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Alternatives, DRF/IRAMIS, 91191 Gif-sur-Yvette, France

E-mail: vassilis.pontikis@cea.fr

Abstract. Cohesion in the refractory metals Cr, Mo, and W is phenomenologically
described in this work via a n-body energy functional with a set of physically motivated
parameters that were optimized to reproduce selected experimental properties
characteristic of perfect and defective crystals. The functional contains four terms
accounting for the hard-core repulsion, the Thomas-Fermi kinetic energy repulsion and
for contributions to the binding energy of s and d valence electrons. Lattice dynamics,
molecular statics, and molecular dynamics calculations show that this model describes
satisfactorily thermodynamic properties of the studied metals whereas, unlike other
empirical approaches from the literature, predictions of phonon dispersion relations and
of surface and point defect energetics reveal in fair good agreement with experiments.
These results suggest that the present model is well adapted to large-scale simulations
and whenever total energy calculations of thermodynamic properties are unfeasible.
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1. Introduction

The refractory metals of the sixth column of the periodic classification of elements,

Chromium (Cr), Molybdenum (Mo) and Tungsten (W) are of considerable practical

interest for applications exploiting their outstanding properties including high melting

temperatures, low thermal expansion, high thermal conductivity and mechanical

resistance. Cr is used to harden steel, to manufacture stainless steel and as catalytic

material [1], Mo is used in steel alloys to increase hardness, electrical conductivity and
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resistance to corrosion and wear [2] whereas W is used in heating elements, in superalloys

to form wear resistant coatings and in fusion reactors as plasma facing material capable

to sustain the high heat loads [3, 4]. However, material properties evolve in time under

working conditions emerging thereby the need for understanding and controlling ageing.

To this end, a widely adopted approach consists in the atomistic modeling of ageing

mechanisms via total energy calculations whenever the characteristic space scale of the

phenomena of interest is small enough or via simulations relying on empirical potentials

otherwise.

Phenomenological cohesion models are computationally performant in yielding

well converged thermodynamical properties of large-sized systems from atomic scale

simulations [5, 6, 7, 8], thus motivating the long-lasting e↵orts aimed at improving

such models to faithfully reproduce physical properties of condensed matter [9, 6, 10,

11, 12, 13]. An extended and continuously growing literature attests for the increasing

success of such approaches used in conjunction with open-source large-scale atomistic

simulation packages that provide means for the seamless integration of existing and new

empirical cohesion functionals [14].

The present work describes cohesion in Cr, Mo and W via semi-empirical analytic

potentials with physically motivated repulsive and attractive terms. These apply to

the refractory elements a recent approach (EGTB potentials), which has been shown

outstandingly reproducing static, dynamic, and thermal properties of noble metals [13].

Unlike others [15, 16, 17, 18, 19], this model reproduces with remarkable accuracy the

experimental phonon dispersion in these three metals. Moreover, the thermal expansion

of the lattice and thermal atomic mean square displacements of the atoms (MSD)

follow closely their experimental counterparts over an extended temperature range.

These excellent characteristics suggest that the adopted potential form is well suited for

large-scale simulations involving these three metals and that it is capable of faithfully

reproducing the thermodynamic properties of these systems.

In di↵erence with machine-learning approaches [20, 21], the methodology adopted

here relies on a reduced set of adjustable and physically meaningful parameters spanning

the cohesion energy of the studied system. The last is composed of four terms, namely:

(i) a n-body attractive functional of the electron density deriving from the second

moment approximation of the tight-binding scheme adapted to d-electron metals [9]

(ii) a n-body attractive functional representing the s-electron contribution to cohesion

(iii) a n-body repulsive functional akin to the kinetic energy term of the electron

gas approximation [22, 13] and (iv) a short-range two-body repulsion that has been

found crucially controlling the experimental equation of state, the surface energies, and

the point defect energetics. The electron density entering the n-body functionals is

described via atomic orbitals, this providing the recipe for generating potentials for any

desired element. As is shown in the results section this methodology reproduces phonon

dispersion with great accuracy and outstandingly well in the case of Mo and W, a result

still out of reach of machine learning potentials [15].

The following paragraphs are devoted to the detailed description of the model
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and its parametrization. The computational methods and techniques employed for the

optimization of the parameters are also discussed. Calculated static, dynamic, and

thermal properties of the three metals are presented and compared with experimental

or with theoretical data, whenever experiments are not available. The final section

details the strengths of the present approach and summarizes the main opportunities.

2. Model and computations

2.1. Model

In this cohesion model, the energy of atom i is the sum of four contributions involving

the neighboring atoms j at distances rij = krj � rik:

Ui = Uhc
i,1 + UTF

i,2 + Ud
i,3 + U s

i,4 (1)

The first term with superscript hc accounts for hard-core repulsive interactions. The

second term with superscript TF represents the repulsive interactions of the electron

kinetic energy. The two other terms represent attractive interactions related to s and

d electrons respectively, both contributing to the cohesion energy of these transition

metals [23, 22]. Hard-core interactions are empirically described by a cubic spline:

Uhc
i,1 =

8
<

:
As

P
j 6=i

h
1� rij

rs

i3
if rij  rs

0 otherwise
(2)

This short-range term is crucially important because it controls the equation of state,

the formation energies of interstitials, the thermal expansion, and to some extent the

amplitudes of atomic MSD. Its form is purely empirical combining functional simplicity

with the need of a rapidly vanishing with increasing the interatomic distance hard-core

repulsion. It is a posteriori justified by the faithful reproduction of the aforementioned

properties.

The second term was firstly introduced in a recent work dealing with the

phenomenological modeling of cohesion in noble metals (EGTB potentials) [13]. This

term aims at capturing the increase of repulsion between ions due to the increase of the

kinetic energy of conduction electrons when the internuclear distances decrease [9]. This

repulsive contribution is accounted for by a n-body functional mirroring the functional

form for the kinetic energy of a non-interacting electron gas [22]:

UTF
i,2 = ATF

 
X

j 6=i

⇢s (rij)

! 5
3

(3)

where ATF is an adjustable parameter and ⇢s (rij) are the contributions of atoms j

to the density of s-electrons at the location of atom i. This electron density is an

explicit function of the positions of neighbors j that replaces the cruder uniform density

approximation of the free-electron gas model.
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The third term in Eq.(1) is a n-body non-additive term, formally similar to the

expression of the density of d-electrons states obtained within the second moment

approximation. This is the key ingredient for the description of the cohesion in transition

metals (Friedel model [24, 23, 9]). Accordingly, this cohesive contribution to the energy

of atom i is given by:

Ud
i,3 = �⇠d

 
X

j 6=i

⇢d (rij)

! 1
2

(4)

where ⇠d is an adjustable parameter and ⇢d (rij) are the contributions of atoms j to the

d-electron density at the location of atom i. The related to this term interactions are

empirically extended beyond the first neighbor distance, a precondition convincingly

demonstrated by previous work [10, 13]. Although d-bonding dominates the cohesion

energy of transition metals, valence s-electrons are also expected to contribute [25]. This

contribution is expressed by the last term in Eq.(1) via a functional formally identical

to Ud
i,3, with no other justification than computational convenience:

U s
i,4 = �⇠s

 
X

j 6=i

⇢s (rij)

! 1
2

(5)

where ⇠s is again treated as an adjustable parameter and ⇢s (rij) is the density of s-

electrons within the Voronoi cell of atom i. The reason for including this contribution

in the cohesion energy stems from the empirical finding that it substantially improves

the agreement between calculated and experimental phonon dispersion relations: in

particular, the longitudinal and transversal [111] phonon-branches of Mo and W are

drastically improved close to the symmetry point H of the Brillouin zone (Fig. 2). There

is no justification of this choice but its operational capability in improving the computed

phonon dispersion in Mo and W with respect to the experiments. This result is further

discussed in section 3.2.

In most of the e↵ective approaches of cohesion in transition metals, the electron

density is usually represented via exponential or polynomial functions of the interatomic

radial distances. Instead, the choice made in the present work consisted in using radial

atomic orbitals adapted to each transition element. Thus, Cr(⇢3d, ⇢4s), Mo(⇢4d, ⇢5s) and

W(⇢5d, ⇢6s), functions were used with e↵ective charges treated as adjustable parameters

parameterizing these expressions (see Appendix). Since these atomic orbitals are long-

range functions, quality that is not required for describing electron densities in metals, a

multiplicative Fermi-Dirac screening is applied to the last for trimming these functions

and thereby complying with the short-range behavior of the electron density in metals:

fk
FD(rij) =

1

1 + exp
h
✏k
⇣

rij
rk0

⌘
� 1
i (6)

where ✏k and rk0 are adjustable parameters with values adapted to the corresponding s

or d electron densities.
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Table 1. Experimental data used in the potential parameterization: Ec and Ev are
the energies of cohesion [27, 28] and of the vacancy formation [29, 30] respectively; a0 is
the lattice constant (expressed in nm) at zero pressure and at the temperatures T=0 K
for Mo and W and T=77 K for Cr; B, C’, and C44 are the bulk and shear elastic moduli
(expressed in GPa). Lattice and elastic constants are taken from Ref. [31]. In italics
between parentheses are reported the results from the best fit of the cohesion model
against the experimental data. Formation energies of vacancies arise from unrelaxed
states. The volume compression is � = V/V0 where V0, represents the volume at the
atmospheric pressure and at temperature T=0 K.

Quantity Cr Mo W

Ec(eV/at) 4.2(4.18) 6.81(6.7) 8.66(8.64)
Ev(eV ) 2.0� 2.4(2.13) 3±0.2(3.27) 4±0.3(4.27)
a0(nm) 0.2881(0.287) 0.3143(0.31405) 0.3157(0.3153)
B(GPa) 190.1(193.1) 265.3(234.3) 314.15(315.24)
C 0(GPa) 150.7(147.0) 138.5(145.2) 163.8(164.76)
C44(GPa) 103.2(95.2) 125.0(125.1) 163.13(163.9)

Eq. of state [32] � / P(GPa) � / P(GPa) � / P(GPa)

0.734/135.14 0.7936/95.24 0.685/260.66
0.800/73.687 0.8106/83.257 0.755/160.59
0.851/46.118 0.8550/56.378 0.801/111.24
0.886/32.155 0.9178/27.005 0.855/68.280
0.912/22.308 0.9568/12.584 0.898/42.500

2.2. Computational details

2.2.1. Geometric models and boundary conditions Crystal models employed in this

work, for fitting the potential parameters or for running Molecular Dynamics (MD)

simulations, were made of up to N⇡15000 atoms. Thermal properties of systems such

large have practically converged to their values at the thermodynamic limit, which has

been shown by previous works for the formation energies of point defects and for the

atomic MSD [26, 6]. The computational box edges have been chosen parallel to the cubic

directions of the body centered cubic (bcc) lattice and periodic boundary conditions were

applied along the three cartesian space directions X, Y, and Z. In calculations with free

surfaces, the box size along the direction normal to the desired surface termination was

fixed at a value on the least twice larger the corresponding thickness of the crystallite.

Thereby, unphysical interactions between periodic images are avoided given the range

of atomic interactions (see below Table 2).

2.2.2. Model parametrization The parameters of the model were determined using

MERLIN, an open access multidimensional minimization package [33], driven by a user-

defined routine that computes the cohesive energy, the hydrostatic pressure, and the

elastic constants at the lattice constant value a = a0 taken as the reference state with

pressure value p = 0. Five other couples of pressure/volume values chosen from the
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experimental equations of state[32] were used in the minimization scheme (Table 1).

Given an initial set of model parameters, the driving routine computes the values of the

cohesive energies at zero pressure of the body centered cubic (bcc), the face centered

cubic (fcc), and the hexagonal compact (hcp) crystal structures; it also computes

the unrelaxed formation energies of the vacancy, and of three configurations of split

interstitials: h100i, h110i, and h111i .
Initial trial values of the model parameters are adjusted via various algorithms

that explore the directions in the vector space of parameters of the user-defined model;

several algorithms are concurrently implemented in MERLIN and can be alternately

employed for the numerical solution of these particular systems of equations. In the

present case, the objective function is defined as the sum of squared di↵erences between

the calculated and the experimental values of the properties listed in Table 1. In this

process, we required a supplementary condition on the cohesive energies (Ebcc
c >Efcc

c and

Ebcc
c >Ehcp

c ) to ensure the stability of the bcc structure over the competing fcc and hcp

structures.

The lattice and elastic constants listed in this table are extrapolations of

experimental data at finite temperatures: to T = 0 K for Mo and W, to T = 77 K

for Cr [31]. The lattice constant values used for the model parametrization, displayed

in italics, are linear extrapolations to T = 0 K of high-temperature data (T> ✓D,

where, ✓D, is the Debye temperature). The minimization procedure converges when

the di↵erences between calculated and experimental properties is smaller then a chosen

threshold value. The objective function yielding the potential parameters has in general

several local minima. Not all of them are physically meaningful: the final assessment

of the optimal parameter set is performed by comparing the model prediction to an

extended set of experimental or theoretically inferred properties from the literature but

also ensuring that the parameters of the model remain physically significant.

The final parameter sets for the three studied metals are summarized in Table 2.

The bottom line displays the cuto↵ radii for the meaningful use in numerical simulations.

It is worth remarking that the displayed values of rcs and rcd used in the radial density

functions are e↵ectively screened at distances shorter than the 4th neighbor distance.

The flexibility of the cohesion model for fitting the properties of the studied metals is

illustrated in Fig. 1 showing the good agreement between computed and experimental

equations of state [32].

2.2.3. Molecular statics and dynamics MD calculations were performed in the isobaric-

isothermal ensemble (NPT) with the combined Andersen [34] and Nosé [35] extended

algorithms implemented in the MD home-made code operating via the central di↵erence

finite di↵erences schemes of integration of the Newton equations of motion [36]. A time

step �t = 10�15s warrants the conservation of the extended total Hamiltonian at better

than 10�5. The minimum linear dimensions of the computational boxes were always

larger than twice the MD cuto↵ distances reported in Table 2. Thermal expansion and

MSD as functions of the temperature were obtained via time averages over (NPT)-
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Figure 1. Equations of state: calculated (full diamonds, full circles, full triangles) and
experimental [32] (open symbols). Full lines are cubic splines fitted on the experimental
data serving as guides for the eye. Pressures scale in the intervals [0, 200] (Cr), [0,
300] (W)(left Y-axis), [0, 100] (Mo) (right Y-axis). The figure illustrates the flexibility
of the model to satisfactorily adjust the equations of state of the three metals.

Table 2. Potential parameters: a0 is the lattice constant at zero pressure and
temperature. Cuto↵ radii for the hard-core repulsion (cubic spline), Fermi-Dirac
screening (rcs, rcd), and for molecular dynamics calculations (rcMD) are expressed
in a0 units.

Quantity Cr Mo W

a0(nm) 0.287 0.31405 0.3153
Aspline(eV) 59.6 137.28 174.5
rc�spline 0.88 0.868 0.872
ATF (eV) 0.0 17.5 10423.61
Zs 0.575 4.19 1.436
⇠s(eV) 53.76 8.17 6.65
Zd 0.79 2.93 2.946
⇠d(eV) 18.94 27.62 53.23

✏s 17.16 56.36 91.2
rcs 1.05 1.492 0.99
✏d 34.59 17.83 40.23
rcd 1.066 1.0445 1.3
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MD equilibrium trajectories that lasted 105 time steps. Energy minimizations at T=0

K, yielding relaxed surface and point defect formation energies, were performed with

the same in-house MD package operating the quasi-dynamic minimization scheme with

damping by setting to zero atom velocities if the value of the velocity-force scalar product

is negative [37].

3. Results

3.1. Static properties

The formation energies of point defects and the values of the surface excess energy for

three di↵erent surface terminations (100), (110), and (111) were obtained via energy

minimization of the appropriate initial configurations (Table 3).

The predictions for the vacancy formation energies and surface energy are in

reasonable good agreement with the experiments [29, 30, 38, 39, 40, 41, 42]. Given the

formation energies of di-vacancies with the constitutive vacancies located at first nearest

neighbor positions (1NN), the corresponding binding energy can be easily obtained and

is also displayed in this table. It should be observed that E1NN
b in W is quite close to the

experimental result [43] whereas experimental values for Cr and Mo are not available.

It is worth pointing out that some recent total energy calculations [15, 44, 45] report

the binding energy of the di-vacancy in W at a value in disagreement with experiments.

In particular, they predict the vacancy pair at 1NN position with almost vanishing

binding energy and the value negative (repulsive) for the vacancy pair at 2NN position.

Reasonable conclusions cannot be reached on this matter before the reason(s) why DFT

calculations significantly diverge from the available experimental evidence are better

understood [43].

The formation energies of interstitials for the studied metals and for various

configurations are not available from experiments. They were presumed by using

DFT results [51, 52]. These works question the former well-established belief that

h110i split-interstitials represent the lowest energy configuration in most bcc metals,

a view supported by a set of calculations relying on empirical many-body interatomic

potentials. DFT calculations suggest the existence of systematic trends in the relative

energies of formation of interstitials in various configurations in groups V and VI of

bcc transition metals. In particular, in Mo and W the h111i configurations display

the lowest energies whereas in Cr the h110i and h111i configurations have nearly the

same energy of formation. The EGTB potentials developed in the present work reach a

similar prediction for W, whereas they slightly favor the h110i configurations in Mo and

Cr metals. The predicted absolute values of the formation energies are close to those

provided by the DFT calculations (Table 3). However, it is worth emphasizing that

none of these interstitials formation energies was entered as parameter in the model

parameterization and that a re-parameterization including this piece of information

could likely replicate the aforementioned trends. Nevertheless, this point is beyond
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Table 3. Calculated values of: the stability of the bcc versus the fcc and hcp
structures, point defect formation energies, Ev (vacancy), E1NN

2v (di-vacancy), di-
vacancy binding energies, split interstitials, Eint

100, Eint
110 Eint

111 and relaxed surface
energies, E100

s , E110
s , E111

s . ntal data are reported between parentheses in italics:
Thermocalc lattice stability data from Refs. [46, 47, 48, 49], formation energies of
vacancies and di-vacancies from Refs. [29, 30, 39, 38, 40, 41, 42] and the di-vacancy
binding energy in W, E1NN

b (eV ) from Ref. [43]. Experimental surface energies are
recommended average values from Ref. [50]. Valuesbetween parentheses in bulk
characters are estimations based on DFT calculations from Refs. [51, 52]

Quantity Cr Mo W

�Ebcc/fcc(eV ) 0.12(0 .108/0 .278 ) 0.27(0 .238/0 .29 ) 0.15(0 .109 )
�Ebcc/hcp(eV ) 0.12 0.27(0 .02 ) 0.15(0 .152 )

E1v(eV ) 2.04 (2.0-2.4) 2.82 (2.24-3.0) 4.18 (3.14-4.0±0.3)
E1NN

2v (eV ) 7.83 (6.65)
E1NN

b (eV ) 0.53 (0.7)

Eint
100(eV ) 6.76 (6.64) 11.5 (9.0) 10.66 (11.5)

Eint
110(eV ) 5.53 (5.67) 9.16 (7.58) 10.53 (9.84)

Eint
111(eV ) 6.3 (5.69) 9.37 (7.42) 9.72 (9.55)

Es
100(mJ/m2) 1864.3 2368.0 3216.2

Es
110(mJ/m2) 1787.5 2323.4 2953.7

Es
111(mJ/m2) 2252.4 2728.4 3755.1

Es
exp(mJ/m2) (2090) (2630) (2690)

the scope of the present work that only aims at testing the accuracy of the proposed

cohesion model for describing bcc metals and comparing its strengths to other semi-

empirical models.

Regarding surface energies, the present model exceeds the expectations of other

models available in the literature that generally underestimate surface energies and fail

to reproduce the correct order of stability of the low index surface terminations [53, 54].

Predicted energies of the low-index surface terminations are in fair good agreement

with the experimental values [50]. However, the model favors the unreconstructed

p(1x1) periodicity for all three low-index surfaces in contradiction with the experimental

findings that clean Mo and W (100) facets are subjects to reconstruction [55, 56]. This

failure marks one limit of the transferability of the present model and provides a possible

direction for its further improvement.

3.2. Lattice dynamics

The accurate description of phonon dispersion relations has been a strong motivation

of the present work that introduces a new class of empiric potentials for Cr, Mo,

and W extending the library of potentials for these metals that already exist in the

literature. Indeed, accurate phonon relations help in predicting reliable thermodynamic

properties of crystals. Polymorphism and lattice instabilities are relevant problems in
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many metallic systems [57]. The application of external pressure on such systems can

drive these compounds towards or away from lattice instabilities, and several examples

have been found relating tightly with peculiarities of dispersion plots often referred to as

anomalies in the literature. Unlike other empirical potentials, the EGTB potentials meet

this aforementioned objective. Figure 2 displays calculated harmonic phonon dispersion

relations in the irreducible wedge of the Brillouin zone for these three transition metals at

T=0 K. Experimental data points measured at room temperature taken from reference

experiments are also shown [58, 59, 60]. The overall agreement is excellent excepted the

[111] longitudinal branch in Cr predicted harder than is its experimental counterpart.

Interestingly, the trends are satisfactory for the [111] transverse branches, except near

the zone limits. It is worth mentioning the decisive role of the U s
i,4 cohesive term in

improving the agreement between computed and experimental branches in Mo and W.

Indeed, without this cohesive term, a significant softening occurs of the force constants

at the symmetry points H and N, the model failing to reproduce the experimental data.

The present cohesion model predicts a systematic reduction in the separation of

the two non-degenerate transverse branches along the ⌃ line from Cr to Mo and W.

The decreasing Zener anisotropy of the experimental elastic constants across the three

metals is conceivably related to this behavior, which is captured by the present model

including the degeneracy of the two transverse branches in the elastically isotropic W.

The present cohesion model outperforms other semi-empirical models: for instance,

the bond-order potentials used to predict the dispersion relations of Mo and W by Čàk

et al. [19] (dotted lines in Fig. 2) provide an example of the better behavior of EGTB

potentials. Nevertheless, the systematic study of their exceeding performance against

other potentials from the literature is beyond the scope of the present work. Moreover,

there are still deviations between EGTB predictions and experimental data that

underline the need for further refining the cohesion model. Two of such discrepancies

are reported below and constitute a possible roadmap for further improvements:

(i) Along the ⇤([⇠⇠⇠]) and ⌃([⇠⇠0]) longitudinal branches, especially at k � 0.25, the

experimental frequencies in Mo and Cr are softer than predicted, an e↵ect less

pronounced in the case of W. On the basis of the band structure calculations by

Asano et al. [61], Shaw et al. [59] attributed the strong depression of frequencies

near the symmetry point N to the structure of the Fermi surface in Cr. More

specifically, this anomaly proceeds from nesting portions of the Fermi surface, a

feature suggested common to all the elements in this group [62, 63, 64].

(ii) The dispersion relations along the F line connecting the high symmetry points P

and H, are correctly captured in Mo and W by the present cohesion model but not in

Cr. In this metal, the transverse and longitudinal branches are almost degenerate, a

feature that is not reproduced by the present model except near the point H where

symmetry reasons impose branch degeneracy. Nevertheless, the EGTB potentials

capture the correct shape of frequency eigenvalues along the �-H line.
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Figure 2. Comparison between experimental (full symbols) and calculated (full, dash-
dotted and dotted lines) phonon dispersion curves. Experimental data are taken from:
Refs.( [59] (Cr), [60] (Mo), [58] (W)). The letters L (full squares, dash-dotted lines)
and T (full circles, full lines) mark respectively longitudinal and transverse phonon
modes. Full and dash-dotted lines: present work, dotted lines refer to the model of
Ref. [19]. A very good agreement between the present calculations and the experiment
is obtained, in particular for Mo and W metals.
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Figure 3. Comparison between experimental (open symbols) and calculated (full
symbols) lattice constants (a-c) and atomic MSD (e-g) as functions of the temperature.
Dashed lines are guides for the eye, left-hand side figures: linear or cubic spline fits
on the experimental data, right-hand side figures: linear or parabolic fits on the MD
data. Experimental lattice constants are taken from: Refs. [31, 65] (Cr), Ref. [31]
(Mo), [31, 66] (W), and MSD from Refs. [67, 68] (Cr), [69] (Mo), and [70] (W).
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3.3. Thermal properties

For the three studied metals, lattice constants a and atomic MSD’s < u2 >=

(ux
2 + uy

2 + uz
2) /3, were obtained as functions of the temperature from equilibrium

trajectories in the (NPT) ensemble (Fig. 3, full symbols). For the comparison purpose,

experimental values are also reported in this figure (open symbols).

Lattice constant predictions of the present model, as a function of the temperature,

are in excellent agreement with the experimental data [31, 65, 66], except below the

Debye temperature in Cr and W and at temperatures exceeding ⇡ 0.7Tm in all the three

metals, where Tm is the melting temperature. Similarly, atomic MSD calculated with

the present model also reproduce satisfactorily the experimental data [70, 67, 69, 68],

though this agreement should be considered with caution as experimental values are

available only at modest temperatures (T<0.3Tm) and that only a single value has been

reported in the literature for Mo [69]. It is worth emphasizing that a same level of

accuracy was reached with the EGTB model of cohesion used for predicting in noble

metals the lattice constant and MSD values as functions of the temperature [13], thus

underlining the broader impact of the involved repulsion functionals and the prospective

for a possible generalization to other elements.

4. Conclusive remarks

The model proposed in the present work di↵ers from other existing phenomenological

cohesion models because it introduces a repulsive functional of the many-body kinetic

energy of electrons, a term better behaving than the widely used pairwise additive,

inverse power or Born-Mayer exponential functions of the interatomic distance. It likely

constitutes the reason of the performance of the EGTB models to match faithfully the

surface energies and the trends observed when changing the surface crystallography.

Similarly, lattice dynamics for these three bcc metals is reproduced with increased

accuracy in comparison with experiments, thanks namely to the empirical finding

that the s-electron contributions to cohesion control crucially phonon dispersion.

Other phenomenological potentials are less successful in this respect. The fairly good

agreement of calculated thermal properties with the experiment, ranks the potentials

developed in this work among the best candidates for large-scale numerical simulations.

The presence in these potentials of cubic spline terms allows for better describing

short-range interactions that are important for reducing the gaps between calculated

and experimental equations of state. These spline terms also improve the calculated

formation energies of interstitials with respect to estimations based on total energy

approaches. However, additional work is still required to better match the trends

predicted by ab-initio calculations. We believe these further improvements will help

to bridge the gap between simulations and experiments, making atomistic modeling

more predictive and thereby getting closer to the long-term objective of developing

materials-by-design via computations. The empirical potentials employed to describe
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highly defective solids should capture not only pairwise contributions but also include

the description of repulsive many-body e↵ects. The many-body functional form of

EGTB potentials is an essential ingredient of the successful modeling of defective

solids as is illustrated by the very good predictions of surface and defect formation

energies. In this context, simulations using EGTB potentials could be broadly

employed to investigate mechanical properties of nano-structured materials and to

detect nanoscale processes and structures, which are often inaccessible to experiments

due to instrumental limitations of imaging techniques. Another related domain where

EGTB-based simulation could bring promising results is the investigation of atomic-

scale mechanisms controlling hardening and ductility of nano-structured metals. Finally,

coupled with other multi-scale techniques, EGTB potentials could serve for studying the

e↵ect of loading rate on the mechanical response of metals and alloys.
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Appendix A. Orbital equations

To cover every aspect describing the functions used in this paper, below are listed the

expressions of the atomic wave functions (orbitals) entering the definition of the cohesive

energy used in the present study of the transition refractory metals. These functions

are extensively reviewed, commented and graphically illustrated in the literature and

online [71]. In these functions the variable ⇢ is given by, ⇢ = (2Zr/n) where, n is the

principal quantum number, Z is the e↵ective charge and, r is the distance expressed in

atomic units (Bohr).

Appendix A.1. s-electron radial wave functions

R4s =
1

96
·
�
24� 36⇢+ 12⇢2 � ⇢3

�
Z3/2e�⇢/2 (A.1)

R5s =

p
5

300
·
�
120� 240⇢+ 120⇢2 � 20⇢3+

+ ⇢4
�
Z3/2e�⇢/2 (A.2)
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R6s =

p
6

2160
·
�
720� 1800⇢+ 1200⇢2 � 300⇢3+

+ 30⇢4 � ⇢5
�
Z3/2e�⇢/2 (A.3)

Appendix A.2. d-electron radial wave functions

R3d =

p
30

9
· ⇢2Z3/2e�⇢/2 (A.4)

R4d =

p
5

96
· (6� ⇢) ⇢2Z3/2e�⇢/2 (A.5)

R5d =

p
70

150
·
�
42� 14⇢+ ⇢2

�
Z3/2e�⇢/2 (A.6)
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