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On the Realization of Impulse Invariant Low-rank
Volterra Kernels

Phillip M. S. Burt and José Henrique de Morais Goulart

Abstract—Volterra models can accurately model numerous
nonlinear systems of practical interest, but often at an unac-
ceptable computational cost. If the Volterra kernels of a system
have low-rank structure (like, e.g., kernels of bilinear systems),
this major drawback can in principle be mitigated. Yet, when
one seeks an exact discrete-time model of a mixed-signal chain
involving that system, the existing formula that generalizes the
impulse invariance principle to Volterra kernels yields discrete-
time kernels that do not share the same low rank. At first sight
this would seem to seriously complicate the otherwise simple
discrete-time realization of low-rank kernels. We show here that
this not the case. By defining a cascade operator, the structure
of generalized impulse invariance can be unveiled, leading to
a realization without an inordinate increase in computational
complexity. Finally, we give a numerical example involving a
physical system that shows the relevance of our proposal.

Index Terms—nonlinear systems, bilinear systems, Volterra
model, impulse invariance

I. INTRODUCTION

VOLTERRA models are a popular choice for the mod-
eling of non-linear systems of various kinds [1]–[7]. In

particular, the most commonly used variant in digital signal
processing applications, known as a Volterra filter (VF), is
essentially a feedforward polynomial model whose output is
linear in the model parameters—a desirable feature for system
identification—and whose wide applicability has been estab-
lished by Boyd and Chua in the eighties [8]. Unfortunately,
though, the amount of parameters of a VF grows quite rapidly
with the system memory length and the order (nonlinearity
degree) of the model, whose practical realization thus often
becomes too costly.

Motivated by this drawback, a whole line of research has
been devoted to devising more practical alternatives which
trade some generality of the VF—and often also the linearity
in the parameters—by a lower parametric complexity [9]–
[18]. One of the most effective and elegant proposals is based
on the simple assumption that the pth-order Volterra kernel
hp(n1, . . . , np) (high-order analogues of the impulse response,
see Section III for a definition) approximately decomposes as
a sum of a few separable functions, that is, hp(n1, . . . , np) ≈∑Rp

r=1 h
(1)
r (n1) . . . h

(p)
r (np) with a sufficiently small Rp. This

amounts to a low-rank (specifically, rank-Rp) approximation
of the kernels, viewed as tensors [13]. Besides the potential
dramatic reduction in computational complexity, one major
advantage of this approach is its straightforward realization by
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a combination of linear blocks and instantaneous nonlinearities
or multipliers.

However, in applications where an exact discrete-time mod-
eling of a mixed-signal chain consisting of discrete-time
and continuous-time parts is desirable (for instance, in the
cancellation of signals originating from discrete-time, such as
in acoustic echo cancellation or nonlinearity mitigation [10],
[19]), the low-rank realization is not as simple anymore. The
reason is that the well-known impulse invariance [20] between
discrete-time and continuous-time linear time-invariant (LTI)
systems does not generalize “cleanly” to nonlinear systems,
but has to be somewhat modified so as to incorporate a factor
which depends on the pattern of repeated kernel arguments,
as pointed out in [21], [22]. We show that, as a consequence,
the computational cost of a naive realization of generalized
impulse invariance, while still much smaller than that of a
VF realization (whose cost is not affected by generalized
invariance), would increase by as much as 2p−1 times. We
then deduce a much more efficient realization, preserving the
great attractiveness of the low-rank approach.

To the best of our knowledge this problem has not been
previously addressed. Apart from its practical relevance, as
discussed above, the result we present is of interest in itself
as an addition to the theory of signal processing.

II. IMPULSE INVARIANCE OF LTI SYSTEMS

A continuous-time LTI system bandlimited to 1/2T Hz,
with impulse response hc(t), can be implemented [20, p. 173]
with a mixed-signal chain containing the impulse invariant
discrete-time system with impulse response1

h(n) = hc(nT ). (1)

Impulse invariance also comes into question when modeling
the mixed-signal chain depicted in Fig. 1, which is of greater
concern here and is now described. From the input sequence
u(n), an impulsive D/A converter2 with sampling period T
provides

uc(t) =
∑∞

k=−∞ δ(t− kT )u(k). (2)

After a reconstruction filter hr(t), an application-specific sys-
tem ho(t), and an anti-aliasing filter ha(t), all LTI, it follows
from (2) that

yc(t) =
∑∞

k=−∞ hc (t− kT )u(k), (3)

1Hereafter, the subscript c is used to distinguish a continuous-time signal
from its discrete-time version. For convenience, we have dropped the factor
T from the definition h(n) = Thc(nT ) of impulse invariance of [20].

2δ(t) is the Dirac delta function. The assumption of ideal impulsive
excitation is not restrictive, since the reconstruction filter hr(t) can absorb
the rectangular impulse response of a real-world zero-order hold D/A.
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ho(t)hr(t) ha(t) A/DD/A
u(n) uc(t) yc(t) yc(nT )

Fig. 1. Signal chain starting in discrete-time, passing through continuous-time
and then returning to discrete-time.

where hc(t) is the overall impulse response given by the
convolutions hr(t) ∗ ho(t) ∗ ha(t). Finally, an A/D sampler
gives the output yc(nT ). It follows that a system with impulse
response h(n) = hc(nT ), input u(n) and output y(n) =∑∞

k=−∞ h(n− k)u(k) is an exact discrete-time model of the
signal chain3 in the sense that

y(n) = yc(nT ), (4)

as desired, for instance, in acoustic echo cancellation [23].
Remark. The sampling of yc(t) in (4) and of hc(t) in (1) must
be consistent at discontinuities. For instance, let hc(t) = e−at

if t > 0 and hc(t) = 0 if t < 0. From (3) then, yc(t) is dis-
continuous at t = nT if u(n) ̸= 0. Assuming the A/D sampler
always provides the right-side limit yc(nT+) (respectively, the
left-side limit yc(nT−) or [yc(nT+)+ yc(nT−)]/2), it follows
from (3) that, to achieve (4), h(0) must be given by hc(0+) =
1 (respectively, hc(0−) = 0 or [hc(0)+ + hc(0−)]/2 = 1/2).

It should be noted that when hc(t) represents an actual
physical system, the impulse response h(n) = hc(nT ) will, in
general, have infinite duration. As long, though, as the system
hc(t) is rational, the exact realization (with a finite number of
operations) of a discrete-time system with impulse response
h(n) is straightforward [24].

III. GENERALIZATION OF IMPULSE INVARIANCE TO
VOLTERRA KERNELS

Let the analog portion of the chain in Fig. 1 be now nonlin-
ear. (This can arise, for instance, from a nonlinear loudspeaker
in acoustic echo cancellation [19].) We assume then that its
input/output relation is given by the (causal) Volterra series
yc(t) =

∑∞
p=1 yc,p(t), with homogeneous outputs given by

yc,p(t) =

∫ ∞

0

· · ·
∫ ∞

0

hc,p(τ1, . . . , τp)

p∏
i=1

uc(t− τ̄i)dτ1 . . . dτp,

(5)
where τ̄i =

∑p
j=i τj and hc,p(τ1, . . . , τp) is a regular Volterra

kernel of order p [21, p. 15], continuous for τ1, . . . , τp > 0.
Although the existence of the realization problem addressed
in this paper is independent of employing conventional4 or
regular Volterra kernels, the latter are more convenient for the
required algebraic manipulation.

To provide a discrete-time model of the signal chain, let
n̄i =

∑p
j=i nj , where nj always represents discrete time, and,

for some causal discrete-time kernel vp : Zp → R let

yp(n) =

∞∑
np=0

. . .

∞∑
n1=0

vp(n1, . . . , np)

p∏
i=1

u(n− n̄i), (6)

3In this case, is not required that system hc(t) be bandlimited.
4With a conventional kernel h(conv)

c,p (τ1, τ2, . . . , τp) = h
(reg)
c,p (τ1 − τ2, . . . ,

τp−1 − τp, τp), (5) assumes the more familiar form with τi instead of τ̄i.

with u(n) and uc(t) still being related by (2). It follows from
[22] that achieving yp(n) = yc,p(nT ), p > 1, assuming right-
side sampling at discontinuities, requires generalizing (1) as

vp(n1, . . . , np) =
hc,p(n1T, . . . , npT )

m1! . . .mq!
, (7)

where q is the number of groups of consecutive null indices
among n1, . . . , np−1 and m1−1, . . . ,mq−1 are the numbers
of indices in each group5. For instance, if p= 5, n1 = n2 =
0 ̸= n3 and n4=0, then q=2, m1=3 and m2=2.

This generalized impulse invariance results from the impul-
sive terms of the integrand in (5) and the possible discontinuity
of the kernel on the border of the domain τ1, . . . , τp−1 ≥ 0.
In the interior of this domain we retrieve a direct extension of
the invariance condition (1), that is, we have vp(n1, . . . , np) =
hc,p(n1T, . . . , npT ) for n1, . . . , np−1 > 0. For more details on
the steps leading to (7), the reader is referred to [22].

Similarly to the discretized h(n) of (1), (7) gives in general
an infinite duration vp(n1, . . . , np). This raises the issue of its
realization with a finite number of operations, not addressed
in [22]. We do this now, for the class of low-rank kernels.

IV. REALIZATION OF LOW-RANK KERNELS

We consider systems with low-rank Volterra kernels

hc,p(τ1, . . . , τp) =
∑Rp

r=1 H
(p)
c,r (τp) . . .H

(1)
c,r(τ1), (8)

for any set of (vector- and) matrix-valued functions H
(i)
c,r(τi)

of compatible dimensions6, and a given Rp ∈ N∗, termed
the rank of hc,p. Of particular practical interest are bilinear
systems [21], [25], further discussed in Section V, for which
Rp = 1. We consider Rp = 1 from here onward, and thus
look into the realization of one of the parallel branches of (8).

A. Cascade structure and operator

From (8) and (5) it follows directly that low-rank kernels
can be realized quite simply by a cascade of linear blocks and
multipliers. This is depicted in Fig. 2 (p = 3, R3 = 1), where

z1(t) = [
∫∞
0

H
(1)
c (τ)uc(t− τ)dτ ]uc(t)

= [H(1)
c ∗ uc(t)]uc(t) = H(1)

c ◦ uc(t),

z2(t) = [H(2)
c ∗ z1(t)]uc(t) = H(2)

c ◦ z1(t),
yc,3(t) = H(3)

c ∗ z2(t).

Here, ∗ stands for convolution and ◦ stands for the cascade
operator defined, given uc(t), by h ◦ x(t) ≜ [h ∗ x(t)]uc(t),
which is linear in h and in x. Also, with it we can write

yc,3(t) = H(3)
c ∗ {H(2)

c ◦ [H(1)
c ◦ uc(t)] }.

Hence, the realization can be expressed as a sequential calcu-
lation with p−1 applications of the cascade operator, followed
by a convolution at the final stage.

5A related result is stated without proof in [21, p. 254]. For simplicity, the
dependence of mi on n1, . . . , np−1 is omitted. If yp(n) = yc,p(nT−) or
yp(n) = [yc,p(nT−)+yc,p(nT+)]/2 at discontinuities, the result is similar.

6For uniformity of notation, H
(p)
c,r (resp., H

(1)
c,r ) is denoted as a matrix,

though being a row (resp., column) vector. If Rp = 1, we drop subscripts r.
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uc(t)
z1(t) yc,3(t)×

z2(t)

×H
(2)
c H

(3)
cH

(1)
c

Fig. 2. Cascade realization of a separable kernel, p = 3, R3 = 1. Double
arrows denote vector-valued signals.

B. Parallel-cascade realization of impulse invariance

Consider the sampled kernel factors H(i)(ni) = H
(i)
c (niT ).

We can readily verify that, assuming the input has the form
(2), the cascade structure has this very particular property:

Property. Replacing H
(i)
c (τi) with H(i)(ni) and uc(t) with

u(n) in the cascade structure that realizes hc,p(τ1, . . . , τp) =

H
(p)
c (τp) . . .H

(1)
c (τ1), gives a realization of7

ṽp(n1, . . . , np) = H(p)(np) . . .H
(1)(n1). (9)

This discrete-time kernel, however, is not impulse invariant
in relation to hc,p(τ1, . . . , τp), since the term 1/m1! . . .mq!
in (7) is missing. To include the missing term, let us initially
rewrite the invariance condition (7), assuming Rp = 1, as

vp(n1, . . . , np) = cp(n1, . . . , np−1)H
(p)(np) . . .H

(1)(n1),
(10)

where cp(n1, ..., np−1) ≜ 1/m1! . . .mq!. We note then that cp
can be decomposed as

cp(n1, . . . , np−1) =
∑2p−1

r=1 arc
(1)
r (n1) . . . c

(p−1)
r (np−1),

(11)
where c

(i)
r (ni) is either the unit impulse8 δ(n) or its comple-

ment δ̄(n) = [1− δ(n)].

Example. Since c3(n1, n2)=1 when n1, n2 > 0, c3(n1, n2) =
1/2 if either n1=0 or n2 = 0 (but not both), and c3(n1, n2) =
1/3! if n1 = n2 = 0, it decomposes as

c3(n1, n2) = δ̄(n1)δ̄(n2) +
1
2 δ(n1)δ̄(n2)

+ 1
2 δ̄(n1)δ(n2) +

1
3! δ(n1)δ(n2). (12)

Now, from (10) and (11) we get

vp(n1, . . . , np) =
∑2p−1

r=1 arG
(p)
r (np) . . .G

(1)
r (n1), (13)

where G
(i)
r (ni) is either given by δ̄(ni)H

(i)(ni) or by
δ(ni)H

(i)(ni), 1 ≤ i < p, and G
(p)
r (np) = H(p)(np).

It follows that vp can be realized by summing the output
of 2p−1 parallel cascade structures. Nevertheless, because
all blocks G

(i)
r (ni) in (13) come from the decomposition

(δ(ni) + δ̄(ni))H
(i)(ni), we can largely mitigate this in-

crease in computational complexity by “sharing” computations
among the branches of the parallel structure. We describe next
a systematic way of implementing this strategy.

7This is not true in general for interconnections of linear blocks. For in-
stance, two discrete-time linear systems f(n) = fc(nT ) and g(n) = gc(nT )
in series have impulse response

∑
k f(k)g(n−k) ̸=

∫
fc(τ)gc(nT −τ)dτ .

8δ(n) = 1 if n = 0 and δ(n) = 0 if n ̸= 0.

u(n)
h̄(1) ×

h(1)(0)

+

×

z1,1(n)

z1,2(n)
1
2

h(2)
y2(n)z1(n)

Fig. 3. Realization of impulse invariant kernel of order p = 2.

C. Efficient realization of impulse invariance

For simplicity, we consider henceforth low-rank kernels
hp(τ1, . . . , τp) = h

(1)
c (τ1) . . . h

(p)
c (τp) with scalar (instead of

matrix) factors, the extension to matrices being straightfor-
ward. With h(i)(ni) = h

(i)
c (niT ), we define:

h̄(i)(ni) ≜ δ̄(ni)h
(i)(ni), h

(i)
0 (ni) ≜ δ(ni)h

(i)(0). (14)

With p = 2, initially, from (10) and (14) we have c2(n1) =
δ̄(n1) + 1/2 δ(n1), and, therefore,

v2(n1, n2) =
[
δ̄(n1) +

1
2 δ(n1)

]
h(1)(n1)h

(2)(n2)

=
[
h̄(1)(n1) +

1
2 h

(1)
0 (n1)

]
h(2)(n2).

Using this in (6) and a discrete-time version of the cascade
operator h ◦ x(n) ≜ [h ∗ x(n)]u(n), we can write the output
as

y2(n) = h(2) ∗
[(

h̄(1) + 1
2h

(1)
0

)
◦ u(n)

]
. (15)

Defining now z1(n) ≜
(
h̄(1) + 1/2h

(1)
0

)
◦ u(n), it follows

from the linearity in h of the cascade operator that

z1(n) = z1,1(n) +
1
2 z1,2(n), (16)

where
z1,1(n) = h̄(1) ◦ u(n), (17)

z1,2(n) = h
(1)
0 ◦ u(n) = h(1)(0)u2(n), (18)

and the output is y2(n) = h(2) ∗ z1(n). This realization is
depicted in Fig. 3.

Let, now, p = 3. From (10) and (12) we can write, initially,

v3(n1, n2, n3) =
{[

δ̄(n1) +
1
2 δ(n1)

]
δ̄(n2)+

1
2 δ̄(n1)δ(n2)

+ 1
3! δ(n1)δ(n2)

}
h(1)(n1)h

(2)(n2)h
(3)(n3).

Moving h(1)(n1)h
(2)(n2) into the brackets, we get then

v3(n1, n2, n3) =
{[
h̄(1)(n1) +

1
2 h

(1)
0 (n1)

]
h̄(2)(n2)

+ 1
2 h̄(1)(n1)h

(2)
0 (n2) +

1
3! h

(1)
0 (n1)h

(2)
0 (n2)

}
h(3)(n3),

so that, using this in (6), introducing another cascade operator
for the second stage, and with (16)–(18), we can write

y3(n) = h(3) ∗
[
h̄(2) ◦ z1(n) + 1

2

(
h
(2)
0 ◦ z1,1(n)

)
+ 1

3!

(
h
(2)
0 ◦ z1,2(n)

)]
.

Organizing as for p = 2 then, y3(n) = h(3) ∗ z2(n), where

z2(n) = z2,1(n) +
1
2 z2,2(n) +

1
3! z2,3(n),
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u(n)
h̄(1) ×

h(1)(0)

+

×

z1,1(n)

z1,2(n)
1
2

h̄(2) ×

h(2)(0)

+

×

z2,1(n)

z2,2(n)
1
2

h(3)

×
z2,3(n)

1
3!

y3(n)z1(n) z2(n)

Fig. 4. Realization of impulse invariant kernel of order p = 3.

with

z2,1(n) = h̄(2) ◦ z1(n),
z2,2(n) = h

(2)
0 ◦ z1,1(n) = h(2)(0)z1,1(n)u(n)

z2,3(n) = h
(2)
0 ◦ z1,2(n) = h(2)(0)z1,2(n)u(n),

which is depicted in Fig. 4. Generalizing, we should compute:
• For i = 1, . . . , p− 1 and with z0(n) = z0,1(n) = u(n),

zi,1(n) =
[
h̄(i) ∗ zi−1(n)

]
u(n),

zi,j(n) = h(i)(0)zi−1,j−1(n)u(n), j = 2, . . . , i+ 1,

zi(n) =
∑i+1

j=1
1
j!zi,j(n).

• yp(n) = h(p) ∗ zp−1(n).

V. EXAMPLE: BILINEAR SYSTEMS

Bilinear systems have state-space equations of the form

x′
c(t) = Fxc(t) +Gxc(t)uc(t) + buc(t)

yc(t) = c⊤xc(t),

and can approximate, up to any kernel order p, the large class
known as linear-analytic systems [21], [26], [27]. Their kernels
read hc,p(τ1, . . . , τp) = cTeFτpGeFτp−1G . . .GeFτ1b, τi ≥
0, thus having the low-rank form of (8) with Rp = 1 (that is,
rank one), and H

(1)
c (τ1) = eFτ1b, H(i)

c (τi) = eFτiG, 1< i<

p, and H
(p)
c (τp) = c⊤eFτpG.

As an example, consider the bilinear model of a bass
loudspeaker [22], sampled at a rate of 1.5 kHz. An infinite-
memory discrete-time realization of its fourth-order impulse
invariant Volterra kernel was derived as in Section IV-C, and
the corresponding output y4(n) obtained for an unit-power
AWGN input u(n). For validation, the output ŷ4(n) of the
time-truncated kernel was directly calculated using (7) in (6)
(in other words, a VF realization) with n̄i ≤ 120, aiming at a
small discrepancy ϵ(n) = y4(n) − ŷ4(n). Indeed, as seen in
Fig. 5, ϵ(n) is of the order of 10−16 (mainly due to computing
with 64 bit precision), validating the proposed procedure. Also
displayed is the output ỹ4(n) of the kernel given by (9). Its
large discrepancy in relation to y4(n) shows that the invariance
principle of (7) can be very relevant in practice.

To compare computational costs now, a VF filter realization
of the truncated kernel, with n̄i < N in (6), requires at
least

(
N+p−1

p

)
multiplications [28, p. 36]9. In the previous

9Excluding the computation of
∏p

i=1 u(n − n̄i), for simplicity. All
multiplication figures refer to the computation of one output sample. In [28]
a triangular kernel equivalent to vp is considered.

0 20 40 60 80 100 120 140 160 180 200 220 240

−1

−0.5

0

0.5

1

·10−6

n

y4(n) 109ϵ(n) ỹ4(n)

Fig. 5. Output y4(n) of the realization of an impulse invariant fourth-
order kernel and its discrepancy ϵ(n) to a time-truncated VF realization. For
comparison, we also depict the output ỹ4(n) of the non-impulse invariant
kernel of (9).

loudspeaker example, even allowing for less precision such
that {E[ϵ2(n)]/E[y24(n)]}1/2 = 10−3, still requires N = 48
and, thus, 249900 multiplications.

Consider next the last stage in Fig. 4, now with matrix
factors. For a bilinear kernel, H(p)(n) = cTeFTnG, n ≥ 0,
so yp(n) = H(p) ∗ zp−1(n) =

∑∞
k=0 c

TeFTkGzp−1(n − k),
which we readily see is realized by

xp(n+ 1) = Axp(n) +Bzp−1(n) (19)

yp(n) = cTxp(n) + dTzp−1(n), (20)

where dim[xp(n)] = M ≜ dim[xc(t)], A = eFT , B = eFTG
and d = Gc. Assuming A, B and d are pre-calculated and
have no structure to be exploited for reducing computational
cost, (19) and (20) require 2(M2 +M) multiplications. Pro-
ceeding similarly for the outputs of the remaining linear blocks
gives then a sub-total cost of CO = (2p−1)M2+3M . Finally,
the computation of the inputs zi(n) of the linear blocks
requires [(p−3)(p/2+1)+1]M2+[(p−1)(p/2+1)+3]M mul-
tiplications [29]10. In the loudspeaker example, p=4 requires
M = 34 [22], giving a total of 13226 multiplications, much
less than the at least 249900 required by the VF (and with no
loss in precision) and the slightly over 2p−1[CO+(p−1)M ] =
66368 required by the parallel-cascade of Section IV-B.

VI. CONCLUSION

By defining a cascade operator, we have shown how to
construct a realization of discrete-time kernels obtained from
continuous-time low-rank regular kernels by the generalized
impulse invariance principle. This construction is required
because such discrete-time kernels are not themselves of the
same low-rank and thus cannot be realized by the same cas-
cade structures that realize their continuous-time counterparts.
The proposed structure requires additional multipliers, not
incurring however in an inordinate increase of computational
complexity. The low-rank property is found in kernels with
practical relevance, and holds in particular for kernels of
bilinear systems.

10This results from eq. (27) in [29], with all Mi = M , taking the upper
bound MiMi−1 for all µi, and adding the (p−1)M multiplications by u(n)
required for zi,1, 1 ≤ i < p.
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[1] T. Hélie and D. Roze, “Sound synthesis of a nonlinear string using
Volterra series,” Journal of Sound and Vibration, vol. 314, no. 1-2, pp.
275–306, 2008.
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