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Benchmarking Nonlinear Model Predictive Control with Input
Parameterizations

Franco Fusco1, Guillaume Allibert1, Olivier Kermorgant2 and Philippe Martinet3

Abstract— Model Predictive Control (MPC) while being a
very effective control technique can become computationally
demanding when a large prediction horizon is selected. To
make the problem more tractable, one technique that has
been proposed in the literature makes use of control input
parameterizations to decrease the numerical complexity of
nonlinear MPC problems without necessarily affecting the
performances significantly. In this paper, we review the use of
parameterizations and propose a simple Sequential Quadratic
Programming algorithm for nonlinear MPC. We benchmark
the performances of the solver in simulation and compare
them with state-of-the-art solvers. Results show that parameter-
izations allow to attain good performances with (significantly)
lower computation times.

I. INTRODUCTION

Model Predictive Control (MPC) is probably one of the
most attractive control design methodologies, as illustrated in
the state of the art made by Mayne [1]. The ability of MPC
to handle nonlinearities, enforce constraints and provide
performance/cost trade-offs are just some of the reasons for
its popularity. Historically, MPC was developed for systems
with slow dynamics and required long computation times.
Nonetheless, in the last two decades a lot of work has been
done to deploy predictive control also on fast systems. Some
of these pose additional restrictions and challenges, as the
optimization problem must be solved on embedded hardware
with limited computing power. One way to improve the
efficiency of MPC schemes is to reduce the complexity of
the optimization problem, and several methods have been
proposed in order to speed up the solving process like [2],
[3], [4], [5] to cite a few.

Control parameterizations can also be an effective solution
[6], [7], [8], [9]. The objective is to drastically reduce the
number of control variables in the optimization problem
while trying to keep the performance loss as small as possi-
ble. One of the major advantages of using a parameterization
is the ability to decouple the prediction horizon from the
control one. This is a very important improvement since
for many systems the use of large prediction horizon is
mandatory to ensure system stability in closed loop [1].
Even disregarding the issue of system instabilities, it is
often necessary to select a large prediction horizon so as
to obtain good closed-loop behavior. This is especially true
when dealing with small sampling periods.
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In this paper, we investigate the use of different input
parameterizations in MPC to control non-linear systems.
In particular, we review few existing input parameteriza-
tions coupled with a simple single-shooting scheme that
can solve the MPC optimization using Sequential Quadratic
Programming (SQP) quickly and while enforcing control
input constraints such as bounds on the maximal command
and its rate. Thanks to the parameterization, the sub-problems
arising at each SQP iteration are low-dimensional and can
thus be solved extremely quickly. Indeed, we show that
using the parameterized approach it is possible to attain
sub-millisecond performances despite a very dense time-
sampling and outperform existing state-of-the-art algorithms
both on a laptop and on a Raspberry Pi device.

The remainder of this paper is organized as follows. In
the next section, we firstly detail the adopted nonlinear
MPC formulation and continue by recalling the studied
control parameterizations. We propose a simple solver for the
parameterized MPC optimization problem in section II-C and
benchmark its performances in section III. In particular, we
analyze how they change in relation to the chosen number
of parameters and compare against state of the art solvers
from an existing framework. Finally, the last Section reports
our conclusions and proposes future perspectives.

II. NONLINEAR MODEL PREDICTIVE CONTROL

In this section, we recall the formulation of Direct Shoot-
ing methods for constrained Nonlinear MPC, which is at
the basis of the employed solver. We then discuss how
the introduction of a parameterization can help in reducing
the complexity of the described problem and recall some
existing parameterizations. We finally propose an algorithm
to compute optimal parameters, which is a SQP strategy
based on the Gauss-Newton Hessian approximation.

A. Direct Shooting Nonlinear MPC

The problem that Model Predictive Control tries to solve
can be stated informally as follows: given an evolution model
of the controlled system, find an optimal control trajectory
which can steer the current state of a system towards a
desired configuration, while meeting feasibility requirements
such as actuation limits. A variety of mathematical formula-
tions can be found in the literature [10], [11] .

Direct methods work by transcribing the problem as a
finite-dimensional nonlinear optimization. First of all, the
controlled system is modeled as a discrete-time one, char-
acterized by a transition function f that, given the state
xk ∈ Rn and control uk ∈ Rm at the discrete time step



k, returns the corresponding state that should be reached by
the system at the next time step k + 1, i.e.,

xk+1 = f (xk,uk) (1)

The “informal” optimal control problem stated in the be-
ginning of this section is then commonly written as the
following nonlinear optimization:

min

Np∑
k=1

‖xk − x?k‖
2
Qk

+

Np−1∑
k=0

‖uk − u?k‖
2
Rk

(2a)

subject to:

xk+1 − f (xk,uk) = 0 ∀k = 0, · · · , Np − 1 (2b)
cx (xk) ≤ 0 ∀k = 1, · · · , Np (2c)
cu (uk) ≤ 0 ∀k = 0, · · · , Np − 1 (2d)

wherein Np is known as prediction horizon, while x?k and
u?k represent the desired state and control inputs at the
discrete time step k. ‖v‖A is used to denote the norm of
vector v weighted by the positive semidefinite matrix A. x0

is assumed to be a known constant, corresponding to the
actual state of the system when performing the optimization.

Model constraints (2b) can be enforced in two ways. The
first one is to use both u and x as decision variables and to
explicitly deal with these constraints during the optimization.
This leads to a sub-family of direct methods known as
multiple-shooting techniques [12], [13]. The second option
consists in using a single-shooting method, in which only
the control input sequence u is used as free variables for the
search. Predicted states can be evaluated iteratively starting
from x0 and the selected control inputs using (1). In this
paper, we have focused our attention on single-shooting
strategies and therefore (2b) are assumed to be always
satisfied during the optimization.

To obtain a control sequence given the current state x0,
a fairly popular choice is to solve the optimization using
Sequential Quadratic Programming with Gauss-Newton ap-
proximations [14] of the Hessian of the objective in (2a).

B. Complexity Reduction via Parameterization

In the optimization scheme presented above, performances
highly depend on the prediction horizon. Ideally, one would
wish to sample the system at a high frequency to reduce the
inaccuracies introduced by discretization. At the same time,
predicting over a longer period of time should lead to better
results since it enables the algorithm to intelligently consider
maneuvers that are globally optimal and steer the system
to the desired state. It is thereby beneficial to increase the
value of Np in both cases. However, the number of decision
variables (and therefore the complexity of the nonlinear
optimization) grows with the prediction horizon as well.

One way to simplify the optimization would be to allow
only the first Nc ≤ Np control samples to be freely
allocated in the optimization [15], [16], with the remaining
Np−Nc samples set to the same value of uNc−1 (fig. 1(a)).
More generally, the “free samples” from u could be spread
uniformly along the prediction horizon rather than at the

beginning, with remaining values obtained by “holding” the
free samples constant (fig. 1(b)) or alternatively using linear
interpolation (fig. 1(c)). These strategies are known in the
literature as Move Blocking. For clarity, they will be referred
to as “simple”, “ZOH” and “LERP” in the sequel.

A more general option relies on the choice of a set of Nb
basis functions φi : R+ → R (i = 1, · · · , Nb). The control
sequence can be generated from these functions by linear
combination as:

uk =

Nb∑
i=1

φi(k∆t)ηi (3)

where the combination coefficients ηi are to be determined
by the optimization and ∆t is the sampling time used in the
prediction model. Some examples in this sense are damped
Laguerre polynomials [8] and Haar wavelets [17]. In this
paper, we propose to use a set of exponentially damped
polynomials in the form:

φi(t) =

(
et

iτ

)i
e−t/τ (4)

All functions from this basis have a unique maximum in R+

located at t = iτ , such that φi(iτ) = 1. It is thus reasonably
easy to tune the shape constant τ , which simply controls
the locations of the maxima. To the best of our knowledge,
this is the first time such basis is employed in a control
parameterization.

The interest in using a basis of functions is that the overall
control sequence can “inherit” some desirable properties
from its generating functions. As an example, if all φi are
smooth (such as in (4)) then the generated sequences natu-
rally feature reduced variations between consecutive samples.
In addition, changes in a single combination parameter
usually affects a whole portion of the control sequence, rather
than a specific one. From a practical point of view, this
implies that even with a reduced number of variables it is
possible to generate a rather wide variety of control profiles.

All the strategies described so far can be unified under
the same concept of control parameterization, which is a
mapping from a given vector of parameters η ∈ RNη to the
control sequence u. Furthermore, all the parameterizations
discussed above can be shown to be linear in η, i.e.,

u =

 u0

· · ·
uNp−1

 =

 Π0

· · ·
ΠNp−1

η = Πη (5)

C. SQP Solver for Parameterized MPC

In this section we detail a Sequential Quadratic Program-
ming solver that can be employed for the solution of the MPC
optimization problem (2) when using parameterizations. The
proposed algorithm works by formulating a quadratic sub-
problem, whose solution allows to update the current guess
of the parameters η. These two steps (solution of the sub-
problem and update of the parameters) is repeated until
termination conditions are met. As mentioned before, we
consider in this paper a single-shooting strategy in which
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Fig. 1. Example of control sequences u with a reduced number of degrees of freedom. Even if Np = 10, only 4 variables are freely assigned, while the
remaining ones are defined in function of the free samples.

(2b) is directly satisfied, while concerning other constraints
we pose limits on the magnitude of the control actions and
its variation. Concerning the definition of the quadratic sub-
problem, we firstly consider a current guess η of the param-
eters, from which the control sequence u is computed using
(5). Afterwards, predicted states x are evaluated recursively
as function of the initial state x0 and u using (1). States and
controls in the objective are then linearized around η + δη ,
with δη representing variation of the current parameters.
Injecting the linearized states into (2a) leads to

min
1

2
δTη Hδη + gT δη (6a)

with

H =

Np∑
k=1

∂xk
∂η

T

Qk
∂xk
∂η

+

Np−1∑
k=0

ΠT
kRkΠk (6b)

gT =

Np∑
k=1

(xk − x?k)
T
Qk

∂xk
∂η

+

Np−1∑
k=0

(uk − u?k)
T
RkΠk

(6c)

In the relations above, the Jacobians of the states with
respect to the parameters can be evaluated using the recursive
relation

∂xk+1

∂η
=
∂f

∂x

∂xk
∂η

+
∂f

∂u
Πk (7)

wherein the derivatives of f are computed at the k-th state
and control samples.

Constraints on the magnitude of the control actions and
its variation can be easily translated into constraints on the
parameters variation δη thanks to (5). Nevertheless, it is
worth noting that insights on the used parameterizations can
lead to more efficient solutions. First of all, in simple, ZOH
and LERP parameterizations the parameters represent a set
of control samples, and it is easy to understand that other
values cannot exceed (be less than) the largest (smallest)
free samples. As a consequence, control bounds can be
readily translated into parameter limits. Similarly, variation
constraints need not to be enforced at each discrete sample
k, but rather at the free samples only.

When function bases are used to parameterize the control
inputs, in the general case there is no way to reduce the
number of control constraints. However, if the chosen func-
tions are smooth, it is reasonable to assume that values of
consecutive samples will not be too dissimilar. In particular,
if a control sample located at a given discrete instant j is
within bounds, chances are that neighboring samples will

either be within bounds or exceed control limits by a small
margin and a similar argument holds for control variations.
Therefore, only a subset of the original constraints can
be considered at the cost of (small) constraints violations,
granting a considerable simplification of the optimization
problem.

The sub-problem defined by (6a) and the constraints is a
dense QP optimization that can be solved by state-of-the-art
solvers, such as qpOASES [18], HPIPM [19] or OSQP [20].
Once the solution is computed, a line search algorithm can
update the current guess of the parameters as η′ = η + sδη
with s ∈ [0, 1]. The algorithm can then continue by repeating
the previous steps over and over until convergence.

It must be noted that in a classical formulation the number
of decision variables and constraints are proportional to
the prediction horizon Np. Instead, in the parameterized
approach proposed here, they are all proportional to Nη . As
shown in the next section, the use of a reduced number of
parameters allows for considerable speed-ups in the solution
process, without degrading the control performance.

III. SIMULATIONS

In this section we benchmark an implementation of the
proposed solver in a simulated environment. The parame-
terization and algorithms detailed in previous sections were
implemented as a C++ library, using Eigen [21] for lin-
ear algebra and qpOASES [18] to solve the dense QP
sub-problems. Different parameterizations with increasing
number of parameters have been tested to determine the
performances of the solver and a comparison with state of
the art methods from the acados framework [22] is included.

The system to be controlled is an inverted pendulum with
moving base (sometimes referred to as cart-pole system),
which is often used to investigate new approaches in non-
linear control theory. The objective here is not to propose
a new control strategy for this type of machine but simply
to compare the efficiency of the proposed approach with the
state of the art in MPC on a simple system. The state is
given by the quadruplet (p, θ, v, ω), representing respectively
the position of the cart, the angle of the pendulum (θ = 0
meaning that the pendulum points downward), the linear
velocity of the base and the angular rate of the pendulum.
The control input of the system is a horizontal force pushing
the cart. The continuous-time model of the system can be
obtained using a Lagrangian approach, the reader is referred
to [22] for the equations adopted in our simulations.



Different sets of simulations are presented in the sequel:
first, we focus on a task in which the pendulum has to be kept
in balance while also tracking a time-varying trajectory with
the base. In this first set of simulations, all parameterizations
presented in previous sections are tested multiple times with
different values of Nη . Afterwards, the results obtained with
two parameterizations with Nη = 5 are compared to four
algorithms from acados. Finally, to test the effectiveness of
the parameterized approach in a more challenging scenario,
a swing-up task is considered.

In all simulations, the time horizon used for the predictions
was set to 1 s, and a very high control frequency was
employed to test the algorithms under challenging conditions.
In particular, all presented simulations were performed with
both ∆t = 10 ms and ∆t = 2 ms, leading to a prediction
horizon of Np = 100 and Np = 500 samples respectively.
Tests were run on two different platforms: (1) a Laptop
computer featuring an Intel Core i7-8750H @2.2 GHz CPU
and 16GB of RAM; (2) a Raspberry Pi 400 featuring a
Broadcom BCM2711 Cortex-A72 (ARM v8) @1.8 GHz
processor and 4GB of RAM. In this way, it was possible to
get some insights on the performances of the implemented
solver both on a workstation and an embedded device.

A. Performance benchmarking

In this first set of tests, the objective was to gather insight
about the performances of parameterizations for an increas-
ing number of parameters. Each simulation lasts 30 s, with
the pendulum starting in the state (p, θ, v, ω) = (0, π, 0, 0)
and having to track the desired states (p?(t), π, 0, 0), with the
position changing between −0.5 m and −0.5 m. Weighting
matrices in (6) were defined as Qk = diag(200, 50, 7, 2)/Np
and Rk = 1/Np, and only control bounds were included,
with umax = −umin = 0.1 N.

Concerning the tested parameterizations, the simple, ZOH
and LERP ones were tested for Nη = 2, · · · , 20, with free
samples spread uniformly along the prediction horizon in
the case of ZOH and LERP parameterizations. In addition,
a further parameterization using a basis of exponentially
damped polynomials was tested (later referred to as “Poly”),
with Nb = Nη = 2, · · · , 10 parameters. In each of these
cases, the parameter τ was set to 1/(Nη − 2), so that the
maxima of the basis functions are regularly spread along the
prediction horizon. In addition, control bounds were imposed
on 2Nη samples distributed along the prediction horizon.

For each parameterization, prediction horizon and number
of parameters, the same simulation was repeated 10 times to
be able to obtain statistical data on the amount of time re-
quired to solve the nonlinear optimization problems. Results
are shown in figs. 2 and 3 for experiments run on a laptop and
a Raspberry Pi respectively. For each parameterization, two
types of graphs are included: average run-times (per itera-
tion) in microseconds vs the number of parameters (figs. 2(a),
2(c), 3(a) and 3(c)) and average run-times vs average po-
sition tracking errors (figs. 2(b), 2(d), 3(b) and 3(d)). The
results show that the simple parameterization consistently
requires less computation time than other strategies, but

that it fails to converge to a good solution, with tracking
errors that remain more or less the same independently from
the number of parameters used. This can be justified by
the fact that parameters are able to affect only a small
portion of the prediction horizon, with most of the control
inputs being handled by a single parameter. ZOH and LERP
parameterizations have very similar performances in terms of
optimization times, with ZOH usually taking slightly more
than ZOH. However, the former features worse tracking
performances for an equal number of parameters. Finally, the
Poly parameterization takes the longest computation times,
which can be explained by the fact that computing the
control sequence from parameters requires more flops and
that the number of constraints is larger than in other cases.
Nonetheless, it generally reaches good tracking performances
with less computation times than the ZOH parameterization.
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Fig. 2. Performances (on a Laptop) of the proposed parameterizations with
increasing number of parameters. In (a) and (c) the average optimization
times are reported for increasing numbers of parameters, while (b) and (d)
show the relation between optimization times and tracking errors (each curve
corresponds to a parameterization, and each data-point to a specific number
of parameters). The prediction horizon for (a) and (b) is Np = 100, while
for (c) and (d) it is Np = 500.

It is interesting to notice that in multiple cases the average
optimization times are less than a millisecond. In particular,
the results show that almost all the parameterizations could
have been employed in real-time experiments in the case of
a laptop. The average optimization times on the Raspberry
board are larger, but still compatible with real-time require-
ments in the case of Np = 100.

B. Comparison against existing solvers: trajectory tracking

To better place the obtained results within the state of the
art, the same simulations performed in the previous section
were implemented also using the tools contained in acados.
All tuning parameters of the problem, such as the weights in
the objective function, were taken as in the previous section
to be as fair as possible in the comparison. Termination
conditions were also chosen to ensure that the results from
the different strategies had the same level of optimality.
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Fig. 3. Performances of the proposed parameterizations on a Raspberry Pi
board. The meaning of each plot is analogous to those depicted in fig. 2.

Four solvers were tested: one based on qpOASES and three
HPIPM variants featuring full, partial and no condensing. As
before, the simulations were repeated 10 times per solver,
with Np set to 100 or 500.

Average time performances (with 95 % confidence inter-
vals) at each iteration of the simulation are plotted in fig. 4
for all acados’ algorithms and for LERP and Poly parameter-
izations1 (with Nη = 5). In addition, for the case Np = 100,
we include the results obtained using a parameterization with
Nη = Np = 100. This corresponds to a MPC problem with
full degrees of freedom and is therefore labeled as “full”
in the results. In addition, a summary of numerical values
is included in the top-half of table I. In particular, for each
algorithm we report the average optimization time over all
iterations and all simulations in the different conditions. In
addition, we evaluated a numerical index that quantifies how
faster an algorithm is with respect to a given “baseline”. This
index is evaluated as:

speed gain =
1

Niters

Niters∑
i=1

T blopt[i]

T solveropt [i]
(8)

where Niters is the number of iterations per simulation and
T solveropt [i] and T blopt[i] are the average optimization times
required at the i-th iteration to solve the SQP problem using
respectively the given solver and the baseline.

The two parameterized approaches consistently take
shorter computation times than acados’ solvers (they are
always at the bottom of the plots shown in fig. 4). The
Poly and in particular the LERP parameterizations both
converge to a good solution faster than every solver from
acados – especially on the Raspberry board, where they run
more than 10 times faster on average. Furthermore, even
though the values have been omitted for brevity, the average
tracking errors obtained with these two parameterizations are
slightly smaller than those of acados’ algorithms, showing

1Simple and ZOH were not considered here since with 5 parameters they
did not converge to satisfactory solutions in terms of position error.
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Fig. 4. Optimization times for the tracking task. HPIPM (f.c.), HPIPM
(p.c), HPIPM: acados solvers based on HPIPM (with full, partial and no
condensing); qpOASES: acados solver based on qpOASES; lerp-5, poly-5:
proposed solver with Nη = 5. full: proposed solver with Nη = Np.

that shorter optimization times have not been obtained by
sacrificing optimality. Also note that the full parameterization
takes much longer than any algorithm in acados. Since its
working principles are close to those of the qpOASES-based
solver in acados, this suggests that there is room for im-
provement in the efficiency of our software implementation.

C. Comparison against existing solvers: swing-up

The last set of simulations considered here involves a
swing-up task, with the pendulum starting from the origin
of its state space and having to reach (0, π, 0, 0) as desired
configuration. Weighting matrices were changed to Qk =
diag(103, 103, 10−2, 10−2)/Np and Rk = 10−2/Np, and
the control bounds relaxed to umax = −umin = 12 N. To
make the problem more challenging, we also added control
variation constraints.

Considering the proposed solver, we decided to find for
each parameterization the minimum number of Nη that was
sufficient to complete the task within 3 s. It turns out that
the simple and ZOH parameterizations require at least 16
and 33 parameters respectively. Instead, LERP and Poly
parameterizations were successful with as few as 5 and 3
parameters each. Moreover, the full parameterization and
the qpOASES-based solver in acados both took too long to
converge and were thus not included in the analysis.

Similarly to what done in the previous section, we show
plots of the average optimization times during the simu-
lations in fig. 5, while numerical results are included in
the bottom-half of table I. Once again, the parameterized
methods LERP and Poly are confirmed to be faster than
existing solvers, by quite a large margin. In particular, it
is worth remarking that on the Raspberry Pi board with
Np = 100, only the parameterized approaches converged
within the sampling period of ∆t = 10 ms consistently.



TABLE I
Summary of performance comparison between state-of-the-art solvers included in acados and the proposed parameterized approach.

n.a.: ‘not available’ (the computation time was long and the test was not performed) bl.: ‘baseline’ (this is the algorithm used to evaluate the relative speed gain).

Np = 100 Np = 500 Np = 100 Np = 500

Solver Opt.time [ms] Speed gain Opt.time [ms] Speed gain Opt.time [ms] Speed gain Opt.time [ms] Speed gain

tr
aj

ec
to

ry
tr

ac
ki

ng HPIPM (f.c.) 1.231 bl. 14.447 0.368 8.438 bl. 275.161 0.167
HPIPM (p.c.) 1.439 1.172 4.783 bl. 7.470 1.421 40.641 bl.

HPIPM 3.090 0.616 9.494 0.511 12.176 0.917 47.535 0.859
qpOASES 2.101 0.709 n.a. n.a. 8.678 1.008 n.a. n.a.

full 6.698 0.204 n.a. n.a. 31.050 0.295 n.a. n.a.
lerp-5 0.227 6.214 0.664 7.806 0.582 16.673 1.743 25.082
poly-5 0.384 3.802 1.001 5.384 0.858 11.458 3.429 13.312

sw
in

g-
up

HPIPM (f.c.) 6.645 0.879 183.052 0.254 60.106 0.541 4320.603 0.083
HPIPM (p.c.) 4.545 bl. 22.190 bl. 22.762 bl. 274.899 0.771

HPIPM 8.225 0.675 31.334 0.970 31.484 0.801 189.600 bl.
simple-16 1.031 5.584 2.784 9.326 3.014 9.194 9.201 24.277

zoh-33 5.090 1.267 8.249 3.140 15.595 2.055 27.812 8.052
lerp-5 0.783 7.362 2.339 11.590 1.640 17.525 5.718 41.544
poly-3 0.688 5.900 1.981 10.026 1.411 14.279 4.733 34.055
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Fig. 5. Optimization times for the swing-up task.

IV. CONCLUSIONS

In this work we reviewed the benefits of using input
parameterizations in Model Predictive Control to achieve
fast and reliable performances. They allow to reduce the
number of optimization variables and of the constraints,
making the problem solvable even on embedded hardware
with very limited computational resources. We implemented
a single-shooting SQP algorithm to solve the nonlinear MPC
optimization and showed that it can consistently outperform
state-of-the-art solvers.

The results obtained so far are very promising, and we
believe that it is worth investigating parameterizations more
in depth. We would like to focus our attention on different
types of basis functions and extend the analysis to nonlinear
parameterizations. Furthermore, several works in the field
suggest that multiple-shooting methods can provide more
stable and fast solutions and ad-hoc condensing strategies for
ZOH parameterizations have already been proposed [23]. We
are confident that other parameterized approaches would also
benefit from the use of lifted techniques. Furthermore, we
would like to optimize our software library, add new features
and possibly incorporate it into existing frameworks.
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