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Abstract: Analog integrated circuit design is widely considered a time-consuming task due to the
acute dependence of analog performance on the transistors’ and passives’ dimensions. An important
research effort has been conducted in the past decade to reduce the front-end design cycles of analog
circuits by means of various automation approaches. On the other hand, the significant progress
in high-performance computing hardware has made machine learning an attractive and accessible
solution for everyone. The objectives of this paper were: (1) to provide a comprehensive overview of
the existing state-of-the-art machine learning techniques used in analog circuit sizing and analyze
their effectiveness in achieving the desired goals; (2) to point out the remaining open challenges, as
well as the most relevant research directions to be explored. Finally, the different analog circuits on
which machine learning techniques were applied are also presented and their results discussed from
a circuit designer perspective.

Keywords: automated circuit sizing; machine learning; analog IC design; deep neural networks

1. Introduction

Since its beginning, integrated circuit (IC) technology has evolved significantly in
several aspects: First, the range of circuits has been expanding continuously to target digital
and analog, wired and wireless/RF, and low-power and medium-power applications.
Second, the complexity of the realized functions have never stopped growing, which adds
difficulties and more technical challenges for the circuit designer. Finally, the fabrication
of ICs has diversified significantly with more than a dozen different processes currently
available in bipolar, MOS, and BiCMOS technologies [1].

On the other hand, digital integrated circuits have increased in integration density and
speed, reaching several billions of transistors in one mm2 of area and achieving Tera floating
point operations per second (TFLOPS). Although they realize less complex functions than
digital circuits, analog circuits are considered more challenging since their performance is
more dependent on the dimensions of the transistors and passive components (i.e., width
and length), as well as on the intended fabrication process and bias conditions. Conse-
quently, long design cycles are the main bottleneck in analog IC design. Digital circuits
benefit from many flexible and substantially automated electronic design software tools,
in addition to pre-sized ready-to-use logic libraries that speed up their design phase [2],
whereas analog ICs still lack such a high degree of automation and rely significantly on
the experience and skills of the engineer designing the circuit. One interesting way to
alleviate this challenge is to design analog circuits by relying only on digital logic gates [3,4].
This allows the use of digital flow for analog circuit design, which drastically reduces the
design time and effort. However, the performance obtained by these approaches, especially
in terms of power consumption, are not yet as competitive as in classical analog design
approaches.
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As a matter of fact, once the system-level architecture and specifications are deter-
mined, analog design generally consists of choosing first the topologies for the basic
building blocks such as amplifiers, oscillators, or comparators and then sizing the de-
vices (transistors and passive components) of these building blocks to achieve a set of
performance specifications.

This sizing step is challenging due to three major reasons: First, there are always mul-
tiple solutions to the same problem, which are usually spread in the space of possibilities.
Second, the circuit performance is sensitive to uncontrollable random variations of the
fabrication process [1,5] and temperature. Third, analog circuits are usually difficult to
specify with a few performance metrics, which leads in some cases to more than a dozen
of specifications to meet [6–8] before a circuit designer is fully satisfied. Finally, some
specifications are dynamic in the sense that they depend on the circuit conditions [9], and
therefore, some performance metrics could be degraded during the IC life-cycle, which
renders the design even more complex.

In the past ten years, a considerable amount of research work has been conducted
to enhance the automation level of analog IC design using machine learning (ML). The
corresponding prior state-of-the-art can be split into three main categories.

1. Neural networks (NNs) of different complexities (shallow and deep) using both su-
pervised [10–18] and reinforcement [19–21] learning techniques have been proposed
in the past six years. These methods have been boosted by the progress in the devel-
opment of high-performance computing hardware and are gaining attention in the
scientific community thanks to their ability to model complex nonlinear problems [22];

2. Multi-objective optimization with several heuristic- and stochastic-assisted strategies
to explore the search space efficiently: Bayesian [23,24], particle swarm [25], the
Gaussian process [26], simulated annealing [27], and genetic algorithms [28–30].
These are simulation-based optimizations that rely on a circuit simulator to find a
solution. Although global optimization is not an ML technique in the strict sense of
the word, it remains a powerful mathematical tool for the automation of circuit design.
In contrast, older equation-based techniques as in [31] are no longer considered;

3. Hybrid methods combining global optimization and NN were proposed in [32–37].
These techniques achieve enhanced results compared to pure multi-objective opti-
mization methods, at a lower computation time.

In this work, we aimed to survey and investigate the recent progress made in the past
six years in applying ML methods to analog IC front-end design automation exclusively.
Techniques that use surrogate modeling [38] instead of SPICE-like simulators were not
included. Moreover, contributions targeting device modeling, physical back-end IC de-
sign [39], and fault testing were not included in this paper. Instead, the focus was on the
existing methods and innovations that have been proposed in the fields of supervised and
reinforcement deep learning for front-end analog IC design. The working principles of
the employed techniques, as well as some of their pros and cons are also discussed. The
contributions of this work were: (1) to provide answers on which circuits and to which
extent ML techniques were effectively used to help analog designers achieve good results;
(2) to elaborate on the existing limitations that require further investigations in the field, as
well as relevant future research directions.

There are some existing surveys in the literature that have tackled IC design automa-
tion [40–42]. Nevertheless, they differ from the proposed survey in this paper. The authors
in [42] pointed out the recent advancements in the usage of deep convolutional neural
networks and graph-based neural networks to accelerate the digital IC design workflow.
Their survey covered ML-assisted micro-architectural space exploration (from high-level
RTL design), physical back-end design (layout) for power optimization and estimation,
critical IR drops in routes, and efficient placement. Thus, they focused on the digital VLSI
flow and did not target analog circuits.

In [40], a general high-level review of ML applications was provided in multiple areas
of IC design from device modeling, front-end synthesis, and layout (back-end) design
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to fault testing. The work is well organized and provides a wide overview of the prior
state-of-the-art without focusing particularly on one area.

The work in [41] is another example of a high-level paper that surveyed a wide
spectrum of artificial intelligence (AI) methods including knowledge-based and equation-
based optimization techniques. In addition to sizing, the work covered performance
modeling, which predicts the circuit performance dependency on device-level variations
(e.g., ∆VTH , ∆gm), as well as IC yield optimization under process variation (i.e., corners).
Finally, the paper spanned two decades of analysis in its presentation and covered digital
along with analog design.

Therefore, the current work is, to the best of our knowledge, the first survey in the
literature to focus particularly on recent (post-2015) ML-assisted analog front-end IC design
automation, propose a profound level of understanding of the problem, and discuss the
details of the key contributions from prior state-of-the-art and the effectiveness of the
employed methods.

This paper is organized as follows: The existing NN-based automation approaches for
analog IC design are detailed in Section 2. Hybrid techniques are explained in Section 3.
Section 4 provides a comparative analysis of the prior state-of-the-art, while Section 5
covers the remaining open challenges and the most promising research directions to be
explored in the field.

2. NN-Based IC Design Automation Methods

In this section, we elaborate on the various approaches that exist in the literature
from the past six years to automate analog IC front-end design. Those techniques rely
exclusively on ML, namely supervised and reinforcement learning using NNs. For com-
pleteness, we also expose the papers that present hybrid techniques. The explanatory
details, effectiveness, range of applicability, and advantages of each method are given.

The use of NNs to solve complex practical problems has proven to be very efficient
in numerous fields [22]: speech recognition, medical imaging diagnosis, robotic vehicles,
natural language processing, and image recognition. For such problems, mathematical
modeling by equations is not possible because the designer cannot anticipate all situations,
nor their changes over time, and in some cases, the designer even lacks knowledge on how
to build the model itself.

The general idea of NNs is to build a model that approximates the real solution
for a problem based on limited, yet sufficient, available dataset (training phase). At the
same time, the model should be able to generalize and predict new outputs for previously
unseen data (testing phase) with sufficient accuracy. NNs are very efficient at solving
nonlinear problems due to their structure, which mimics the human brain’s activity, and
their flexibility in adjusting the model’s complexity by removing or adding layers and
neurons [43].

The idea of using NNs to assist in analog circuit design was validated in 2003 for the
case of operational amplifiers (opamp), as shown in [44]. In the coming sub-sections, we
elaborate on the use of NNs for analog IC front-end design and sizing in the two cases of
supervised and reinforcement learning methods.

2.1. Supervised Learning

The core idea here is to gather a collection of input/output examples for the studied
problem (the dataset), before trying to build an approximate solution. The efficiency of
supervised learning is usually acquired through a large and labeled training dataset, which
might be a limiting factor in problems where large labeled datasets are not available.

Previous attempts have been made to apply the NN supervised learning approach
to design basic circuits. For example, in [11], a small five-transistor inverter-based current
comparator was designed using 0.18 µm CMOS technology, using a small network with
20 neurons that was trained with just 1500 examples to predict a few device sizes. In [10],
the authors developed an NN that can re-design an existing 4 bit current-steering DAC for
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the same target specifications, but in a novel technology node (0.35 µm CMOS). Although
scalable, this solution cannot be generalized to predict sizes for new, different specifications.
The transient power consumption of a relaxation oscillator was modeled in [18] using a
60-neuron time-delay NN, to enhance the circuit’s functional model during system-level
verification. This approach was focused on power consumption and is well suited for
mixed-signal blocks, which are usually modeled in behavioral languages.

Analog ICs implementing more complex functions (e.g., amplification, filtering) re-
quire more elaborate studies, larger training datasets, and networks with higher complexi-
ties in terms of layers and neurons.

In order to discuss the existing work in the literature, which applies supervised
learning to analog IC design automation, a set of criteria for evaluating the prior state-
of-the-art should be defined. In this work, the following criteria are proposed for this
purpose:

• Dataset generation technique;
• Feature selection;
• NN complexity;
• IC fabrication process used;
• Types of circuits targeted;
• Result validation method.

2.1.1. Dataset Generation Technique

The dimensions of all transistors and passives (W, L), as well as reference currents
and voltages (Ire f , Vre f ) in an analog block are referred to, in this paper, as the design
parameters Xi, while the circuit’s performance metrics (e.g., gain, power consumption, etc.)
are called the specifications Yj. To build a model capable of predicting Xi, the initial step
in supervised learning is to generate a dataset of circuit simulation results that covers the
design space sufficiently. Analog designers must define the performance specifications,
then simulate the circuit using a computer-aided design (CAD) tool for a significant number
of possibilities of the design parameters, as shown in Figure 1. The generation of such a
dataset is a time-consuming task that involves people with a decent level of experience and
knowledge in IC CAD tools. References [13,16] used SPICE circuit simulators to generate
their datasets.

𝑋1

𝑋𝑛

𝑌1

𝑌𝑚

Performance 
Metrics

Design 
Parameters

IC CAD 
Simulator

Dataset

{𝑋1
1…𝑋𝑛

1}

{𝑋1
𝑀 …𝑋𝑛

𝑀}

{𝑌1
1…𝑌𝑚

1 }

{𝑌1
𝑀 …𝑌𝑚

𝑀}

Figure 1. Generation of the training dataset using integrated circuit CAD simulators.

To illustrate how a dataset looks, we considered a basic source-coupled differential pair,
with an active load, tail current mirror (equal-length devices), and a known-value resistor
for biasing (see Figure 2). Due to symmetry, only four transistors need to be sized (width,
length), and thus, there are seven design parameters Xi = {W1, L1, W2, L2, W3, L3, W4}.
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Figure 2. Simple CMOS differential pair amplifier with resistive biasing.

Assume for simplicity that the amplifier to be designed is specified only for the
following performance: differential voltage gain and power consumption. Consequently,
Yj = {Ad, Ic}, and the combined vector {Xi, Yj} represents a single entry in the dataset,
which is an N × 9 matrix where N is the number of examples. Table 1 shows two examples
from the dataset of the previous circuit (dimensions in µm, Ic in mA).

Table 1. An example of a dataset with Xi and Yj.

W1 L1 W2 L2 W3 L3 W4 Ad Ic

1 5.2 0.13 10 0.2 2.4 0.3 0.24 56 2.3

2 4.1 0.18 11 0.6 2.1 0.35 0.4 112 4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

On the other hand, there are no strict rules that define how many data are required for
each type of circuit. Usually, more data are helpful (since this increases the model accuracy);
nevertheless, in the case of analog IC design automation, the designer will generate only a
reasonable amount of data to keep the task practical and time manageable. For example,
20,000 examples (dataset size) were needed in [13] to train the NN and predict results for a
similar circuit that was designed in [14,15] using only 9000 and 16,600 different examples,
respectively. On the other hand, only 1600 data points were sufficient in [12]. However, the
previous numbers cannot be directly compared since the way the datasets were generated
out of circuit simulators differed significantly from one study to the other. It is hence
insightful to look into the different methods used to generate the training examples.

In [14], the authors manually adjusted, prior to simulation, all MOS transistors sizes
in order to obtain an initial valid solution that achieved proper performance (from a circuit
designer’s perspective). This initial adjustment was made by circuit designers. Only then,
the initial design parameters were slightly varied by 5%, and the different corresponding
circuits were simulated one by one to extract their performance and build the dataset.
Moreover, all transistors’ lengths L were fixed to 1 µm to reduce the design space and avoid
short-channel effects. Therefore, the dataset in [14] was too dependent on a pre-sized state
of the circuit.
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Reference [13] proposed a similar, yet different approach for dataset generation: Initial
values for the design parameters (Xi0) were first determined by a circuit designer. Next,
100 different patterns were produced by randomly varying Xi0 in the range ±30%. The
obtained circuits were then simulated, and a score was calculated to select the best circuit
that had the highest score among all. The score was defined as the ratio of higher-the-
better performance metrics in the numerator and lower-the-better in the denominator. This
process was iterated as many times as needed to build the dataset, with the best circuit
from the previous 100 patterns being the starting circuit for the generation of the next
100 patterns. The whole process is depicted in Figure 3.

𝑆𝑐𝑜𝑟𝑒1 𝑆𝑐𝑜𝑟𝑒100

𝑋10

𝑋𝑚0

Best circuit

𝑋1
1, 100

𝑋𝑚
1, 100

100 patterns
±30% 

random variation

Simulation + 
Score computation

Maximum
Score

Update Initial
Design parameters

Figure 3. Description of the training-dataset-generation approach used in [13].

This approach had better exploration capabilities than [14] thanks to its higher range
of variation (30%); nevertheless, the selection of a solution at each step was dictated by a
single score that compressed the valuable information contained in a set of performances
to a unique metric. Moreover, the dataset used in training the NN depended somewhat on
a pre-defined state of the circuit.

The authors in [15] presented two novel ideas in data generation: First, they used an
existing dataset from previous optimizations made by analog designers, which contained
optimal or quasi-optimal circuits. The motivation here was to make the training data as
accurate as possible by having in the examples only the design parameter values that
guaranteed good performance. Second, the dataset was augmented by exploiting the fact
that some specifications correspond to inequalities. When a circuit is required to have a
power consumption below a specified threshold, all solutions resulting in a lower power
consumption values were considered compliant and hence added to the set of examples.
Therefore, the authors in [15] artificially increased the dataset size by randomly generating
additional examples with the same design parameters, but lower or higher (inequality)
performance values.

In [16], the dataset was generated from a special software framework (MaxFit GA-
SPICE), based on a genetic multi-objective optimization algorithm that relied on a set of
predefined circuit equations, which were developed by analog circuit designers. Therefore,
the circuit performances for all examples had a high level of confidence and were highly
accurate, since they were produced by a previous study. Nevertheless, this approach
entirely relied on the accuracy and availability of the aforementioned software framework.
Moreover, the generated dataset was further filtered to remove any outlier values, which
were values exceeding three-times the standard deviation from the mean value (as defined
in [16]).

The work in [17] proposed an interesting approach to widen the prediction range for
the target performance, by generating a fully random dataset from a normal distribution
on all design parameters. Some restrictions were rightly added to ensure quality examples
and improve the model’s accuracy.

Table 2 summarizes the details of the different dataset-generation techniques used in
the aforementioned studies.
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Table 2. Different dataset-generation methods used in prior state-of-the-art.

Starting Point Generation Technique Dataset Size

[12] 1 random point linear sweeps 1600

[13] 1 expert design random variation ±30% 20,000

[14] 1 expert design random variation ±5% 9000

[15] existing database – 16,600

[16] – MaxFit software 10,000

[17] 1 expert design normal random distribution 40,000

2.1.2. Feature Selection

After dataset generation, the aim is to make the NN compute and converge towards a
model that predicts the design parameters Xi from the existing performance specifications
Yj. The neural network is asked, in this sense, to solve an inverse problem using a dataset
generated from a direct problem definition.

The training phase is a standard ML process that requires a proper definition of
the features or inputs from which the NN will learn. Normally, these can be the circuit
performance metrics directly taken from the CAD simulators such as differential and
common-mode gains in amplifiers, unity-gain–bandwidth, and power consumption, as
in [13,14,16]. A typical block diagram showing the input and output variables for the NN
core used for analog IC design is represented in Figure 4.

𝑋1

𝑋𝑛

𝑌1

𝑌𝑚

Performance 
Specifications

Design 
ParametersNN

Figure 4. Inputs/outputs of a neural network using the performance metrics directly as fea-
tures [14,16].

The NN features may also be expanded by nth-order polynomial combinations as
in [15], where fourteen different combinations of second-order terms were generated from
four simulated performance metrics only. In [18] also, the same feature was sampled d
times before feeding it to the NN. A two-step approach wherein three behavioral features
were considered separately for training, then recomposed into a single output in a later
stage was adopted in [12].

It is crucial that feature selection be left to experienced analog circuit designers who
know well what, how, and to what extent each performance is linked to the design parame-
ters. This step dictates how accurately the model will converge. To illustrate this, assume
that a designer is building a model for an opamp using its open-loop voltage gain Av with-
out including the performance features that are related to the high-frequency gain behavior
(phase margin and gain–bandwidth product). Thus, the predicted design may experience
instability once the opamp circuit is used in a closed-loop configuration. Another aspect
that is worth discussion is the optimal number of features that need to be included in a
dataset. From an ML perspective, more relevant features are usually welcomed since this
pushes the neural network to build a more informed model. From a circuit designer per-
spective, performance metrics have different levels of importance. For example, a passive
mixer’s total harmonic distortion (THD) might be more important to learn than its noise
performance. Nevertheless, adding relevant and uncorrelated circuit features will certainly
help the NN build a more accurate model, regardless of their importance.
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2.1.3. NN Complexity

The NN structure and complexity must be carefully defined with the optimal number
of layers and neurons per layer, to start the training process. There is no defined rule for this
choice. It may vary substantially depending on the realized circuit function, the transistor
count, the number of features (Yi) and their polynomial combinations (if any), as well as the
size of the generated dataset. In IC design automation, the first layer has a number of inputs
equal to the number of features, while the number of neurons in the output layer must
match the number of design parameters to be predicted. In the middle, hidden layers are
inserted to model complex nonlinear combinations of the circuit features, and this is where
each NN should be customized for the intended circuit. Some good guidelines in this sense
are the following: (1) for complex circuits (i.e., transistor count), a high number of neurons
is required in each Layer; (2) when the combination of several performance metrics in a
circuit contains useful information that needs to be included in the model, a high number
of layers should be used to allow the NN to learn those effects. Nevertheless, adding more
neurons and/or layers always comes with a longer training time. Table 3 summarizes the
prior state-of-the-art NN complexities implemented in supervised learning.

Table 3. Complexities in terms of number of neurons for the different NN structures used in prior
state-of-the-art.

References Inputs Hidden Layers Output Layer

[12] 3 24 + 200 1

[13] 12 Missing 7

[14] 5 15 × 1024 6

[15] 4 (expanded: 14) 120, 240, 60 8

[16] 6 1 × 9 12

[17] 5 1 × 50 9

For example, the work in [15] used three hidden layers with 120, 240, and 60 neurons,
respectively, while in [16], the authors opted for a single hidden layer with just nine neurons
because the training examples were pre-sized ones. On the other hand, and since the dataset
was randomly generated in [14], which led to widely spread values in the design space, a
much more complex network composed of 15 layers with 1024 neurons each was designed
to obtain accurate results (Table 3). This major difference stems from the simple observation
that a low-complexity NN training on highly accurate datasets can learn as good as complex
networks do on random data.

2.1.4. IC Fabrication Process

The training dataset depends heavily on the models of the transistors and passives that
were used in the CAD simulations, which differ significantly from one fabrication process
to another. Consequently, the same circuit topology with the same target specifications
will result in different sets of design parameters depending on the intended IC fabrication
technology. In [13,14], circuits were designed and verified in sub-micron CMOS processes
(<1 µm), although the exact transistor’s minimum length was not stated in the papers. On
the other hand, the authors in [15,16] worked on 0.13 µm and 0.18 µm CMOS standard
technologies, respectively. All previous work included both NMOS and PMOS transistor
types in the circuits; however, there is no available study that investigates bipolar transistors
and non-standard IC technologies such as SOI or BiCMOS.

2.1.5. Target Circuits

Analog circuits are extremely diversified currently, and they are designed to realize
a variety of functions ranging from signal amplification, filtering, shaping, and clipping,
to frequency mixing and many others. Therefore, the choice is very wide for the target
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circuit on which to apply the supervised ML approach. An intuitive decision is to opt for a
structure that is easily reused in numerous systems, such as opamps, since their theory of
operation is well known and they have the widest application range in analog systems [1].
In fact, opamps are usually specified and designed as single open-loop circuits to be reused
extensively in closed-loop systems. The automatic sizing of all the opamp components
provides a huge benefit to circuit designers since they can focus more on the optimization
of their macro-system performance and architecture decisions.

In [14,16], the same two-stage opamp circuit was used in the supervised ML approach.
It corresponds to an NMOS source-coupled pair followed by a PMOS common-source. The
biasing was realized by a simple resistor, thus exhibiting large process, supply voltage, and
temperature variations.

In [13], the authors used a very similar circuit, only replacing each transistor with
its complementary type (PMOS vs. NMOS). Both circuits are valid opamps, although
analog designers have a slight preference for the PMOS input devices, in order to minimize
noise and optimize unity-gain frequency [45]. All three previously studied circuits have
differential inputs, but single-ended output structures.

A slightly different circuit was investigated in [15], having differential outputs and
using voltage combiners for biasing.

An interesting case is the CMOS band-gap voltage reference studied in [12]. It includes
an amplifier, with additional MOS transistors, diodes, and resistors. It represents a different
type of analog circuit compared to [13,16] with the particularity of providing a supply- and
temperature-independent DC voltage.

It is worth noting that previous work focused mainly on opamps and all had moderate
circuit complexity (transistor count < 12).

2.1.6. Result Validation Method

Usually, after the NN has been trained on all examples, the standard way to validate
the results is to generate a small set of new input/output examples that are not part of the
original dataset. The new outputs, called the test-set performance metrics, are fed to the
inputs of the NN, which in turn computes the corresponding design parameters according
to the model built during the training phase. Next, those predicted NN outputs are fed
back to the circuit simulator to obtain the predicted performance metrics. At this stage, a
comparison is possible between the initial test-set performance and the predicted one (for
each metric), then the mean relative error on all test examples is calculated to quantify the
accuracy of the results. Table 4 summarizes the accuracy of the results obtained in [13,16].
A comparison among the common specifications that were computed is theoretically sound,
since all previous papers studied very similar circuits (two-stage CMOS opamp). The
prediction error for each specification is computed using Equation (1).

errj(%) = 100×Mean

[
|Yj,pred −Yj,true|

Yj,true

]
. (1)

Yj,pred is the jth performance metric estimated using a circuit simulator from the schematic
that contains the NN-predicted design parameters Xj,pred. On the other hand, Yj,true is
the jth performance metric that was initially input to the NN to make the prediction.
For example, the gain and slew rate metrics in [13] had a mean prediction error of 1.1%
and 19.1%, respectively, according to Table 4. The overall performance of a circuit is the
combined effect of each of its predefined metrics, and therefore, it is interesting to compute
both the average µe and standard deviation σe of the mean error for each performance. All
prior state-of-the-art works achieved a low average error <10%; however, from a circuit
designer’s perspective, it is mandatory that each metric reaches a low mean error, and
hence, a low σe is highly desirable. The work in [13] had the highest µe and σe computed
on 12 target specifications because the training dataset was randomly generated with
30% variation and the selection of examples was based on a single score. On the other hand,
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the work in [16] had the lowest values thanks to high-accuracy pre-sized circuit examples
provided to the NN by a special software framework.

Table 4. Prediction error statistics in % per specification in prior state-of-the-art calculated using
Equation (1).

[13] [14] [15] [16]

Power consumption 14.5 – 9.8 3.7

Gain 1.1 7.2 18.2 3.7

Gain-BW product 18.1 0.1 1.3 5.9

Phase margin 5.8 5.8 1.6 3.5

Common-mode rej. ratio 3.7 1.6 – –

Power-supply rej. ratio 2.8 7.5 – –

Slew rate 19.1 – – 2.1

Average—Std. Dev. 9.3–7.7 4.4–3.4 7.7–8 3.8–2.5

2.2. Reinforcement Learning

Reinforcement learning (RL) is a sub-field of machine learning where the agent learns
to perform a specific task by reward and penalty. Unlike supervised learning, RL does not
require a labeled dataset to train. The training is performed by making predictions and
obtaining rewards for those predictions. Rewards should be higher when the prediction is
closer to the real value and lower otherwise. The goal of the training phase is to learn a
policy that maximizes the sum of all rewards.

In IC design, RL is not extensively used yet. This section presents the previous work
of four different teams who applied RL to solve analog IC design sizing problems. Before
going into the details, it is worth pointing out the basics of RL in IC design. A vector of
performance features represents the state of a circuit. The RL agent takes this vector as the
input, executes an action by changing the design parameter values, computes the reward,
then moves to the new state if the reward has increased and explores different available
actions otherwise (Figure 5). The reward is computed from the circuit simulator results.

Circuit 
Simulator

Action = Design Parameters 𝑋𝑖

Predicted Performance
Features 𝑌𝑖

Reward 
Generator

Performance
Features 𝑌𝑖

RL AgentSpecifications

𝑊𝑘 , 𝐿𝑘

Update Action for NN

Figure 5. Reinforcement learning design flow as applied to analog IC design automation.

Reference [19] trained an RL agent for 30–40 h and achieved comparable or better
performance than human experts on several circuits. The algorithm would output at
each time step a set of values corresponding to the dimensions of the transistors and
passive components (i.e., design parameters). The circuit simulation environment would
then take those values and compute the performance metrics of the circuit. A reward
function was defined based on hard design constraints, as well as good-to-have targets. The
reward was formulated to be high if the simulated performance was close to the real values
and low otherwise. Their approach was validated on two circuits: two- and three-stage
transimpedance amplifiers in CMOS 0.18 µm. Five performance features were targeted:
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noise, gain, power consumption, AC response peaking, and bandwidth. In both circuits,
RL showed promising results, where it outperformed the human experts in the time taken
to find the optimal values.

On the other hand, a deep reinforcement learning framework was used in [20] to
find the circuit design parameters, as well as to gain knowledge of the design space.
The algorithm found relevant solutions 40-times faster than regular genetic algorithm
optimization. The approach was tested on a simple transimpedance amplifier and a
two-stage opamp in CMOS 45 nm, then on another opamp with negative-gm load in
FinFET 16 nm. On the first circuit, the algorithm converged 25-times faster than regular
algorithms and was able to generalize well with 97% correct predictions out of 500 different
target specifications. For the second and third circuits, it showed a speedup of 40-times
over regular algorithms and predicted correctly 96% of 1000 and 100% of 500 different
specifications.

The work in [21] used deep RL to predict circuit design parameters as in the previous
papers. However, the authors introduced a novel technique based on a symbolic analysis
that rapidly evaluated the values of the DC gain and phase margin (PM) without invoking
the circuit simulator. This process filtered out the most-likely bad states of the circuit and
helped reduce the number of states that needed to be sent to the simulator for accurate
performance prediction. Any set of design parameters that did not satisfy the DC gain
and PM specifications were taken out of the loop early. Their system was tested on a
folded-cascode opamp in CMOS 65 nm. The results did not show values for convergence
speedup; nevertheless, the work was able to find sizing solutions correctly.

A promising work using a graph NN (GNN) and RL was presented in [46]. The GNN
achieved good prediction in applications where understanding the dependencies between
related entities was important: chemistry (properties of molecules) and social networks
(human interactions). The authors in [46] exploited the fact that a circuit is not different from
a graph where nodes are components and edges represent connections (i.e., wires). They
implemented a convolutional GNN that processed the connection relationship between
IC components and extracted features in order to transfer knowledge from one circuit to
another. The proposed technique was capable of transferring knowledge between two
slightly different topologies when they had some common design aspects (e.g., two-stage
and three-stage amplifiers) or between two different fabrication process nodes of the
same topology (e.g., CMOS 65 nm and 45 nm). For instance, the proposed RL algorithm
learned to change the gain of a differential amplifier by tuning the dimensions of the input
pair transistors. A successful demonstration on four circuits in CMOS 0.18 µm including
amplifiers and low-dropout voltage regulators was presented. The problem was formulated
to maximize a figure of merit (FoM), which was defined as the weighted sum of several
performance metrics. Finally, porting of two sized circuits from one larger process node to
several lower ones was achieved with shorter runtime.

3. Hybrid IC Design Automation Methods

In this section, existing work where two different automation techniques were used
is presented. Since a combination of several methods leads to hybrid solutions that differ
significantly, it is difficult to define common criteria to discuss them.

Reference [33] proposed a two-step method targeting the re-design of existing analog
circuits in new contexts. A context is a group of high-level conditions that impact the
performance of an already pre-sized circuit (e.g., load, supply voltage values). The core
idea is to use first a multivariate polynomial regression to estimate the performance trade-
offs of the optimization and predict the circuit performance for the new context (which
differ only moderately from the original ones). Then, the outputs are fed to an NN that
trains itself from those updated examples to predict device sizes that correspond to the
new performance (Figure 6).
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Previously-optimized Circuits 
(Data-set)

New Context 
(supply voltage, load)

Performance Estimator
(multivariate poly. Regression optimization)

NNDesign Parameters (𝑊𝑘, 𝐿𝑘)

Performance figures 
& trade-off

Figure 6. Conceptual bloc diagram of the hybrid technique used in [33].

The previous two-step hybrid approach is a rapid tool for predicting (given a new
circuit context) the sizing solutions corresponding to a near-optimal performance trade-off.
A major aspect of this study was to benefit from existing designs and make an efficient
reuse of them to predict the circuit performance under new conditions. The method was
tested on a folded-cascode opamp with Vth-biasing designed in CMOS 0.13 µm. A re-design
was made for new load capacitor values.

In [32], the core idea was to delegate part of the NN design to a genetic algorithm (GA)
that iterated to decide on the following: the neural network type (multi-layer perceptron
or radial-basis function) and which performance metrics and which design constraints
to include as the input features during training. The GA was actually given a set of
performance specifications and some additional design constraints: the algorithm worked
by feeding consecutively several subsets of the two previous variables to the NN, thus
removing and adding input elements depending on the training and validation results.
The best combination of NN type and set of features/constraints was selected as the
optimal solution to perform the prediction of the circuit. One novelty in the proposed
technique was that the constraints on the design parameters (to be predicted) were actually
presented as additional inputs to the GA-NN combination to help reduce the level of
under-determination. This hybrid approach was tested on a wide-band low-noise amplifier
(LNA) based on a common-source cascode circuit with inductive degeneration, working at
3 GHz with input and output matching networks (see Figure 7).

𝑉𝐷𝐷

Out

Bias

Input

Matching Network

Matching 
Network

Figure 7. Schematic of the cascode low-noise amplifier circuit used in [32].

A novel learning framework based on evolutionary-algorithm optimization with an
embedded neural network was proposed in [34]. At each step of the optimization, a new
design was derived from the previous (population-based method). The NN came into
action only to assist in the sampling process that selected the best candidate design for
the next generation. Predicting whether an offspring design was better than its parent
was realized by a Bayesian NN that mimicked the circuit simulator with an additional
benefit of being faster. In fact, it did not predict the circuit performance exactly; instead, it
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only classified two design samples (parent and current offspring) and output which one
was better for each specification separately. The NN was trained progressively during the
optimization and converged to stable weights quickly, since it only helped in increasing the
sample efficiency (see Figure 8). This novel method was tested on three different circuits:
an amplifier similar to [14], a two-stage opamp with negative-gm loads, and a mixed-signal
system comprising an optical link receiver front-end. Moreover, layout parasitic effects
were included in the prediction, which constituted a clear advantage.

New Offspring
Design

Sorted 
Designs

Evolutionary
Algorithm 

optimization

Comparison

Decision

Train, Update Weights

Offspring is better

Offspring is worse  Loop again

Evolving Population 
of Designs

Figure 8. Bloc diagram of the hybrid approach adopted by [34].

A significantly different approach was used in [35], wherein the objective was to reduce
the convergence time of the evolutionary algorithm that predicted the circuits’ design
parameters. Data produced from on-going optimization iterations were used to train an
NN in parallel, in order to replace the time-consuming SPICE circuit simulators. Once the
training was complete, the simulator was no longer used, and the NN would estimate the
circuit performance rapidly, thus achieving quicker optimization results. The particularity
of this work was that a separate NN was used for each performance specification. This
hybrid method was successfully tested on a single-stage PMOS coupled-pair amplifier and
a folded-cascode opamp with cascode loads and Vth biasing designed in 0.13 µm CMOS
while achieving an ∼65% reduction in the execution time.

A time-efficient approach based on a genetic algorithm (GA) global optimization
was adopted in [37]. SPICE simulations were first used with the GA to cover the large
space encountered in analog circuits, while a local minimum search for neighboring design
regions was computed using a trained NN. The latter was progressively trained during the
GA process, and once completed, it replaced the time-consuming circuit simulators for local
regions only. The method was tested on a two-stage rail-to-rail opamp in CMOS 0.18 µm
with a fifth-order Chebyshev active filter achieving <2% average error and a four-times
speed improvement compared to classic evolutionary algorithms.

With the objective of decreasing the computation cost, the authors in [36] used a
Bayesian neural network (BNN) to model multiple circuit specifications by means of a
novel training method (differential variational inference). The trained BNN was then
introduced within a Bayesian optimization framework to capture the performance trade-off
efficiently. The method was tested on a charge-pump circuit and a three-stage PMOS input
device folded-cascode amplifier in 55 nm CMOS technology.

4. Discussion and Analysis
4.1. Analysis of the Previous Learning Approaches

Tables 5 and 6 provide a comparative summary of the studied prior state-of-the-art.
Fabrication technology, input features, output design parameters, dataset size, and NN
complexity were among the considered criteria. Another interesting aspect was the overall
design time, which quantifies how long an ML agent needs to complete a circuit design as
compared to humans. This time can be split into two parts: the dataset-generation and the
NN training times. When applicable and available, these metrics are included in Table 5
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to provide some insights into the required design time. However, the hardware platform
used for computation was rarely stated, which somewhat limits the conclusions. It is worth
noting also that a straightforward estimation of the reliability of the presented techniques
was difficult to obtain since each work had a different circuit, fabrication process, dataset
size, and design parameters. Nevertheless, several important aspects of the comparison are
presented in the coming paragraphs.

Usually, hybrid techniques rely on neural networks to assist the main optimization
algorithm that actually performs the circuit-sizing task, either by reducing the operation
time (replace the circuit simulator) or by helping to decide which exploration path to
undertake. The software framework that hosts the whole process is hence complex, since a
circuit simulator, a neural network, and a global optimization algorithm are required to
communicate at the same time. In contrast, supervised and reinforcement methods rely
on the NN to achieve the objective, and therefore, the framework is simpler to build, with
the circuit simulator feeding its results to the NN in one step (supervised) or progressively
(reinforcement). Moreover, the network complexity varies among the existing solutions for
the same circuit being designed (Tables 5 and 6).

The number of different circuit simulations that should be performed in the analog IC
design (e.g., DC, AC, transient) is a bottleneck for the computation time. Some simulations
are particularly time consuming such as the transient, while others are time efficient such
as AC. Therefore, adding a new performance might lead to excessive simulation time and
should be considered upfront during the problem definition. Circuits that require heavy
transient simulations to be characterized are not well adapted to hybrid techniques that
employ evolutionary algorithms, which are known to take an excessive time to converge.
This point is worth considering when choosing between NN-based or hybrid techniques
for a particular circuit.

Table 5. Comparative summary of supervised and reinforcement learning techniques in the prior
state-of-the-art.

[12] [13] [14] [15] [16] [17] [19] [20] [21]

ML
Method

superv. superv. superv. superv. superv. superv. reinforc. reinforc. reinforc.

Circuit bandgap
reference

2-stage
opamp

2-stage
opamp

volt. combi.
diff. opamp

2-stage
opamp

2-stage
opamp

3-stage
opamp

2-stage
opamp-gm

fold.-casc.
opamp

Fabrication
technology CMOS

missing
CMOS
<1 µm

CMOS
<1 µm

CMOS
0.13 µm

CMOS
0.18 µm

CMOS
0.18 µm

CMOS
0.18 µm

CMOS
45 nm

CMOS
65 nm

Perform.
features

3 12 5 4 (exp. 14) 6 5 6 4 4

Design
parameters

1 7 6 8 12 9 17 11 16

NN
complexity

24 + 200
+ 1

100 + 200
+ 7

15 × 1024
+ 6

120 + 240 + 60
+ 8

1 × 9
+ 12

50
+ 9

missing 3 × 50
+ 11

3 hidden
layers

Average
error (%)

0.25 7.8 4.4 7.7 3.7 <10 missing 3.7 missing

Dataset
size

∼1600 20,000 9000 16,600 10,000 40,000 N/A N/A N/A

Generation
time missing 28 h missing 0 (existing) 3.6 h 16 h N/A N/A N/A

Training
time

missing 19 min 18 min 1 h 1 h 30 min 30 h 1.6 h missing
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Table 6. Comparative summary of hybrid techniques in the prior state-of-the-art.

[32] [33] [34] [35] [36] [37]

Circuit cascode LNA
induc. deg.

fold.-casc.
opamp Vth-bias

2-stage
opamp-gm

fold.-casc.
opamp Vth-bias

charge-pump and
fold.-casc. opamp

rail-to-rail opamp
5th-ord. filter

Fabrication
technology

CMOS
0.18 µm

CMOS
0.13 µm

CMOS
45 nm

CMOS
0.13 µm

CMOS
40/55 nm

CMOS
0.18/0.13 µm

Perform.
features

6 5 (expanded 20) 3 4 6/3 4/3

Design
parameters

10 19 11 19 16/13 9/8

NN
complexity

17 + 10 1 × 100 + 19 5 × 20 + 3 missing (25 + 10 + 13)/(10 + 13) (8 + 9)/(16 + 3)

Average
error (%)

6.6 ∼1 missing 0.4 missing 0.5/0.8

The origin and reliability of a training dataset are crucial when using supervised
learning in analog circuit design automation. How are the examples gathered? To what
extent do they represent the full reality of the circuit? Answers to these questions determine
the generalization capability of the obtained model, which guarantees that for new target
specifications, we will obtain a set of relevant design parameters.

Some of the supervised learning techniques as in [13,14] constructed their dataset
by randomly varying the design parameters in a close region around an initial solution
corresponding to a pre-sized circuit with good performance. Thus, the NN model is highly
correlated with this region within the overall design space, which raises questions on how
good the predictions will be for solutions that are geometrically far in the design space
from the initial one. Therefore, such a generation method creates local prediction models
that are acceptable only if the intended application limits the circuit performance to a small
region of the design space (opamps targeting audio applications always have low GBW
values).

On the other hand, in [15,16], the dataset was collected from an existing database
of solutions and, hence, depended totally on the availability and the validity of such an
optimized set of examples. The dataset size may not be sufficient, nor is it possible to obtain
on a wide range of circuits and fabrication technologies. Consequently, the computed
model will have moderate generalization capability. To overcome this limitation, we
recommend building a fully random dataset in order to cover the widest region in the
overall design space.

On the other hand, hybrid methods rely on the wide exploration capability of the
global optimization algorithms they employ (e.g., genetic) to cover the majority of the
design space. Nevertheless, this comes at the cost of excessive simulation time and possible
convergence issues.

A classification of all the studied machine learning techniques used in analog IC design
in this paper is presented in Figure 9.

The supervised learning technique is further divided into three sub-categories depend-
ing on how the dataset is being generated: using an existing pre-sized circuit database, by
random generation in a close region around a predefined initial solution, or from a global
normal distribution. On the other hand, hybrid techniques employ NNs for different pur-
poses: replace the time-consuming IC simulators that slow down the global optimization or
assist the algorithm itself by sampling or search exploration speedup. Finally, some hybrid
methods use the genetic algorithm to design the optimal NN structure and to select the
features for training.
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ML Techniques 
for IC Design

Use of Exiting 
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Supervised Learning Reinforcement Learning Hybrid Learning

Close region 
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IC Simulator 
Replacement

Evolutionary Algorithm 
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NN architecture 
design

Global Random 
Generation

[13][14][15][16] [35][37] [32]

[34][17]

[19][20][21]

[36]

Figure 9. Classification of all the studied techniques in the prior state-of-the-art.

Figure 10 shows the different exploration capabilities of the supervised learning and
hybrid techniques studied in this work. Without loss of generality, a simplified two-
dimensional representation of the design space was adopted. The wider the exploration
within the design space, the higher the generalization of the computed model will be.
Ideally, fully random dataset generation would cover the whole white space in Figure 10 by
sampling in multiple small regions spread over the entire design space, which is practically
very difficult. Some randomized methods start by sampling over the whole design space
before zooming-in on promising areas, which would help address this issue.

Bad perf.

Bad perf.

Bad perf.

Supervised
(Random variation)

Hybrid techniques
(Evolu. Algorithm)

Supervised
(Existing Database)

Exploration capability

Overall Design Space

Initial pre-sized Design

[13]

[14]

[15] [16]
[34] [35] 
[36][37]

Figure 10. Exploration and generalization capabilities of all the studied techniques in the prior
state-of-the-art.

4.2. Analysis of Circuit Features

In analog circuit design, performance metrics are rarely equivalent in importance, nor
are they similar in definition. For instance, an opamp’s phase margin (PM) is linked to its
stability, and thus, no ML method has to match the specifications exactly to make the circuit
stable. A higher PM than the target fixed by the circuit designer is highly desirable. On the
other hand, a low-noise amplifier’s (LNA) gain specification must be met by equality, since
lower gain values create poor noise behavior, whereas higher values result in bad linearity
performance. Therefore, it is recommended to take into consideration this point during an
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ML algorithm’s implementation, by classifying the metrics into three types: lower, higher
and hard feature. For example, in an LNA, the voltage gain must be processed as a hard
feature, while its power consumption as a lower feature, meaning that reaching below
the target is acceptable. Such domain-specific insights can be incorporated dynamically
using logically inferred rules, as in [47] or manually by domain experts, as is the case in the
medical field.

In some cases, it is relevant to define two ways to measure the same performance
depending on the input signal’s magnitude. For instance, the linearity of a voltage buffer
should be measured by computing the full-scale (FS) THD in addition to the IIP3 figure.
Thus, both metrics should be included in the training dataset; otherwise, the ML model will
be limited to the small-signal behavior of the circuit and cannot predict accurate designs
that meet FS requirements.

4.3. Transistor Biasing Considerations

When simulating to collect the training dataset, design parameters are often generated
randomly, which leads to a high number of bad examples (poor performance) due to the
inaccurate biasing of the transistors (see Figure 10). Therefore, it is difficult for an ML
technique to build a good model that contains such high variations in the input features. A
way to overcome this limitation is to filter out (prior to training) all the examples for which
the transistors are not in their intended region of operation, thereby reflecting the behavior
of circuits accurately and allowing faster model convergence.

5. Open Challenges in the Field

Although the use of ML techniques to automate the analog IC design process has been
a subject of intensive research recently, there are still topics that require further investigation
in the field. In this section, we outline those research directions and point out relevant open
challenges.

Despite the promising results obtained so far, there are very few studies in the prior
state-of-the-art (if any) that deal with switched circuits. ML-assisted approaches to auto-
matic sizing have not yet been explored for analog circuits in which transistors operate as
switches. Mixers (both passive and Gilbert cell) and switched-capacitor filters (passive and
opamp based structures) are widely used analog blocks that are interesting to investigate.
Furthermore, from a circuit designer’s perspective, some aspects are still understudied. For
example, in fully differential circuits, common-mode feedback (CMFB) loops are systemati-
cally used to control and adjust the common-mode output voltage for the optimal output
swing. Only one paper in the prior state-of-the-art focused on fully differential structures,
yet without including the CMFB loop. The latter poses additional constraints on the circuit
stability and increases the overall transistor count and the number of design parameters, as
well as the NN’s complexity.

One other open challenge is achieving an optimized multi-corner robust design. As is
well known, process, voltage, and temperature (PVT) variations can lead to a significant per-
formance drop and, in some cases, to a non-functional circuit. In a conventional approach,
designers usually take margins with respect to the target specifications when sizing their
blocks and then verify that their design is valid in all the corners. This approach requires
fixing accurate margins for all specifications, since too large margins lead to over-sizing the
circuit, while too small ones lead sometimes to redesigning. This approach could be used in
the case of an ML-based design; however, it remains sub-optimal because the margins are
chosen manually by the circuit designers. In [48], the authors addressed the PVT challenge
using a novel gravitational search algorithm. Nevertheless, their approach was able to find
the most robust and feasible solution for an existing design only. Including this aspect in
the ML algorithm from the beginning of the design phase would constitute an interesting
contribution that would help reduce the design time.

Referring to Tables 5 and 6, all the designed circuits in the prior state-of-the-art
targeted CMOS technology exclusively. Moreover, they were designed using one library of



Electronics 2022, 11, 435 18 of 20

transistors. The application of ML techniques to the design automation of circuits using
multiple libraries such as low/standard/high Vth could be explored to widen the range of
applicability of those methods. Applying ML techniques to design RF and analog circuits
in BiCMOS, SOI, and other non-standard processes is another open challenge in the field.
In the same line of thought, advanced CMOS technologies often exhibit many new effects
that were not significant for older nodes. For example, an aspect such as shallow trench
isolation should be integrated into the ML algorithm since it has a significant impact on the
transistor performance, especially on the mobility and, as a consequence, on the threshold
voltage [27]. This would require integrating parameters such as the number of fingers and
even information about the layout (form factor, number of dummy transistors, etc.) as
design features. None of the existing studies have explored this research direction.

In all the previous surveyed papers, except for one example in [34], analog circuits
realizing one typical function were studied. An interesting and yet-unexplored research
direction is to apply ML techniques to size and design an analog system composed of
multiple building blocks. Analog-to-digital converters, digital-to-analog converters, track-
and-hold amplifiers, and receiver and transmitter front-ends are good examples. The
underlying benefit of such studies is to propose a flat-level optimization of the complete
system using ML techniques, in contrast to the human expert approach and other hybrid
approaches [49], where a breakdown of the specifications per block is usually performed.

6. Conclusions

This paper reviewed the existing state-of-the-art in front-end analog IC design automa-
tion using machine learning. Previous contributions in this field were classified into three
main categories: supervised, reinforcement, and hybrid learning techniques. A comparative
study was carried out based on relevant criteria such as the type of circuits, the NN com-
plexity, the result validation, and feature selection methods. Different dataset-generation
approaches in supervised learning were also discussed, and qualitative recommendations
were given on how to build relevant data to enhance the exploration and generalization
capabilities of the ML model. Furthermore, this work pointed out several open challenges
(that have not been explored yet) when using machine learning for automated analog IC
design: the sizing of switched circuits, the impact of including CMFB loops in sizing fully
differential structures, the early estimation of PVT variations in the proposed solutions, the
impact of specific effects related to advanced CMOS fabrication technologies, and finally,
the feasibility of a flat-level optimization when designing complex systems composed of
multiple sub-circuits.
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