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Volterra models can accurately model numerous nonlinear systems of practical interest, but often at an unacceptable computational cost. If the Volterra kernels of a system have low-rank structure (like, e.g., kernels of bilinear systems), this major drawback can in principle be mitigated. Yet, when one seeks an exact discrete-time model of a mixed-signal chain involving that system, the existing formula that generalizes the impulse invariance principle to Volterra kernels yields discretetime kernels that do not share the same low rank. At first sight this would seem to seriously complicate the otherwise simple discrete-time realization of low-rank kernels. We show here that this not the case. By defining a cascade operator, the structure of generalized impulse invariance can be unveiled, leading to a realization without an inordinate increase in computational complexity. Finally, we give a numerical example involving a physical system that shows the relevance of our proposal.

I. INTRODUCTION

V OLTERRA models are a popular choice for the mod- eling of non-linear systems of various kinds [START_REF] Hélie | Sound synthesis of a nonlinear string using Volterra series[END_REF]- [START_REF] Stepniak | Volterra predistorter for the dynamic nonlinearity of LED[END_REF]. In particular, the most commonly used variant in digital signal processing applications, known as a Volterra filter (VF), is essentially a feedforward polynomial model whose output is linear in the model parameters-a desirable feature for system identification-and whose wide applicability has been established by Boyd and Chua in the eighties [START_REF] Boyd | Fading memory and the problem of approximating nonlinear operators with Volterra series[END_REF]. Unfortunately, though, the amount of parameters of a VF grows quite rapidly with the system memory length and the order (nonlinearity degree) of the model, whose practical realization thus often becomes too costly.

Motivated by this drawback, a whole line of research has been devoted to devising more practical alternatives which trade some generality of the VF-and often also the linearity in the parameters-by a lower parametric complexity [START_REF] Nowak | Tensor product basis approximations for Volterra filters[END_REF]- [START_REF] De | Volterra kernels of bilinear systems have tensor train structure[END_REF]. One of the most effective and elegant proposals is based on the simple assumption that the pth-order Volterra kernel h p (n 1 , . . . , n p ) (high-order analogues of the impulse response, see Section III for a definition) approximately decomposes as a sum of a few separable functions, that is, h p (n 1 , . . . , n p ) ≈ Rp r=1 h

(1) r (n 1 ) . . . h (p) r (n p ) with a sufficiently small R p . This amounts to a low-rank (specifically, rank-R p ) approximation of the kernels, viewed as tensors [START_REF] Favier | Nonlinear system modeling and identification using Volterra-PARAFAC models[END_REF]. Besides the potential dramatic reduction in computational complexity, one major advantage of this approach is its straightforward realization by P. M. S. Burt is with Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil. e-mail: pmsburt@usp.br. J. H. de M. Goulart is with IRIT, Université de Toulouse, Toulouse INP, CNRS, Toulouse, France. e-mail: henrique.goulart@irit.fr a combination of linear blocks and instantaneous nonlinearities or multipliers.

However, in applications where an exact discrete-time modeling of a mixed-signal chain consisting of discrete-time and continuous-time parts is desirable (for instance, in the cancellation of signals originating from discrete-time, such as in acoustic echo cancellation or nonlinearity mitigation [START_REF] Crespo-Cadenas | A new approach to pruning Volterra models for power amplifiers[END_REF], [START_REF] Mossi | Robust and low-cost cascaded non-linear acoustic echo cancellation[END_REF]), the low-rank realization is not as simple anymore. The reason is that the well-known impulse invariance [START_REF] Oppenheim | Discrete-time Signal Processing[END_REF] between discrete-time and continuous-time linear time-invariant (LTI) systems does not generalize "cleanly" to nonlinear systems, but has to be somewhat modified so as to incorporate a factor which depends on the pattern of repeated kernel arguments, as pointed out in [START_REF] Rugh | Nonlinear System Theory: The Volterra/Wiener Approach[END_REF], [START_REF] Burt | Efficient computation of bilinear approximations and Volterra models of nonlinear systems[END_REF]. We show that, as a consequence, the computational cost of a naive realization of generalized impulse invariance, while still much smaller than that of a VF realization (whose cost is not affected by generalized invariance), would increase by as much as 2 p-1 times. We then deduce a much more efficient realization, preserving the great attractiveness of the low-rank approach.

To the best of our knowledge this problem has not been previously addressed. Apart from its practical relevance, as discussed above, the result we present is of interest in itself as an addition to the theory of signal processing.

II. IMPULSE INVARIANCE OF LTI SYSTEMS

A continuous-time LTI system bandlimited to 1/2T Hz, with impulse response h c (t), can be implemented [20, p. 173] with a mixed-signal chain containing the impulse invariant discrete-time system with impulse response 1

h(n) = h c (nT ). (1) 
Impulse invariance also comes into question when modeling the mixed-signal chain depicted in Fig. 1, which is of greater concern here and is now described. From the input sequence u(n), an impulsive D/A converter2 with sampling period

T provides u c (t) = ∞ k=-∞ δ(t -kT )u(k). (2) 
After a reconstruction filter h r (t), an application-specific system h o (t), and an anti-aliasing filter h a (t), all LTI, it follows from (2) that where h c (t) is the overall impulse response given by the convolutions h r (t) * h o (t) * h a (t). Finally, an A/D sampler gives the output y c (nT ). It follows that a system with impulse response h

y c (t) = ∞ k=-∞ h c (t -kT ) u(k), (3) 
h o (t) h r (t) h a (t) A/D D/A u(n) uc(t) yc(t) yc(nT )
(n) = h c (nT ), input u(n) and output y(n) = ∞ k=-∞ h(n -k)u(k
) is an exact discrete-time model of the signal chain 3 in the sense that

y(n) = y c (nT ), (4) 
as desired, for instance, in acoustic echo cancellation [START_REF] Breining | Acoustic echo control. An application of very-highorder adaptive filters[END_REF].

Remark. The sampling of y c (t) in ( 4) and of h c (t) in (1) must be consistent at discontinuities. For instance, let

h c (t) = e -at if t > 0 and h c (t) = 0 if t < 0. From (3) then, y c (t) is dis- continuous at t = nT if u(n) ̸ = 0.
Assuming the A/D sampler always provides the right-side limit y c (nT + ) (respectively, the left-side limit y c (nT -) or [y c (nT + ) + y c (nT -)]/2), it follows from (3) that, to achieve (4), h(0) must be given by h c (0

+ ) = 1 (respectively, h c (0 -) = 0 or [h c (0) + + h c (0 -)]/2 = 1/2).
It should be noted that when h c (t) represents an actual physical system, the impulse response h(n) = h c (nT ) will, in general, have infinite duration. As long, though, as the system h c (t) is rational, the exact realization (with a finite number of operations) of a discrete-time system with impulse response h(n) is straightforward [START_REF] Chen | Linear System Theory and Design[END_REF].

III. GENERALIZATION OF IMPULSE INVARIANCE TO VOLTERRA KERNELS

Let the analog portion of the chain in Fig. 1 be now nonlinear. (This can arise, for instance, from a nonlinear loudspeaker in acoustic echo cancellation [START_REF] Mossi | Robust and low-cost cascaded non-linear acoustic echo cancellation[END_REF].) We assume then that its input/output relation is given by the (causal) Volterra series y c (t) = ∞ p=1 y c,p (t), with homogeneous outputs given by

y c,p (t) = ∞ 0 • • • ∞ 0 h c,p (τ 1 , . . . , τ p ) p i=1 u c (t -τi )dτ 1 . . . dτ p , (5) 
where τi = p j=i τ j and h c,p (τ 1 , . . . , τ p ) is a regular Volterra kernel of order p [21, p. 15], continuous for τ 1 , . . . , τ p > 0.

Although the existence of the realization problem addressed in this paper is independent of employing conventional 4 or regular Volterra kernels, the latter are more convenient for the required algebraic manipulation.

To provide a discrete-time model of the signal chain, let ni = p j=i n j , where n j always represents discrete time, and, for some causal discrete-time kernel v p : Z p → R let 3 In this case, is not required that system hc(t) be bandlimited. 4 With a conventional kernel h [START_REF] Azpicueta-Ruiz | Adaptive combination of Volterra kernels and its application to nonlinear acoustic echo cancellation[END_REF] assumes the more familiar form with τ i instead of τi .

y p (n) = ∞ np=0 . . . ∞ n1=0 v p (n 1 , . . . , n p ) p i=1 u(n -ni ), (6)
(conv) c,p (τ 1 , τ 2 , . . . , τp) = h (reg) c,p (τ 1 -τ 2 , . . . , τ p-1 -τp, τp),
with u(n) and u c (t) still being related by [START_REF] Hélie | Volterra series and state transformation for real-time simulations of audio circuits including saturations: Application to the Moog ladder filter[END_REF]. It follows from [START_REF] Burt | Efficient computation of bilinear approximations and Volterra models of nonlinear systems[END_REF] that achieving y p (n) = y c,p (nT ), p > 1, assuming rightside sampling at discontinuities, requires generalizing (1) as

v p (n 1 , . . . , n p ) = h c,p (n 1 T, . . . , n p T ) m 1 ! . . . m q ! , ( 7 
)
where q is the number of groups of consecutive null indices among n 1 , . . . , n p-1 and m 1 -1, . . . , m q -1 are the numbers of indices in each group 5 . For instance, if p = 5, n 1 = n 2 = 0 ̸ = n 3 and n 4 = 0, then q = 2, m 1 = 3 and m 2 = 2. This generalized impulse invariance results from the impulsive terms of the integrand in ( 5) and the possible discontinuity of the kernel on the border of the domain τ 1 , . . . , τ p-1 ≥ 0. In the interior of this domain we retrieve a direct extension of the invariance condition [START_REF] Hélie | Sound synthesis of a nonlinear string using Volterra series[END_REF], that is, we have v p (n 1 , . . . , n p ) = h c,p (n 1 T, . . . , n p T ) for n 1 , . . . , n p-1 > 0. For more details on the steps leading to [START_REF] Stepniak | Volterra predistorter for the dynamic nonlinearity of LED[END_REF], the reader is referred to [START_REF] Burt | Efficient computation of bilinear approximations and Volterra models of nonlinear systems[END_REF].

Similarly to the discretized h(n) of ( 1), [START_REF] Stepniak | Volterra predistorter for the dynamic nonlinearity of LED[END_REF] gives in general an infinite duration v p (n 1 , . . . , n p ). This raises the issue of its realization with a finite number of operations, not addressed in [START_REF] Burt | Efficient computation of bilinear approximations and Volterra models of nonlinear systems[END_REF]. We do this now, for the class of low-rank kernels.

IV. REALIZATION OF LOW-RANK KERNELS

We consider systems with low-rank Volterra kernels

h c,p (τ 1 , . . . , τ p ) = Rp r=1 H (p) c,r (τ p ) . . . H (1) c,r (τ 1 ), (8) 
for any set of (vector-and) matrix-valued functions 6 , and a given R p ∈ N * , termed the rank of h c,p . Of particular practical interest are bilinear systems [START_REF] Rugh | Nonlinear System Theory: The Volterra/Wiener Approach[END_REF], [START_REF] Bruni | Bilinear systems: An appealing class of "nearly linear" systems in theory and applications[END_REF], further discussed in Section V, for which R p = 1. We consider R p = 1 from here onward, and thus look into the realization of one of the parallel branches of (8).

H (i) c,r (τ i ) of compatible dimensions

A. Cascade structure and operator

From ( 8) and ( 5) it follows directly that low-rank kernels can be realized quite simply by a cascade of linear blocks and multipliers. This is depicted in Fig. 2 (p = 3, R 3 = 1), where

z 1 (t) = [ ∞ 0 H (1) c (τ )u c (t -τ )dτ ]u c (t) = [ H (1) c * u c (t)] u c (t) = H (1) c • u c (t), z 2 (t) = [ H (2) c * z 1 (t)] u c (t) = H (2) c • z 1 (t), y c,3 (t) = H (3) c * z 2 (t).
Here, * stands for convolution and • stands for the cascade operator defined, given u c (t), by h

• x(t) ≜ [h * x(t)]u c (t),
which is linear in h and in x. Also, with it we can write

y c,3 (t) = H (3) c * { H (2) c • [ H (1) c • u c (t)] }.
Hence, the realization can be expressed as a sequential calculation with p-1 applications of the cascade operator, followed by a convolution at the final stage.

u c (t) z1(t) y c,3 (t) × z2(t) × H (2) c H (3) c H (1)
c Fig. 2. Cascade realization of a separable kernel, p = 3, R 3 = 1. Double arrows denote vector-valued signals.

B. Parallel-cascade realization of impulse invariance

Consider the sampled kernel factors

H (i) (n i ) = H (i) c (n i T ).
We can readily verify that, assuming the input has the form (2), the cascade structure has this very particular property:

Property. Replacing H (i) c (τ i ) with H (i) (n i ) and u c (t) with u(n) in the cascade structure that realizes h c,p (τ 1 , . . . , τ p ) = H (p) c (τ p ) . . . H (1)
c (τ 1 ), gives a realization of7 ṽp (n 1 , . . . , n p ) = H (p) (n p ) . . . H (1) (n 1 ).

(

) 9 
This discrete-time kernel, however, is not impulse invariant in relation to h c,p (τ 1 , . . . , τ p ), since the term 1/m 1 ! . . . m q ! in ( 7) is missing. To include the missing term, let us initially rewrite the invariance condition [START_REF] Stepniak | Volterra predistorter for the dynamic nonlinearity of LED[END_REF], assuming R p = 1, as

v p (n 1 , . . . , n p ) = c p (n 1 , . . . , n p-1 )H (p) (n p ) . . . H (1) (n 1 ), (10) 
where c p (n 1 , ..., n p-1 ) ≜ 1/m 1 ! . . . m q !. We note then that c p can be decomposed as

c p (n 1 , . . . , n p-1 ) = 2 p-1 r=1 a r c (1) r (n 1 ) . . . c (p-1) r (n p-1 ), (11) where c 
(i) r (n i ) is either the unit impulse 8 δ(n) or its comple- ment δ(n) = [1 -δ(n)]. Example. Since c 3 (n 1 , n 2 ) = 1 when n 1 , n 2 > 0, c 3 (n 1 , n 2 ) = 1/2 if either n 1 = 0 or n 2 = 0 (but not both), and c 3 (n 1 , n 2 ) = 1/3! if n 1 = n 2 = 0, it decomposes as c 3 (n 1 , n 2 ) = δ(n 1 ) δ(n 2 ) + 1 2 δ(n 1 ) δ(n 2 ) + 1 2 δ(n 1 )δ(n 2 ) + 1 3! δ(n 1 )δ(n 2 ). ( 12 
)
Now, from ( 10) and ( 11) we get

v p (n 1 , . . . , n p ) = 2 p-1 r=1 a r G (p) r (n p ) . . . G (1) 
r (n 1 ), [START_REF] Favier | Nonlinear system modeling and identification using Volterra-PARAFAC models[END_REF] where

G (i) r (n i ) is either given by δ(n i )H (i) (n i ) or by δ(n i )H (i) (n i ), 1 ≤ i < p, and G (p) r (n p ) = H (p) (n p ).
It follows that v p can be realized by summing the output of 2 p-1 parallel cascade structures. Nevertheless, because all blocks G (i) r (n i ) in ( 13) come from the decomposition (δ(n i ) + δ(n i )) H (i) (n i ), we can largely mitigate this increase in computational complexity by "sharing" computations among the branches of the parallel structure. We describe next a systematic way of implementing this strategy.

u(n) h(1)

× h (1) (0) 

+ × z 1,1 (n) z 1,2 (n) 1 2 h (2) y 2 (n) z 1 (n)

C. Efficient realization of impulse invariance

For simplicity, we consider henceforth low-rank kernels h p (τ 1 , . . . , τ p ) = h 14) With p = 2, initially, from ( 10) and ( 14) we have c 2 (n 1 ) = δ(n 1 ) + 1/2 δ(n 1 ), and, therefore,

(i) (n i ) = h (i) c (n i T ), we define: h(i) (n i ) ≜ δ(n i )h (i) (n i ), h (i) 0 (n i ) ≜ δ(n i )h (i) (0). (
v 2 (n 1 , n 2 ) = δ(n 1 ) + 1 2 δ(n 1 ) h (1) (n 1 )h (2) (n 2 ) = h(1) (n 1 ) + 1 2 h (1) 0 (n 1 ) h (2) (n 2 ).
Using this in (6) and a discrete-time version of the cascade operator h

• x(n) ≜ [h * x(n)]u(n), we can write the output as y 2 (n) = h (2) * h(1) + 1 2 h (1) 0 • u(n) . (15) 
Defining now

z 1 (n) ≜ h(1) + 1/2 h (1) 0 
• u(n), it follows from the linearity in h of the cascade operator that

z 1 (n) = z 1,1 (n) + 1 2 z 1,2 (n), (16) 
where

z 1,1 (n) = h(1) • u(n), (17) 
z 1,2 (n) = h (1) 0 • u(n) = h (1) (0)u 2 (n), (18) 
and the output is

y 2 (n) = h (2) * z 1 (n).
This realization is depicted in Fig. 3. Let, now, p = 3. From ( 10) and ( 12) we can write, initially,

v 3 (n 1 , n 2 , n 3 ) = δ(n 1 ) + 1 2 δ(n 1 ) δ(n 2 ) + 1 2 δ(n 1 )δ(n 2 ) + 1 3! δ(n 1 )δ(n 2 ) h (1) (n 1 )h (2) (n 2 )h (3) (n 3 ).
Moving h (1) (n 1 )h (2) (n 2 ) into the brackets, we get then

v 3 (n 1 , n 2 , n 3 ) = h(1) (n 1 ) + 1 2 h (1) 0 (n 1 ) h(2) (n 2 ) + 1 2 h(1) (n 1 )h (2) 0 (n 2 ) + 1 3! h (1) 0 (n 1 )h (2) 0 (n 2 ) h (3) (n 3 ),
so that, using this in (6), introducing another cascade operator for the second stage, and with ( 16)-( 18), we can write

y 3 (n) = h (3) * h(2) • z 1 (n) + 1 2 h (2) 0 • z 1,1 (n) + 1 3! h (2) 0 • z 1,2 (n) .
Organizing as for p = 2 then,

y 3 (n) = h (3) * z 2 (n), where z 2 (n) = z 2,1 (n) + 1 2 z 2,2 (n) + 1 3! z 2,3 (n), u(n) h(1) × h (1) (0) + × z 1,1 (n) z 1,2 (n) 1 2 h(2) × h (2) (0) + × z 2,1 (n) z 2,2 (n) 1 2 h (3) × z 2,3 (n) 1 3! y 3 (n) z 1 (n) z 2 (n)
Fig. 4. Realization of impulse invariant kernel of order p = 3.

with

z 2,1 (n) = h(2) • z 1 (n), z 2,2 (n) = h (2) 0 • z 1,1 (n) = h (2) (0)z 1,1 (n)u(n) z 2,3 (n) = h (2) 0 • z 1,2 (n) = h (2) (0)z 1,2 (n)u(n),
which is depicted in Fig. 4. Generalizing, we should compute:

• For i = 1, . . . , p -1 and with z 0 (n) = z 0,1 (n) = u(n), z i,1 (n) = h(i) * z i-1 (n) u(n), z i,j (n) = h (i) (0)z i-1,j-1 (n)u(n), j = 2, . . . , i + 1, z i (n) = i+1 j=1 1 j! z i,j (n). • y p (n) = h (p) * z p-1 (n).
V. EXAMPLE: BILINEAR SYSTEMS Bilinear systems have state-space equations of the form

x ′ c (t) = Fx c (t) + Gx c (t)u c (t) + bu c (t) y c (t) = c ⊤ x c (t),
and can approximate, up to any kernel order p, the large class known as linear-analytic systems [START_REF] Rugh | Nonlinear System Theory: The Volterra/Wiener Approach[END_REF], [START_REF] Hermes | On the nonlinear control problem with control appearing linearly[END_REF], [START_REF] Brockett | Volterra series and geometric control theory[END_REF]. Their kernels read h c,p (τ 1 , . . . , τ p ) = c T e Fτp Ge Fτp-1 G . . . Ge Fτ1 b, τ i ≥ 0, thus having the low-rank form of (8) with R p = 1 (that is, rank one), and H

c (τ 1 ) = e Fτ1 b, H

c (τ i ) = e Fτi G, 1 < i < p, and

H (p) c (τ p ) = c ⊤ e Fτp G.
As an example, consider the bilinear model of a bass loudspeaker [START_REF] Burt | Efficient computation of bilinear approximations and Volterra models of nonlinear systems[END_REF], sampled at a rate of 1.5 kHz. An infinitememory discrete-time realization of its fourth-order impulse invariant Volterra kernel was derived as in Section IV-C, and the corresponding output y 4 (n) obtained for an unit-power AWGN input u(n). For validation, the output y 4 (n) of the time-truncated kernel was directly calculated using [START_REF] Stepniak | Volterra predistorter for the dynamic nonlinearity of LED[END_REF] in [START_REF] Gowtham | A family of adaptive Volterra filters based on maximum correntropy criterion for improved active control of impulsive noise[END_REF] (in other words, a VF realization) with ni ≤ 120, aiming at a small discrepancy ϵ(n) = y 4 (n) -y 4 (n). Indeed, as seen in Fig. 5, ϵ(n) is of the order of 10 -16 (mainly due to computing with 64 bit precision), validating the proposed procedure. Also displayed is the output ỹ4 (n) of the kernel given by [START_REF] Nowak | Tensor product basis approximations for Volterra filters[END_REF]. Its large discrepancy in relation to y 4 (n) shows that the invariance principle of ( 7) can be very relevant in practice.

To compare computational costs now, a VF filter realization of the truncated kernel, with ni < N in ( 6), requires at least N +p-1 p multiplications [28, p. 36] 9 . In the previous 9 Excluding the computation of p i=1 u(n -ni ), for simplicity. All multiplication figures refer to the computation of one output sample. In [START_REF] Mathews | Polynomial signal processing[END_REF] a triangular kernel equivalent to vp is considered. loudspeaker example, even allowing for less precision such that {E[ϵ 2 (n)]/E[y 2 4 (n)]} 1/2 = 10 -3 , still requires N = 48 and, thus, 249900 multiplications.

Consider next the last stage in Fig. 4, now with matrix factors. For a bilinear kernel,

H (p) (n) = c T e FT n G, n ≥ 0, so y p (n) = H (p) * z p-1 (n) = ∞ k=0 c T e FT k Gz p-1 (n -k),
which we readily see is realized by

x p (n + 1) = Ax p (n) + Bz p-1 (n) (19) 
y p (n) = c T x p (n) + d T z p-1 (n), (20) 
where 

VI. CONCLUSION

By defining a cascade operator, we have shown how to construct a realization of discrete-time kernels obtained from continuous-time low-rank regular kernels by the generalized impulse invariance principle. This construction is required because such discrete-time kernels are not themselves of the same low-rank and thus cannot be realized by the same cascade structures that realize their continuous-time counterparts. The proposed structure requires additional multipliers, not incurring however in an inordinate increase of computational complexity. The low-rank property is found in kernels with practical relevance, and holds in particular for kernels of bilinear systems.

Fig. 1 .

 1 Fig. 1. Signal chain starting in discrete-time, passing through continuous-time and then returning to discrete-time.

Fig. 3 .

 3 Fig. 3. Realization of impulse invariant kernel of order p = 2.

( 1 )

 1 c (τ 1 ) . . . h (p) c (τ p ) with scalar (instead of matrix) factors, the extension to matrices being straightforward. With h

Fig. 5 .

 5 Fig.5. Output y 4 (n) of the realization of an impulse invariant fourthorder kernel and its discrepancy ϵ(n) to a time-truncated VF realization. For comparison, we also depict the output ỹ4 (n) of the non-impulse invariant kernel of (9).

  dim[x p (n)] = M ≜ dim[x c (t)], A = e FT , B = e FT G and d = Gc. Assuming A, B and d are pre-calculated and have no structure to be exploited for reducing computational cost, (19) and (20) require 2(M 2 + M ) multiplications. Proceeding similarly for the outputs of the remaining linear blocks gives then a sub-total cost of C O = (2p-1)M 2 +3M . Finally, the computation of the inputs z i (n) of the linear blocks requires [(p-3)(p/2+1)+1]M 2 +[(p-1)(p/2+1)+3]M multiplications [29] 10 . In the loudspeaker example, p = 4 requires M = 34 [22], giving a total of 13226 multiplications, much less than the at least 249900 required by the VF (and with no loss in precision) and the slightly over 2 p-1 [C O +(p-1)M ] = 66368 required by the parallel-cascade of Section IV-B.

Hereafter, the subscript c is used to distinguish a continuous-time signal from its discrete-time version. For convenience, we have dropped the factor T from the definition h(n) = T hc(nT ) of impulse invariance of[START_REF] Oppenheim | Discrete-time Signal Processing[END_REF].

δ(t) is the Dirac delta function. The assumption of ideal impulsive excitation is not restrictive, since the reconstruction filter hr(t) can absorb the rectangular impulse response of a real-world zero-order hold D/A.

A related result is stated without proof in[21, p. 254]. For simplicity, the dependence of m i on n 1 , . . . , n p-1 is omitted. If yp(n) = yc,p(nT -) or yp(n) = [yc,p(nT -) + yc,p(nT + )]/2 at discontinuities, the result is similar.

For uniformity of notation, H (p) c,r (resp., H(1)c,r ) is denoted as a matrix, though being a row (resp., column) vector. If Rp = 1, we drop subscripts r.

This is not true in general for interconnections of linear blocks. For instance, two discrete-time linear systems f (n) = fc(nT ) and g(n) = gc(nT ) in series have impulse response k f (k)g(n -k) ̸ = fc(τ )gc(nT -τ )dτ .

8 δ(n) = 1 if n = 0 and δ(n) = 0 if n ̸ = 0.

This results from eq. (27) in[START_REF] Burt | On the realization of impulse invariant bilinear volterra kernels[END_REF], with all M i = M , taking the upper bound M i M i-1 for all µ i , and adding the (p-1)M multiplications by u(n) required for z i,1 , 1 ≤ i < p.