

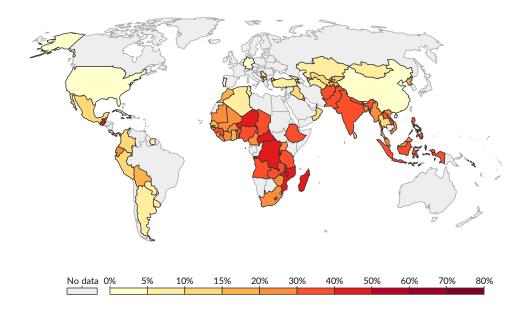
Growth retardation induced by protein and indispensable amino acid deficiencies can not be catch up by a supplementation in growing rats

Gaëtan Roisné-Hamelin¹, Catherine Chaumontet¹, Juliane Calvez¹, Claire Gaudichon¹, Dalila Azzout-Marniche¹

¹Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, 75005, Paris, France

Disclosures

No conflict to disclose


Introduction

- In developping countries, children are exposed to a risk of growth retardation.
- Among the causes :
 - Lack of diversity in the diet^{1,2}
 - Low protein intake³
 - Poor quality of protein sources²

Share of children that are stunted, 2020

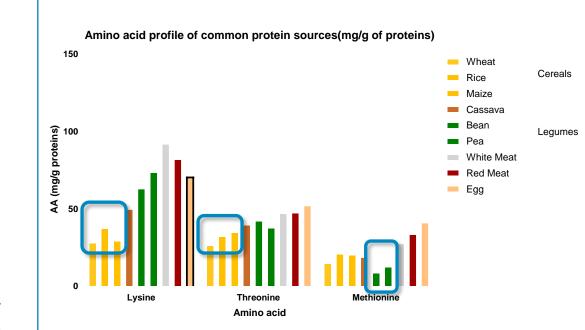
Our World in Data

The share of children younger than five years old that are defined as stunted. Stunting is when a child is significantly shorter than the average for their age, as a consequence of poor nutrition and/or repeated infection.

Source: UNICEF, World Health Organization and World Bank

OurWorldInDataorg/hunger-and-undernourishment • CC BY

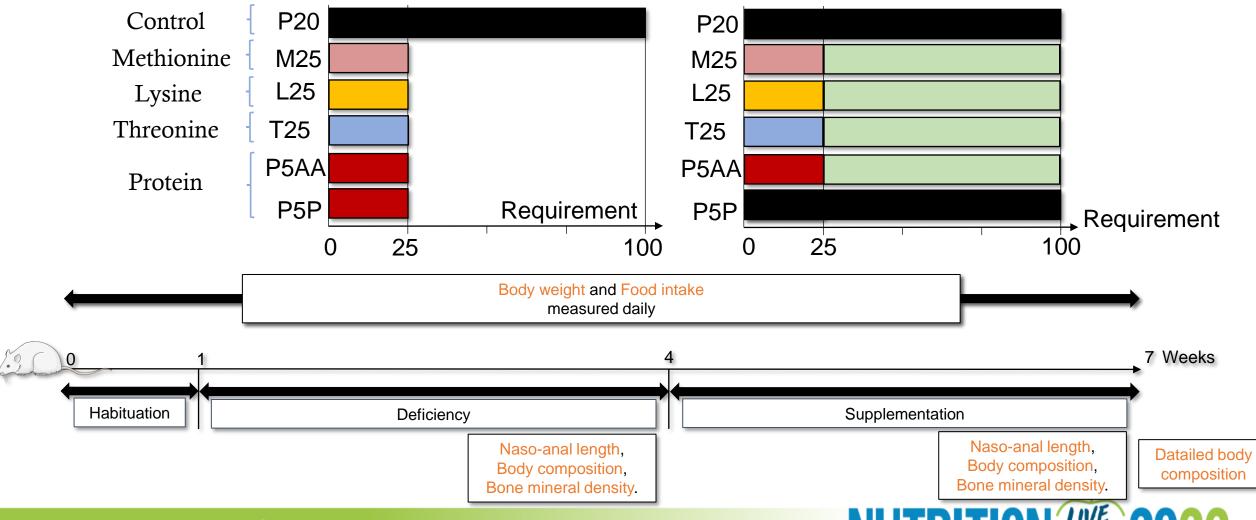
Stunting = *Low height for age*



Introduction

- Quality of protein sources:
 - DIAAS $*=\frac{mg \ limiting \ AA \ in \ the \ source}{mg \ same \ AA \ in \ reference \ protein} \times Ileal \ Digestible \ AA$
- Effect of a supplementation:
 - ZLinear growth 1 (milk based protein and MMN)
 - ¬Length gain,

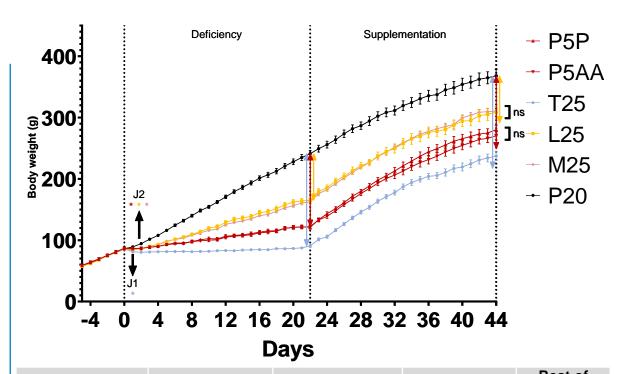
 Stunting and underweight ^{2 (egg)}
 - □ Diarrheal episode, □ Weight gain 3 (lysine)
 - ¬Overall growth outcomes, but not systematic ⁴
- Lack of knowledge:
 - Can we catch-up a growth retardation?
 - Is there a specificity between protein and a single IAA deficiency?
- Aim of the study:
 - Assess the supplementation efficiency following a protein or IAA (lysine, threonine or methionine) deficiencies in growing rats
 - Identify the specific IAA deficiency effect



*DIAAS = Digestible indispensable amino acid score

June 14-16, 2022 | #NutritionLiveOnline

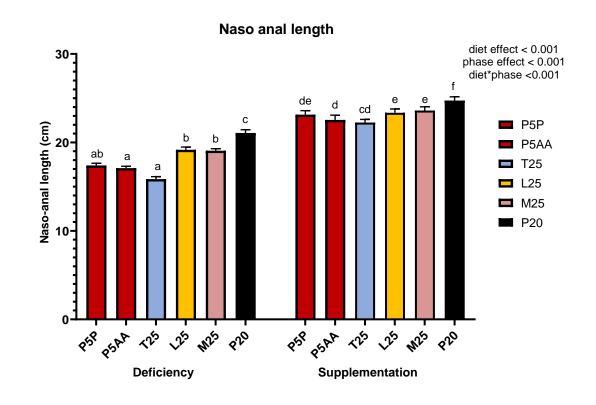
Material and methods


June 14-16, 2022 | #NutritionLiveOnline

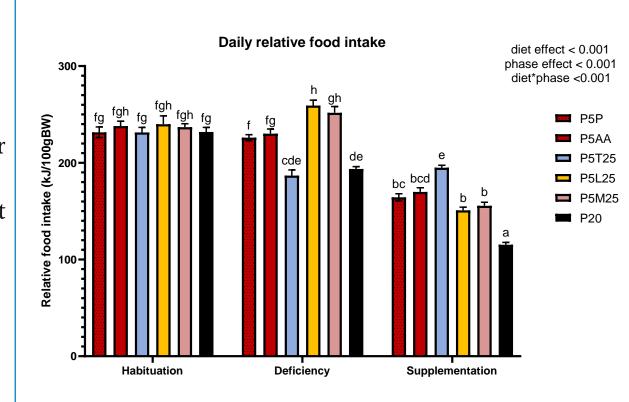
NUTRITION CHIVE 2022

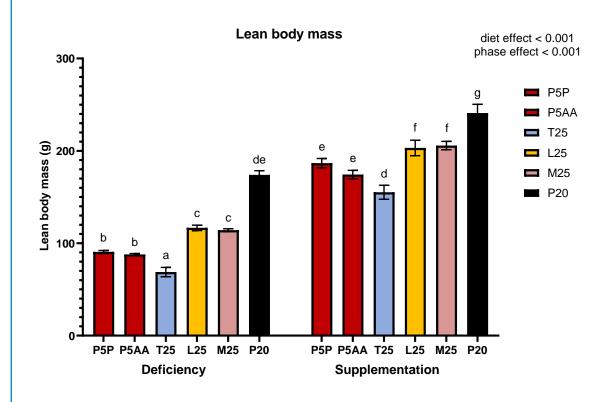
- BW gain is reduced by a protein and a single IAA deficiency.
- BW gain was the lowest for a threonine deficiency, and lower for a protein deficiency vs lysine/methionine deficiencies.
- When rats were fed by their supplementation diet, all groups saw their growth resumes.
- We only observed a slighly catch-up on d1, which do not permit to catch-up the growth retardation.
- No catch-up growth was observed from d2 until the end of the supplementation.

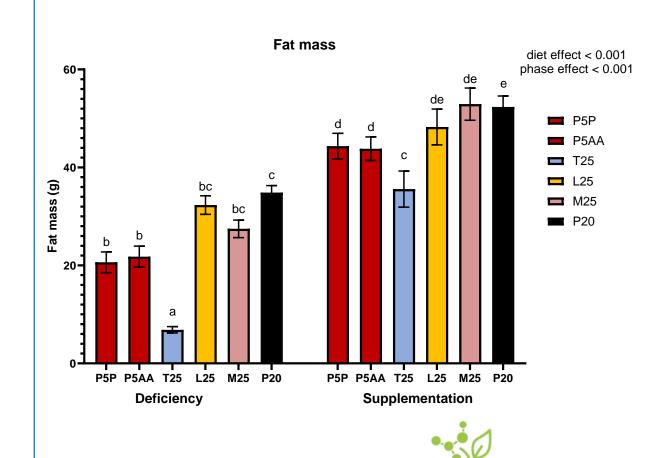
Body weight

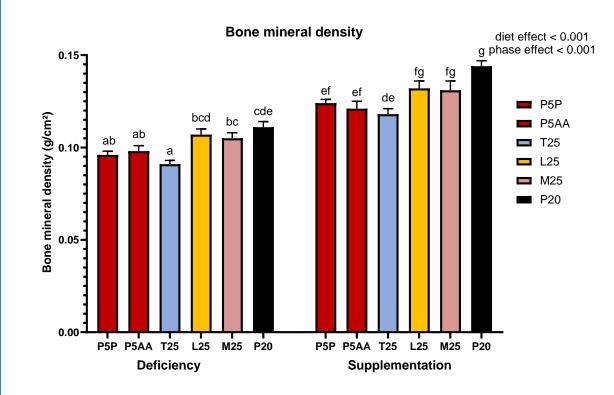


Diet	hab	def	1d sup.	Rest of sup.
P20	5,41 ±0,60	7,05 ±0,67	8,20 ±0,33	5,68±1,06
M25	5,74 ±0,46	3,45 ±0,79	13,19±0,82	6,48±1,26
L25	5,55±0,59	3,63±0,71	14,42±1,42	6,02±1,38
P5P	5,67 ±0,59	1,54±0,65	12,69±0,85	6,89±1,01
P5AA	5,55 ±0,67	1,62 ±0,53	10,69±0,77	6,39 ±0,89
T25	5,26±0,58	0,22 ±0,48	10,75±1,25	6,53±0,90


- The NAL is decreased by protein as IAA deficiencies.
- A lower NAL is still observed after the supplementation.


- Rats increased their relative food intake during protein or IAA deficiencies (except for threonine).
- During supplementation, the protein- and IAA-deficient groups preserved a higher food intake.


- LBM is highly affected by the deficiencies.
- LBM is decreased by protein deficiency as well as IAA.
- LBM remains decreased after supplementation.



- Fat mass is decreased by a protein deficiency such as threonine deficiency.
- Fat mass is not decreased by lysine or methionine deficiencies.
- Fat mass remains reduced after supplementation (P5-T25).

- Bone mineral density is reduced by a protein as IAA deficiencies.
- The gap remains after supplementation.

Diet	P5P	P5AA	P5T25	P5L25	P5M25	P20	Diet effect
Lean body mass (g)	216.76±5.72bc	206.40±4.57ab	187.47±4.93a	240.36±8.46°	241.63±5.27°	290.03±8.56 ^d	p < 0.001
Liver (g)	9.76±0.40 ^{ac}	9.07±0.31 ^{ab}	8.48±0.43 ^a	10.63±0.51 ^{bc}	11.02±0.51°	10.98±0.42°	p < 0.001
Kidney (g)	1.95±0.06 ^{bc}	1.72±0.05 ^{ab}	1.64±0.03a	2.01±0.06 ^c	1.95±0.05 ^{bc}	2.36±0.09 ^d	p < 0.001
Gastrocnemius muscle (g)	2.49±0.15 ^{ab}	2.47±0.07 ^{ab}	2.28±0.06a	2.83±0.10 ^b	2.74±0.07 ^b	3.27±0.06°	p < 0.001
Carcass (g)	110.79±3.03ab	105.93±2.64a	96.15±2.25 ^a	126.19±4.91°	123.70±3.09bc	152.30±4.95d	p < 0.001

- The decrease in LBM is reflected in the weight of the kidneys, gastrocnemius muscle and carcass.
- However, the liver has a different behavior.
 - → Liver = Organ that can make up for stunted growth?

Diet	P5P	P5AA	P5T25	P5L25	P5M25	P20	Diet effect
Fat mass (g)	33.83±2.36ab	34.66±1.56ab	25.70±2.10 ^a	36.85±2.88bc	40.61±2.33bc	44.70±2.38°	p < 0.001
Adiposity (%)	13.42±0.70	14.38±0.57	11.98±0.80	13.26±0.81	14.42±0.86	13.37±0.65	NS
Epidydimal fat (g)	5.36±0.45 ^b	4.98±0.27 ^b	3.33±0.24 ^a	5.41±0.32 ^{bc}	6.18±1.33bc	6.97±0.56 ^c	p < 0.001
Mesenteric fat (g)	4.74±0.31 ^{ab}	4.55±0.20ab	3.87±0.27 ^a	5.80±0.49 ^{bc}	5.85 ± 0.22^{bc}	6.59 ± 0.50^{c}	p < 0.001
Retroperitoneal fat (g)	5.69±0.42 ^b	5.70±0.40 ^b	3.42±0.32a	6.28±0.50b	7.15±0.40 ^{bc}	8.20±0.43 ^c	p < 0.001
Subcutaneous fat (g)	17.59±1.36ab	18.94±0.98 ^{ab}	14.65±1.44a	18.77±1.73 ^{ab}	20.87±1.58b	22.43±1.29b	p < 0.05
Brown adipose tissue (g)	0.45±0.05	0.50±0.05	0.43±0.03	0.58±0.06	0.57±0.04	0.51±0.02	NS

- The decrease in fat mass was found on the EAT, MAT, RAT.
- Only threonine impacted the SCAT.
- In addition, the adiposity and BAT were not impacted by any diet.
 - → Maintenance of adiposity and TAB?

Conclusion

- Aim of the study:
 - To evaluate the efficiency of supplementation following protein or IAA (lysine, threonine or methionine) deficiency in growing rats.
- → A specific deficiency in an IAA such as protein induces growth retardation, and the LBM is particularly affected.
- → Supplementation allows growth resumes, but the growth retardation cannot be recovered.
- → Body weight, NAL, BMD remain decreased after protein deficiency or IAA.
- → Body fat and BMD remain decreased after protein or threonine deficiency.
 - Identify the specific effects of each IAA.
- → We did not observed a specific effect between lysine and methionine.
- → The protein diet supplementation was as efficient as the semicrystalline diet.
- → The more pronounced effect of threonine deficiency could be due to a poor estimation of threonine requirement.
- → We observed no beneficial effect of methionine restriction.