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a b s t r a c t

Many real-world systems can be modeled as directed networks, such as transportation,
social, collaboration or vocabulary networks. However, direction is often neglected or
even ignored in community detection algorithms. This is in particular the case on large
networks, since there are only a few scalable algorithms at the time. One of the most
used scalable algorithm, Louvain’s algorithm, is based on modularity maximization
and commonly used for directed networks by forgetting direction. We show that this
oversimplification in the modeling process may alter the quality of the results both
theoretically and practically. Moreover, we introduced in a complementary version
of this work the Directed Louvain algorithm based on directed modularity that
found various successful applications that enlighten the importance of direction when
detecting communities. We hence propose an overview of selected applications within
some of the aforementioned fields. We hope that this study will encourage researchers
to use directed modularity whenever it is relevant.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In many applications involving the study of complex systems, agents and their interactions are modeled as networks,
odes being the agents and links the communication between these agents. It is often natural to consider links as
irected to better represent reality. For instance, when dealing with online social networks with subscription or follow
elationships [1], transportation networks describing travel from a departure to a destination [2–5], biological protein-to-
rotein interaction networks with signal transduction [6], words co-occurrence networks with the precedence relation
f words [7], and so on. A common approach in all these various research fields is to use complex network analysis
ools to understand and exploit the inherent structure of such networks. In particular, community detection algorithms
re widely used to uncover the underlying mesoscopic structure, giving insights about the latent organization of the
ystem. While there is no unique formal definition of the notion of communities, the idea is to group nodes in different
arts that are densely connected, the density between parts being smaller. The never-ending growth in data to process

and the constant increase in their dimensions force researchers of the field to produce scalable algorithms to detect
such densely connected groups. To that extent, algorithms maximizing modularity have received a lot of attention due
o their efficient implementation. Modularity was designed by Newman [8] to measure the quality of a partition as a
ommunity structure. It values the existence of an edge within a community compared to the probability of having
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uch an edge (regardless of communities) between the corresponding vertices in a random model following the same
egree distribution. While modularity is known to have some limitations [9,10] and its maximization to be NP-hard [11],
lgorithms based on heuristics maximizing this measure remain to this day the most efficient on large networks [12,13].
ne of the most used algorithm maximizing modularity is the Louvain’s algorithm [12]. A major disadvantage of the
lgorithm in its most common shape is that it does not deal with directed networks. More generally, despite some work
hat was done evaluating directed modularity and its relevance [13–15], algorithms maximizing directed modularity have
eceived very little attention so far. Instead, the practical applications that need direction in their representation and
calable community detection algorithms often forget the direction to use Louvain’s algorithm [16–20]. This is actually
ven more problematic when considering weighted networks, since an undirected edge uv representing arcs (u, v) and
v, u) may need to be weighted by the sum of both arcs. Both observations can introduce a tremendous bias in the
xperiments. The use of community detection algorithms in aforementioned fields of research is well illustrated in a
ecent survey by Javed et al. [21]. However, despite their importance, directed networks are only mentioned.

ur contribution. We provide a theoretical and applied analysis to emphasize the importance of direction in complex
etworks. We focus on the scalable Directed Louvain method based on modularity optimization that offers a great
rade-off between running time and results [14]. We begin by considering related work in Section 2 and thus illustrating
he relevance of greedy modularity maximization. Then, with a theoretical analysis, we illustrate the importance of
onsidering direction when maximizing modularity by focusing on the difference that arises between the classical
ouvain’s algorithm and Directed Louvain when one forgets the direction of a given network (Section 3). We would
ike to mention that in their survey on community detection algorithms, Fortunato et al. [22] presented several metrics
n networks and stated that extensions of the metrics [in directed networks] are fairly simple to implement, though their
sefulness is unclear. Our analysis thus states the usefulness of considering direction regarding modularity and hence
egrees of vertices. Besides, we illustrate the meaningfulness of using a directed version of Louvain’s algorithm by
roviding an overview of practical applications that used the Directed Louvain algorithm [14] (Section 4). Indeed,
ince its release, this algorithm has been successfully used in dozens of practical applications (see e.g. [2–5,7,23–27]).
e focus in particular on transportation networks, which are directed by nature (Section 4) and thus well-suited for our

tudy. We finally summarize our observations in a Conclusion section.

. Related work

Existing algorithms such as Oslom [28] can deal with directed networks to detect communities and are well-known
or the quality of the communities they return. However, as shown in a complementary version of this work [14], their
omplexity is much higher than modularity-based algorithms, Oslom [28] requiring more than 10 h to compute the
ommunities of a network with 325 k arcs. Recent results by Singha et al. [29] on Intel(R) Xeon(R) E5-2687 W v3
rocessor with 32GB of RAM show that it runs up to 90 times slower than its competitors integrated in Cytoscape.
lgorithms such as Label Propagation are much more scalable with quasi-linear complexity, and Li [30] adapted this
ramework for directed graphs. However, these algorithms are very sensitive to the order of execution and may not
onverge. Another option is to use InfoMap [31] which is one of the competitors of Oslom [28] integrated in Cytoscape
hat scales efficiently according to Singha et al. [29]. Furthermore, Li [30] shows it outperforms Directed LPA algorithm
ost of the time, emphasizing that InfoMap [31] provides an interesting trade-off between running time and results.
owever, according to Singha et al. [29], the fastest algorithm remains Louvain (with an O(m) complexity, m being
he number of edges [32]), which enlightens the relevance of the Directed Louvain algorithm (introduced by the
ame set of authors in a complementary work [14]) w.r.t. computation time. Moreover, a recent study on Twitter data
ompared several approaches to detect communities in directed graphs, showing with quality measures the good results
f Directed Louvain that ranked second or third out of nine methods for each criteria [33]. For the sake of completeness,
et us mention that there exist few other approaches that optimize modularity. Kim et al. [34] described LinkRank
nd showed that optimizing Pagerank for links on a directed network is equivalent to maximize directed modularity,
hile no experiments are operated on real graphs. Yang et al. [35] used mathematical models based on integer linear
rogramming to compute a non-overlapping partition that maximizes modularity. Their approach is divided in two steps,
amely MINLP (Mixed Integer Non-linear Programming Model) and MIP (Mixed Integer Linear Programming Model). In
first step, the MINLP is solved quickly but may lead to local optimal region. To overcome this issue, a second step is
pplied that redefine non-linear constraints (one being within the objective function) into linear constraints. The authors
ention that this part is harder to solve, and they hence provide an initial network division produced by the first step.
hile this method leads to significant results compared to other existing methods such as Extremal Optimization [36]
r Fast Algorithm [8],1 the computation time needed to obtain the community partition seems really high. Indeed,
ven if the authors do not explicitly evaluate the running time, they consider networks with a small number of vertices
6500) and edges (21,000) and set the limit for the resolution of each model to 1500 s. This seems to indicate that such
method is not suitable to deal with large networks, a feature that is known to exist for Directed Louvain. Osaba

1 These two methods are designed for undirected networks and used forgetting direction, a classical methodology as mentioned in the introductory
section.
2
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t al. [37] propose nature-inspired algorithms such as evolutionary simulated annealing or water cycling algorithm. Such
lgorithms can perform very well but are usually highly dependent on their initialization parameters. Furthermore, authors
o not compare their algorithms to state-of-the-art algorithms that do not require any parameter. Finally, prior to our
mplementation of Directed Louvain [14], and to the best of our knowledge, there was no reference implementation of
ouvain’s algorithm for directed networks. The only known implementation was an unmaintained MATLAB (proprietary
nvironment) implementation [38]. Since its introduction, the properties of the C++ implementation2 we developed have
een integrated in the scikit-network python framework [39].

. Maximizing modularity in (directed) networks

odularity. A classical way of detecting communities in an undirected graph G = (V , E) is to find a partition of the
ertex set that maximizes some optimization function. One of the most famous optimization function to measure the
uality of a community partition is called modularity [40]. Roughly speaking, given a partition of the vertices, this function
alues the existence of an edge within a part compared to the probability of having an edge (regardless of parts) between
he corresponding vertices in a random model following the same degree distribution. Formally, the modularity Q of a
artition C = {C1, . . . , Cp} of G is defined as follows [40,41]:

Q =
1
2m

∑
u,v

[
Euv −

du · dv

2m

]
δ(Cu, Cv)

here m = |E| is the number of edges of G, Euv represents the existence (0 or 1) of an edge between u and v,
du = |{v ∈ V : uv ∈ E}| is the degree of vertex u, Cu is the community of u and δ is the Kronecker delta function defined
by δ(u, v) = 1 if u = v, and 0 otherwise. Notice that the definition is given for unweighted networks but can be naturally
extended when edges are weighted by some weight function ω : E → R+ by considering weighted degrees. However, for
signed networks, i.e with a weighted function ω : E → R modularity requires a more intricate definition [42,43]. For the
sake of simplicity, we henceforth consider unweighted networks. Arenas et al. [15] adapted the notion of modularity for
directed graphs, which can be motivated by the following observation by Leicht and Newman [13]: consider two vertices
u and v with u having small in-degree and large out-degree and v small out-degree and large in-degree. Then having
an arc from v to u should be considered more surprising than having an arc from u to v. Taking this into account, the
definition for the directed modularity of a partition of a directed network D = (V , A) is formulated [15] as follows:

Qd =
1
m

∑
u,v

[
Auv −

dinu · doutv

m

]
δ(Cu, Cv)

where Auv now represents the existence of an arc between u and v, and dinu = |{v ∈ V : (v, u) ∈ A}| is the in-degree of u
nd doutu = |{v ∈ V : (u, v) ∈ A}| its out-degree.

ouvain’s algorithm. We now briefly describe the behavior of Louvain’s algorithm to maximize modularity [12]. It relies
n a greedy agglomerative procedure: starting from any partition of the vertices (usually the partition into singletons),
he algorithm tries to increase the value of modularity by moving vertices from their community to any neighboring one.
n other words, the algorithm computes the gain of modularity obtained by adding vertex u to community C as follows:

∆Q =
dCu
2m

−

∑C
tot ·du
2m2

where dCu = |{v ∈ C : uv ∈ E}| denotes the degree of node u in community C and
∑C

tot the number of edges incident to
community C . The algorithm does a similar calculation to compute the gain obtained by removing vertex u from its own
community Cu and then agglomerates all computed communities into a single vertex, resulting in a weighted network
with self-loops. The procedure then carries on as long as there exists a move that improves the value of modularity, thus
leading to a hierarchical community structure.

Directed Louvain’s algorithm. The behavior of the algorithm is the same in the directed case [14], the main difference
lying in the calculation for the gain of modularity obtained by adding vertex u to community C , which can now be done
using the following3:

∆Qd =
dCu
m

−

[
doutu ·

∑C
tot,in +dinu ·

∑C
tot,out

m2

]
here

∑C
tot,in (resp.

∑C
tot,out ) denotes the number of incoming (resp. outcoming) arcs incident to community C .

2 https://github.com/nicolasdugue/DirectedLouvain.
3 Notice that Leicht and Newman [13] provide a similar analysis but with a more intricate formulation based on so-called modularity matrix.
3
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.1. Theoretical comparison between directed and undirected modularity optimization

Arenas et al. [15] provide an expression of the directed modularity QD of a directed network w.r.t. modularity of
the underlying undirected network. More precisely, given a (weighted) directed graph D = (V , A) they consider the
orresponding underlying (weighted) undirected graph G = (V , E) where uv ∈ E whenever (u, v) or (v, u) ∈ A. If both arcs
u, v) and (v, u) are present then one needs to weight the edge uv accordingly. The authors observe that the modularity
S of G is [15,44]:

QS = QD −
1

(4m)2
∑
u,v

(doutu − dinu ) · (doutv − dinv ) · δ(Cu, Cv)

nstead of comparing modularity values, we hereafter compare the conditions needed to merge communities during
he greedy agglomerative procedure when maximizing (directed) modularity in both G and D. Let C1 and C2 be two
communities uncovered. We name A1,2 the arcs between communities C1 and C2, and E1,2 the edges in the corresponding
undirected graph G. Notice that we have |E1,2| = |A1,2|.

ndirected graphs. When C1 and C2 are considered as part of the same community, |E1,2| links contribute to increase
odularity value, as shown in bold in the following formula:

Q C1∪C2 =

(∑C1
in

m
+

∑C2
in

m
+

|E1,2|

m

)

−

⎛⎝∑
u,v∈C1

du · dv

4m2 +

∑
u,v∈C2

du · dv

4m2 +

∑
u∈C1,v∈C2

du · dv

2m2

⎞⎠
hen C1 and C2 are two different communities, both terms in bold disappear:

Q C1,C2 =

(∑C1
in

m
+

∑C2
in

m

)
−

⎛⎝∑
u,v∈C1

du · dv

4m2 +

∑
u,v∈C2

du · dv

4m2

⎞⎠
Thus, if summing these bold terms results in a positive number, C1 and C2 are merged. At the contrary, if the sum

s negative, C1 and C2 are considered as two distinct communities. Hence, communities C1 and C2 are merged when the
ollowing holds:

1
m

⎛⎝|E1,2| −

∑
u∈C1,v∈C2

du · dv

2m

⎞⎠ > 0

⇔ |E1,2| >
∑

u∈C1,v∈C2

du · dv

2m
(1)

Directed graphs. A similar result holds for directed graphs, both communities C1 and C2 being merged when:

1
2m

⎛⎝|A1,2| −

∑
u∈C1,v∈C2

(
dinu · doutv + doutu · dinv

2m

)⎞⎠ > 0

⇔ |A1,2| >
∑

u∈C1,v∈C2

(
dinu · doutv + doutu · dinv

2m

)
(2)

omparison. One can compare the choices made by algorithms by replacing the vertex degree of Eq. (1) by its incoming
nd outcoming counterparts: du = (dinu + doutu ). We thus obtain the following condition for merging C1 and C2 in G:

|E1,2| >
∑
u∈C1
v∈C2

(
dinu · doutv + doutu · dinv

2m

)
  

S

+

∑
u∈C1
v∈C2

(
dinu · dinv + doutu · doutv

2m

)
  

T

In the undirected case, C1 and C2 are thus merged when |E1,2| > S + T while in the directed case, the fusion is done
hen |A1,2| > S (Eq. (2)), T being absent from the equation. Since |E1,2| = |A1,2| this may have a significative impact in the

computed communities. Notice that the term S confirms the observation made by Leicht and Newman [13]. Furthermore,
we can see that term T is not relevant: multiplying the incoming degrees of both nodes in one side and their outgoing
degrees on the other side does not allow to estimate the probability of the existence of an arc between u and v in a
random model.
4
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Table 1
Comparison between directed and undirected algorithms on directed graphs with
groundtruth communities using Normalized Mutual Information (NMI) and Adjusted
Mutual Information (AMI).

Louvain Louvain-dir ECG ECG-dir

NMI AMI NMI AMI NMI AMI NMI AMI

Pol. blogs 0.63 0.63 0.62 0.61 0.64 0.64 0.65 0.65
Eu-core 0.54 0.51 0.64 0.61 0.56 0.54 0.63 0.60
Eurosis 0.84 0.83 0.84 0.83 0.84 0.83 0.86 0.85

Table 2
Average number of communities detected for each algorithm, with |C | the
groundtruth.

|C | Louvain Louvain-dir ECG ECG-dir

Pol. blogs 2 9 14 8 10
Eu-core 42 6 18 7 10
Eurosis 12 16 22 16 20

Experiments on real-graphs. In Section 4, we will report various experiments showing the relevance of the Directed
ouvain approach. Most of these results being based on expert assessment, we first run some experiments on directed
raphs with groundtruth communities to evaluate more thoroughly the performances of Directed Louvain when
ompared to its undirected version. Poulin and Théberge [45] showed that the nondeterministic feature of Louvain’s
lgorithm can actually be used to design a more efficient algorithm based on consensus, the Ensemble Clustering for
raphs (ECG). We thus report results with the classic Louvain algorithm, Directed Louvain (Louvain-dir), ECG, and
CG-dir, the ECG algorithm we adapted to make it run with Directed Louvain. Considering that these algorithms
re nondeterministic, we report results averaged on 50 runs for each method (even ECG and ECG-dir). For one run of
CG, because it is based on consensus, we run 64 times the Louvain algorithm to uncover the consensus partition. We

consider three datasets, the Political Blogs of Adamic and Glance [46], Eurosis introduced by Van Welden [47] and Eu-core
from Snap [48].

As one can see Table 1, except for the political blogs, Directed Louvain results are always better than for the
undirected version. When considering ECG, results are always better (and even improved) when using the directed version
except for Eu-core where the Directed Louvain itself obtains the best results. Furthermore, the directed version of the
algorithm uncovers more communities (see Table 2), which is relevant in the case of Eu-core, but not consistent with the
groundtruth for the other cases. The relatively low improvements may be related to the very symmetric nature of the
graphs considered. In other cases, we may hope for better results. Unfortunately, there are only few directed networks
with groundtruth communities available. Still, as we shall see in Section 4, results with Directed Louvain are more
onsistent according to experts, in particular with transportation networks.

. Overview of applications

As mentioned in the introductory section, Directed Louvain has been successfully used in many real-life applications
since its release (see e.g. [2–5,7,23–27]. In many practical applications the underlying graph has to be directed, a feature
commonly ignored to exploit community detection algorithms (see for instance [18] where the authors use Louvain’s
algorithm to visualize scientific publications). Before focusing on applications related to transportation networks which
are naturally directed, let us mention that Directed Louvain has recently been used in the field of scientometrics, an
active and important research area. Using Directed Louvain, Pramanik et al. [49] obtained interesting observations
on the migration of researchers across scientific domains, thus opening a new research orientation. Another example of
application lies in the field of natural language processing. Gómez-Suta et al. [7] proposed a semi-automatic transformation
of Spanish texts to ontology structures as terms, concepts and relations between them. In their work, the authors use
community detection as a preprocessing step before semantic clustering [7].

In the remaining of this section we focus on applications related to transportation networks, which are directed by
nature. Such applications enlighten the relevance of Directed Louvain since in several cases the results obtained with
such an algorithm are more consistent than the ones obtained using classical Louvain’s algorithm. Since its release,
Directed Louvain found several applications in transportation networks [2–5,50]. In all cases, the method was used
as a subroutine to analyze and understand various transportation networks. As a warm-up, let us mention a project
for Stanford’s course entitled Analysis of networks, mining and learning with graphs conducted by Daniel Gardner [23]. In
this project, the author focused on home-to-work routes in the San Francisco Bay Area, the network being directed and
weighted according to the frequency of the routes. The author used both classical and directed versions of Louvain’s
algorithm on the aforementioned network, where nodes correspond to neighborhood blocks and are connected when
at least one worker commutes from one block to another. While the undirected (unweighted) version of Louvain’s
algorithm produces good results, including both weights and direction provides more insightful information. This study
5
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Fig. 1. Communities obtained with respect to destination for each Amsterdam’s district (extracted from [2]).

Table 3
Quality assessment of disjoint community detection (extracted from [3]).
Algorithms Q Number of

communities
Time
complexity

OSLOM 0.78 16 ∼ 40 min
Directed Louvain 0.78 17 ∼ 0.3 s

leads to the observation that Directed Louvain produces superior communities than the classical Louvain’s algorithm
n the underlying undirected graph, with communities corresponding to spatially contiguous neighborhoods which made
ense geographically [23]. We now provide more thoroughly other examples of applications of Directed Louvain in
ransportation networks.

ravel behavior in Amsterdam [2]. In this work, van Leeuwen et al. [2] analyze travel behavior in Amsterdam based on
ime dependent origin–destination electronic trace data. Using directed modularity, their work distinguishes spatially
onnected regions. More precisely, they make use of travel movements registered by Google on Android phones from
he Amsterdam region [2]. This results in a directed weighted network where nodes represent neighborhoods of the
msterdam regions and where arcs represent an origin–destination pair weighted according to the travel intensity across
he respective pair. All weights are normalized with respect to the largest hourly intensity (over a 6 months period).
n order to compute communities, the authors tried several heuristics such as InfoMap [31] and Oslom [28]. They
bserved that all such methods either failed to converge or returned modularity values close to 0 [2]. Due to its ability
o find spatially connected clusters with no spatial information included [12], Louvain’s algorithm was a natural choice.
owever, the authors emphasize that forgetting direction and using Louvain’s algorithm provides worse results (see
ig. 1).
They thus turned their attention to directed modularity, using the available MATLAB implementation of Scherrer [38]. As

ne can see Fig. 1, including direction in Louvain’s algorithm results in spatially close clusters, some communities having
close resemblance with the regional districts of Amsterdam. These findings are of important interest and may support
olicy makers in their decisions for future infra structural adjustments [2], thus illustrating the fundamental aspect of
irection for modularity maximization heuristics.

angzhou’s urban bus systems [3]. Wang et al. [3] conducted an analysis of the urban bus spatial network of the downtown
rea of Hangzhou, China. Networks are a natural representation of urban bus transportation systems since they comprise
us stations and routes that cover the entire urban area [3]. The routes being naturally oriented, the underlying network
ust be considered directed. The authors hence considered two distinct graphs, namely from bus station connections
nd from connections between hexagonal spatial units (with an area of 1 km2). In both cases there is an arc between two
odes whenever there exists a directed route connecting both bus stations (respectively both spatial units). Moreover,
rcs are weighted according to the number of routes existing between the corresponding nodes.
The authors then conduct a thorough analysis of such networks, and consider in particular their macroscopic

haracteristics. We focus on the spatial unit network which contains 3250 vertices and 133,539 arcs.
As mentioned by Wang et al. [3], community detection algorithms considering both directions and weights are

elatively rare. They thus used Directed Louvain as well as Oslom [28] to compute disjoint communities. The obtained
esults are reported Table 3 and illustrate that Directed Louvain outperforms Oslom [28] in this particular case, mainly
rom the time complexity viewpoint.

The authors notice that although the geospatial distances and the spatial relationships between nodes were not
onsidered in community detection algorithms (recall that arcs correspond to routes between spatial units and weights
o the numbers of such routes) the results present apparent geographical proximity [3]. Such observations have insight
nd implications for spatial planning and development of urban bus systems.
6
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opological analysis of traffic pace [5]. Another notable example is the recent work of Carmody and Sowers [5] who provide
topological analysis of traffic pace using persistent homology. The field of topological data analysis proposes methods

n order to identify objects which remain invariant under different perspectives [5]. More precisely, the authors aim at
nderstanding macroscopic topological structures of traffic networks from local data. Based on persistent homology (used
o identify features of a dataset in presence of topological noise [5]), this work aims at properly addressing the effect of
irectionality, which has been neglected so far. In order to conduct such a topological analysis, the authors first need to
efine so-called Rips complexes of directed networks, that is a family of simplicial complexes. To do so, Carmody and
owers [5] begin with a weighted directed graph modeling a road network with nodes representing intersections and
rcs and weights corresponding to roads and their respective traffic paces. Since topological data analysis depends on a
otion of nearness [5], the authors need to exploit both weights and direction to define some distance (which in this case
orrespond to shortest weighted directed paths). The persistent homology of Rips complexes associated to directed graphs
an thus be compared through a topological notion of distance. Unfortunately, the complexity of large road networks
oses some significant computational challenges [5]. To circumvent this issue, the authors first apply the Directed
ouvain algorithm to coarse-grain the network into statistically similar neighborhoods [5]. The hierarchical structure of
he algorithm is also exploited. This is used as a preprocessing step, and the authors thus emphasize that coarse-graining
traffic network using Directed Louvain preserves important topological features [5]. They successfully illustrate their
ork on both Manhattan [51] and Chengdu [52] datasets.

. Conclusion

Despite its obvious importance when modeling a complex network, direction has been commonly neglected (or
imply ignored) when detecting communities. This is in particular the case when considering algorithms that maximize
odularity [18]. However, as illustrated in the theoretical part of this work as well on the overview of applications,
irection may have a great impact on results and it hence seems really important to use frameworks that can deal with
irected networks. By providing the first stand-alone implementation of Directed Louvain we proposed a scalable
olution to circumvent this issue [14]. Even if the improvements compared to the undirected version seem modest in our
xperiments on real graphs, this may be due to the fact that these graphs are somehow symmetric. Indeed, since its release,
irected Louvain found applications in various fields and helped develop better and more interpretable analysis of
mportant problems in various fields of research [2–5,7,23–27]. We hence hope that this overview of applications as well
s the provided theoretical analysis will encourage researchers to consider direction in their work detecting communities.
o this day, direction is still commonly ignored [16–19] and it would be interesting to see if these results can be improved
sing Directed Louvain, even if modularity maximization has a resolution limit [10]. To circumvent this issue one may
ventually consider variations of modularity such as the modularity difference introduced in [53]. Notice however that in
ost cases this would have a significant impact in the computation time.
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