [20] used different ways of artificially extending the461

data duration and found no differences in the results. The settings we have considered are also relatively462

small, but represent the state of the art in terms of data describing interactions between individuals, and463

have very different structural and temporal properties because of structure and activities performed.464

More work needs to be done to generate synthetic data sets at such resolution in larger settings. Second,465

we used a rather simple coupling with the community, through regular introduction of cases, as the466

data we considered do not include contacts occurring outside of the studied context. This implies that467

we do not evaluate the impact of the interventions on the community: different approaches would be468

needed for this purpose [22, 53], which however would lose resolution within each setting. Without469

going to such large-scale agent-based models, a possible improvement would be to inform the model470
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with empirical data on the contacts that individuals have with members of the community, or with471

one another outside of school. Third, we have here considered one specific infectious disease. However,472

our results are robust with respect to variations in the basic reproductive number, initial immunity,473

and the impact of vaccination. We have also explored a wide range of possible infectious periods,474

finding that it can affect the efficacy of measures and even their ranking, but that the ranking remains475

independent on data representation, at fixed infectious period (as already noted in [6, 38], the precise476

order of contacts could affect the results for very fast processes whose timescales are of the same order477

as the temporal resolution). Moreover, SARS-CoV-2 is of particular interest both practically and478

theoretically, as the pre-symptomatic and asymptomatic transmissions make it necessary to go beyond479

the usual reactive strategies and to evaluate a range of protocols.480

Our modelling approaches are agent-based, as the simulations consider distinguishable agents even481

when the data representations are category-based, which suggests two lines of further research. On the482

one hand, it would be interesting to extend our results to compartmental models. Indeed, the epidemic483

curves obtained in a free-spreading scenario by agent-based models and compartmental models can be484

mapped onto one another upon appropriate recalibration of parameters [40]. However, whether this485

remains the case when interventions are in place is an open question. On the other hand, the agent-486

based models we considered deal with the interactions between individuals but do not address the issue487

of individual heterogeneities with respect to the disease transmission (beyond the differences between488

children, adolescents, adults), such as heterogeneous infectious periods [54] or heterogeneous rates489

of transmission [55], nor with respect to potential changes of behaviour depending on the epidemic490

situation [56]. An interesting extension of this work would be to consider situations where these491

differences between individuals are correlated with their contact behaviour: to take into account such492

correlations, one would need to go beyond the category-based representations we have considered here,493

allowing heterogeneous properties within each category, in the spirit of degree-corrected stochastic494

block models [57].495
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