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Abstract. Fixed-point arithmetic is a well-known alternative to floating-
point arithmetic on embedded systems. It is used to reduce some com-
putation costs in terms of speed and power consumption on certain plat-
forms, e.g. medical devices, cars, and robots. In this article, we present
POPiX, a novel fixed-point program synthesis tool based on static anal-
ysis. The originality of our method is to solve a system of constraints
generated from the program source code. Thus, the solution of our con-
straints gives the new fixed-point formats while accomplishing the accu-
racy required by the user. Basically, POPiX takes as input an imperative
program running in floating-point arithmetic and synthesizes a new pro-
gram coupled to a fixed-point library relying on integers only. We eval-
uate POPiX on a collection of floating-point benchmarks coming from
FPBench. Results demonstrate the efficiency of our analysis by achieving
memory savings up to 75% with energy savings up to 3.5ˆ.

Keywords: Fixed-point arithmetic, code synthesis, precision tuning, lin-
ear programming, static analysis.

1 Introduction

Floating-point arithmetic is the dominant approximation to represent a large
spectrum of real numbers. Although it offers better precision, programmers do
not always need the high level of accuracy offered by the largest floating-point
formats. In addition, owing to its complex internal circuitry and the increased
memory requirements, floating-point arithmetic can be exorbitant in terms of
speed and power consumption on certain platforms such as mobile phones, video
game consoles, and digital controllers. To bridge this gap and since many em-
bedded architectures can be implemented using very low bit-width numbers, the
solution is to deploy the fixed-point arithmetic as an alternative to the floating-
point one as it can be efficiently realized using integer arithmetic. Fixed-point
numbers in a certain format maintain a fixed divisor (so the name fixed-point).

‹ This work is supported by La Région Occitanie under Grant GRAINE - SYFI:
https://www.laregion.fr.

https://www.laregion.fr
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With this kind of arithmetic, the number of bits splits into two parts, respec-
tively named integer part and fractional part with a radix point that lies between
them. Besides, many fields have revived their interest in fixed-point arithmetic
when searching for cost effective hardware processors with less design effort.
For instance, machine learning algorithms and models have been recently imple-
mented using fixed-points with little accuracy loss [8,10]. The conversion of code
designed for embedded systems from floating to a fixed-point equivalent version
is a long-established problem addressed in the litterature [3–6,12]. Nevertheless,
rarely we found tools (except for [4]) that deal with adjusting the floating-point
formats in the original program before the conversion pass. Practically, pro-
grammers do not always need the high level of accuracy in the floating-point
formats. However, manually adapting the precision of the variables may require
considerable programming skill and application domain expertise. Given this
consideration, automating the task of adjusting the program variables precision
to improve its performance characteristics, before conversion, can help program-
mers to achieve performance benefits. Generally, this process of adjustment, also
called precision tuning, involves a user requirement of accuracy and a semantic
analysis of the program. The benefit of this tuning phase is to provide an opti-
mized mixed-precision programs and pieces of information indicating the most
suitable fixed-point data formats in the converted program.

The goal of this article is to propose POPiX: a new tool to transform a
given numerical floating-point program into semantically equivalent one that
exploits fixed-point computations with integers only. The key idea of this work
relies on a semantic modelling of the numerical errors propagation throughout
the floating-point program. In order to achieve the conversion, POPiX combines
two fundamental steps. The first step consists in generating an Integer Linear
Problem (ILP) from the original program in order to obtain the minimal formats
(number of bits before and after the radix point) which fulfill the accuracy
requirements. Basically, this is done by reasoning on the most significant bit and
the number of significant bits of the values. The ILP problem can be optimally
solved in one shot by a classical linear programming solver (LP) with no iteration.
To the best of our knowledge, this is the first work that interests in statically
synthetizing fixed-point code using an ILP formulation of the program. At the
end of the tuning phase, the second step collects each information provided by
the former step. The tool internally calls a fixed-point library to convert the
associated indications into ones that exploit fixed-point computation with the
number of bits required for each of the integer and the fractional parts. We
evaluate POPiX on a set of benchmarks coming from the FPBench community.
The POPiX source code, and all the data and results presented in this article
are publicly available at: https://github.com/sbessai/popix.

The remainder of this article is organized as follows. In Section 2 we present a
motivating example describing our approach. Section 3 provides all the technical
details about our new developed fixed-point code synthesis framework. Experi-
mental results are presented in Section 4. We discuss related work in Section 5,
and conclude in Section 6.

https://github.com/sbessai/popix
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1 [...]
2 NumTuples |10| = 40.0|5, 10|;
3 create_vector(x,40);
4 create_vector(y,40);
5 create_vector(z,40);
6 [...]
7 while(i<NumTuples) {
8 x2| ´ 6, 10|=x[i]| ´ 3, 10| * x[i]| ´ 3, 10|;
9 y2| ´ 1, 11|=y[i]| ´ 1, 11| * y[i]| ´ 1, 11|;

10 z2| ´ 6, 10|=z[i]| ´ 3, 10| * z[i]| ´ 3, 10|;
11 tm| ´ 1, 10| = x2| ´ 6, 6| + y2| ´ 1, 11|

12 + z2| ´ 6, 5|;
13 magSqrt[i]| ´ 1, 10|=sqrt(tm)| ´ 1, 10|;
14 i|5, 10| = i|5, 11| + 1.0|0, 6|;} ;
15 [...]
16 while(n<NumTuples) {
17 res|0, 11| = 0.0|0, 11|;
18 i|0, 10| = 0.0|0, 10|;
19 while (i<LpfFiltLen) {
20 if (n-i >=0.0) {
21 aux0|2, 10| = lpfCoeffs[i]|2, 10| *
22 magSqrt[n-i]| ´ 1, 10|;
23 res|8, 10| = res|8, 11| + aux0|2, 9|;};
24 i|3, 9| = i|3, 10| + 1.0|0, 7|;} ;
25 n|5, 8| = n|5, 9| + 1.0|0, 4|;};
26 [...]
27 require nsbpres, 8q;

1 [...]
2 int NumTuples; // <0,10>
3 int16_t aux0; // <2,10>
4 int16_t res; // <8,11>
5 int16_t tm; // <1,10>
6 int8_t derivCoeffs [5]; int16_t x[40];
7 int16_t y[40]; int16_t z[40];
8 [...]
9 while(i<NumTuples) {

10 x2 = (int64_t) (x[i] * x[i]);// <-6, 20>
11 x2 = x2 " 10;// <-6,10>
12 y2 = (int64_t) (y[i] * y[i]);// <-2,22>
13 y2 = y2 " 10;// <-2,11>
14 y2 = y2 ! 1;// <-1,11>
15 z2 = (int64_t) (z[i] * z[i]);// <-6,20>
16 z2 = z2 " 10;// <-6,10>
17 x2 = x2 ! 5;// <-1,10>
18 y2 = y2 " 0;// <-1,10>
19 tm = x2 + y2 +z2; // <-1,10>
20 z2 = z2 ! 5; // <-6,10>
21 magSqrt[i]= sqrt_fix(tm ,-1,9,8);// <-1,10>
22 i = i + 1;}
23 while(n<NumTuples ) {
24 while(i<LpfFiltLen) {
25 if(n - i >= 0) {
26 aux0=( int64_t)(lpfCoeffs[i]
27 *magSqrt[n-i]);// <1,20>
28 aux0=aux0 " 9; // <2,10>
29 res = res "0; // <8,10>
30 aux0 = aux0 ! 6; // <8,10>
31 res = res + aux0;} // <8,10>
32 i = i + 1;} n = n + 1;} [...]

Fig. 1: Left: tuned program generated with a pair |ufp, nsb| for each variable as
highlighted in blue. Right: Program C generated with fixed point formats.

2 Overview

Before we dive into the technical details of our tool, we present in this section
an overview of our method using the example of a FIR low-pass filter code
given in Figure 1. The starting point of our analysis is to assume that all the
variables are in a given IEEE754 precision (here we use single precision) and
that a range is given for the inputs of the program. In addition, the statement
require nsb(res,8) is a postcondition added by the user to specify that res
must have 8 significant bits at the end of the execution. POPiX first performs a
range determination by dynamic analysis for all the program variables at each
control point. Based on semantic equations, POPiX generates an ILP problem
from the program source code annotated with the results of the range analysis
and the accuracy requirement. This yields a system of constraints:
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For instance, the system C of Equation (1) below describes the constraints gen-
erated for the addition and assignement statements for Line 23 of Figure 1 (left
hand side). Some notations can be highlighted for the system of Equation (1).
First, each variable of our program is assigned to a unique control point ℓ P Lab
in order to determine easily their number of significant bits. Second, the function
carrypq is used to compute if a carry bit can occur through the operation (re-
turns 0 or 1). Concerning scalability, we generate a linear number of constraints
and variables in the size of the analyzed program (« 500 for the FIR low-pass
filter code). The solution to our system of constraints gives the minimal number
of bits needed with an accuracy guarantee on the results (highlighted in blue in
the left hand side of Figure 1). If we take back Line 23 under discussion, the
pair |8, 10| denotes that the unit in the first place of variable res is 8 whereas
it has 10 significant bits. More details about the nature of constraints that we
generate for the language of our input programs was detailed in [1].

Based on the tuning results, POPiX synthesizes the C code given in the
right hand side of Figure 1. First, it selects the best format (int16 t, int32 t,
etc.) for each variable (this is called mixed-precision). For example, at lines
6 and 7, vectors x, y and z are defined as int16 t variables while the vector
derivCoeffs is defined as int8 t. The data type selected by POPiX for each
variable is the minimal one enabling us to encode the fixed-point value following
the formats coming from the ILP solution. For example, the variable res has 10
significant bits (lines 29 and 31 of Figure 1) and can consequently be encoded into
int16 t. POPiX determines the initial formats xM,Ly of the variables occurring
in the code and synthesizes the alignments needed to change the formats, before
performing some operation. For example, the shifts performed at lines 29 and
30 are done in order to align the operand of the addition of Line 31. Similarly,
the shift of Line 28 is done to obtain the right format for the result of the
multiplication of Line 27. Currently, the fixed-point operation are generated
sequentially and some additional optimizations could be done, for example by
using only one shift for lines 27 and 29.

3 Floating to Fixed-Point Programs Synthesis

POPiX workflow is based on two frameworks as depicted in Figure 3: a developed
fixed-point library (Section 3.1) and a precision tuning framework (Section 3.2).
In the rest of this section, we explain how the combination of these features are
achieved and which benefits they provide.

3.1 Fixed-Point Arithmetic

Since fixed-point operations rely on integer operations, computing with fixed-
point numbers is highly efficient for embedded systems with small memories
and simpler CPUs. However, this arithmetic is more difficult to handle for the
developer. There exists some fixed-point libraries such as Libfixmath3, Fixmath4

3 https://code.google.com/archive/p/libfixmath/
4 http://savannah.nongnu.org/projects/fixmath/

https://code.google.com/archive/p/libfixmath/
http://savannah.nongnu.org/projects/fixmath/
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Fig. 2: Fixed-point representation of a in a format xM,Ly .

and FPM5, but we have developed our own library in order to dispose of all the
features we need such as mixed-precision, elementary functions, etc.

A fixed-point number is represented by a sign s P t0, 1u, an integer value
V P N in base 2 and a format xM,Ly as shown in Figure 2. The number of bits
before, respectively after, the radix point is M P Z (respectively L P N). The
value of a fixed-point number is obtained by multiplying the integer value V by
the sign s and a scaling factor 2´L as follows:

a “ p´1q
s

ˆ V ˆ 2´L . (2)

Example 1 The fixed-point number a “ 3ă2,1ą corresponds to the value 1.5.
Using Equation (2), we obtain a “ p´1q0 ˆ 3 ˆ 2´1 “ 1.5.

Let us note that the number of bits M of the integer part already presented in
Figure 2 is computed through the unit in the first place (ufp) defined by

@x P F, ufppxq “

#

minti P Z : 2i`1
ą |x|u “ tlog2p|x|qu if x ‰ 0,

0 if x “ 0 .
(3)

Hence, the number of bits M before the radix point is given by

M “ ufpp|a|q ` 1 . (4)

Let W be the number of bits used to encode a. The number of bits L of the
fractional part of a is

L “ W ´ M ´ 1 . (5)

The difficulty of the fixed-point representation is to manage the format xM,Ly

manually against the floating-point representation which manages it automati-
cally, thanks to the exponent. Let ˚ be a fixed-point elementary operation with ˚

P {‘, a, b, c} and let us consider the fixed-point numbers a, b and c such that
c “ a ˚ b. For the addition and subtraction, the resulting format of c is given by

xMc, Lc
y “ xmax pMa, Mb

q ` 1, W c
´ max pMa, Mb

q ´ 1y . (6)

For the multiplication and division, the resulting formats of c are

xMc, Lc
y “ xMa

` Mb, W c
´ Ma

´ Mb
ą . (7)

and
xMc, Lc

y “ xMa
` Lb, W c

´ Ma
´ Lb

y . (8)

5 https://github.com/MikeLankamp/fpm

https://github.com/MikeLankamp/fpm
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Fig. 3: POPiX workflow.

For a fixed-point number c, the formats of c ! k and c " k are

xMc, Lc
y “ xMa

´ k, Lc
` ky and xMc, Lc

y “ xMa
` k, Lc

´ ky . (9)

The algorithms of these elementary operations are detailed in [11, 12]. Let us
consider a fixed-point elementary function f P {abs, sqrt, sin, cos, arctan} and
the fixed-point number c “ fpaq. For the square root function, the value of the
result can be approximated by the digit recurrence iteration algorithm defined
in [12]. For f P {sin, cos, arctan}, Taylor’s formula is used to approximate the
result. For example, the corresponding formula of sine is sinpaq « a ‘ pppa b

aq b aq c 6q. The order of the Taylor series development depends on the number
of significant bits needed for the result. In the following, we describe how we
compute the fixed-point numbers occuring in our programs.

3.2 Constraint Generation by Static Analysis

POPiX presents a novel static technique based on a semantic modelling of the
propagation of the numerical errors throughout the code. In practical terms,
our approach depends on two integer quantities: iq The ufp of the values (see
Equation (3)); iiq A user requirement denoting the final accuracy wanted for
the outputs. Hereby, the term accuracy refers to the number of significant bits
required by the user on a variable of the program, denoted by nsb. Formally, let
x̂ be the approximation of x in finite precision and let εpxq “ |x ´ x̂| be the
absolute error. So, if nsbpxq “ k, for x ­“ 0, then we have

εpxq ď 2ufppxq´k`1 . (10)

An ILP problem can be generated from the program source code which can be
optimally solved by a LP solver (we use GLPK6, in practice). Concerning our
resulting data types, the key feature of our method consists in finding directly
the minimal number of bits needed at each control point of the original pro-
gram. Next, these precisions can be approximated to the upper number of bits
corresponding to an existing format int16 t, int32 t, etc. By way of illustration,
if a variable x has nsbpxq “ 18 bits, then x is tuned to the int32 t format. After

6 https://www.gnu.org/software/glpk/

https://www.gnu.org/software/glpk/


Fixed-Point Code Synthesis Based on Constraint Generation 7

solving the ILP problem, POPiX collects a new key information concerning the
optimized precisions (along with the ufp integer quantity already computed by
range analysis) in order to fully specify the fixed-point formats xM,Ly introduced
in Section 3.1. Finally, we call our fixed-point library to synthetize a fixed-point
version of the program with only integer numbers. Through this technique, it
is possible to achieve memory savings up to more than double with a precision
cost that depends on the original program being optimized and energy savings
up to 3.5ˆ (see Section 4).

Implementation Details POPiX has been developed in JAVA and C++ and uses
the ANTLR tool v4.7.17 to parse the input programs. To be able to guarantee
that no overflows will occur in computations, we perform a range analysis by
launching the execution of the program a certain number of times in order to
determine dynamically an under-approximation of the range of variables by using
the ufp of the values. In the future, we plan to use a static analyzer. Nevertheless,
POPiX uses the simple imperative language below.

x P Id ℓ P Lab d P {+, -, ˆ, ˜} math P {sin, cos, tan, arcsin, log, . . .}
Expr Q e : e ::= c#p | x | e

ℓ1
1 d e

ℓ2
2 | mathpeℓ1 q | sqrtpeℓ1 q

Cmd Q c : c ::“ c
ℓ1
1 ; c

ℓ2
2 | x “ eℓ1 | while bℓ0 do c

ℓ1
1 | if bℓ0 then c

ℓ1
1 else cℓ2 |

create vectorpv, sq | create matrixpm, r, cq | require nsbpx, nq

We denote by Id the set of identifiers and by Lab the set of control points
of the program used to assign to each element e P Expr and c P Cmd a
unique control point ℓ P Lab. Fortunately, POPiX is able to handle loops, con-
ditionals and arrays. The declaration of vectors is expressed by the statement
create vector(v,s), while s denotes the size of the vector v. The declaration
of a matrix m is expressed by the statement create matrix pm, r, cq , while r
and c denote respectively the number of rows and columns of the matrix. The
statement require nsb(x,n) indicates the minimal nsb n that a variable x must
have at a control point. The rest of the grammar is standard. Note that the
usual mathematical elementary functions are supported.

Cost functions Cost functions are given as optimization objective to the lin-
ear solver. Depending on which cost function is used, different criteria may be
considered for the tuning phase. POPiX currently handles the following cost
functions: CF1 Optimizes the sum of the number of significant bits of all the
variables at each control point of the program. CF2 Optimizes the sum of accu-
racies of only the variables assigned in the program. Compared to CF1, this cost
function minimizes the size of the variables and the number of bits needed for
the operators to store the intermediary results. Let us note that CF2 is used in
the experiments of Section 4. CF3 Minimizes the maximal accuracy needed in
the program, i.e. the worst accuracy at some control point of the tuned program.
This function is usefull to make a program fit in a certain format (for example
all variables in 16 or 32 bits.) CF4 Optimizes only the sum of the accuracies
of the arithmetic operators and elementary functions. This function is relevant

7 https://www.antlr.org/

https://www.antlr.org/
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from an hardware point of view, for example to limit the size of the operators in
FPGAs [7]. CF5 Minimizes the number of type conversions. Indeed, type con-
versions introduced by the mixed-precision tuning may slow down the execution
of the programs and one may prefer a compromise between memory savings and
execution time. This function addresses this problem. Note that these cost func-
tions are modified when dealing with arrays: the tool multiplies the precision by
the number of elements and this process is done only once for each array instead
of several times for each use of arrays.

4 Experimental Evaluation

In this section, we conduct some experiments to show the effectiveness of our
code synthesis method presented in Section 3.

Experimental Metrics In our experiments, our goal is to evaluate the benefits of
POPiX in terms of mixed-precision, memory savings and energy consumption
which are important metrics to validate our synthesis method. We also measure
the time of analysis spent by POPiX and the execution time of the fixed-point
progam with respect to the floating-point program in which we assume that all
variables are in single precision (32 bits) before the analysis. For our benchmarks,
we use applications from FPBench8, a synthetic benchmark for floating-point
performance. We run each program with three accuracy requirements arbitrarily
chosen by the user: 4, 8 and 16 bits which bound the relative error of the result.
All the results we report in this section where gathered on two machines: Ubuntu
20.04 LTS, with an 2.7GHz i7 core and 16 GB of RAM and Ubuntu 20.04 LTS,
with a CPU AMD Ryzen 5 3500u and 5.7 GB of RAM. Let us state that the
reason we use the Intel machine is to exploit the Jouleit9 tool in order to estimate
the power consumption of the CPU, RAM and integrated GPU.

Results Analysis Table 1 shows the mixed-precision configurations obtained af-
ter analysis in terms of number of variables or operations that we may tune into
int8 t, int16 t and int32 t and consequently the memory savings in terms of num-
ber of bits. The second left-most column of Table 1 headed ”call” refers to the
number of elementary functions in the code and the next column headed ”op”
denotes the number of elementary operations. In this experiment, we assume
that 100% is the percentage of all variables initially in single precision. Clearly,
the memory savings compared to the initial number of bits for the majority of
the original programs is considerable reaching 75% for ”CRadius” program for
a requirement of 4 bits. For instance, the ”carbonGas” program has a total of
13 variables all in single precision before analysis. In the synthesized code we
obtain 7 variables tuned into int8 t and 6 variables in int16 t achieving a gain
in number of bits of 63,5%. Concerning ”azimuth”program, our analysis failed
to infer mixed precision for a user accuracy requirement of 16 bits whereas it

8 https://fpbench.org/
9 https://github.com/powerapi-ng/jouleit

https://fpbench.org/
https://github.com/powerapi-ng/jouleit
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4 bits 8 bits 16 bits

Program call op 8 16 32 % 8 16 32 % 8 16 32 %

azimuth 7 7 1 0 17 4.2 0 1 17 2.8 - - - -

carbonGas 0 7 7 6 0 63.5 2 11 0 53.8 1 1 11 9.6

CRadius 1 3 6 0 0 75.0 0 6 0 50.0 0 0 6 0.0

CTheta 1 3 4 0 3 42.9 0 4 3 28.6 0 0 7 0.0

doppler1 0 7 9 1 0 72.5 1 9 0 52.5 0 1 9 5.0

doppler2 0 7 9 1 0 72.5 3 7 0 57.5 0 3 7 15.0

doppler3 0 7 9 1 0 72.5 2 8 0 55.0 0 2 8 10.0

instantCurrent 3 18 7 14 7 43.8 3 18 7 40.2 0 3 25 5.4

jetEngine 0 29 7 18 5 47.5 3 15 12 32.5 0 3 27 5.0

LeadLagSystem 1 17 2 29 2 48.5 0 31 2 47.0 0 0 33 0.0

LowPassFilter 0 0 0 330 0 50.0 0 330 0 50.0 0 4 326 0.6

CX 1 3 2 0 4 25.0 0 2 4 16.7 0 0 6 0.0

CY 1 3 2 0 4 25.0 0 2 4 16.7 0 0 6 0.0

triangle12 1 9 7 6 0 63.5 0 12 1 46.2 0 0 13 0.0

turbine1 0 14 4 13 0 55.9 0 17 0 50.0 0 0 17 0.0

turbine2 0 10 10 3 0 69.2 0 13 0 50.0 0 0 13 0.0

turbine3 0 14 3 14 0 54.4 0 17 0 50.0 0 0 17 0.0

Table 1: Mixed fixed-point formats in 4, 8 and 16 bits for the synthesized
program with the precentages of the number of bits saved.

reaches 4.2% and 2.8% respectively for requirements of 4 bits and 8 bits. Another
observation is that for a requirement of only 4 bits, 17 variables are tuned into
int32 t. A possible explanation of this result is the call to the elementary func-
tions in the code (call = 7) which can use intermediate variables that request
greater precision than the user accuracy requirement.

Figure 4 depicts the energy consumed by the execution of the benchmarks
for a requirement of 4 bits. We observe that the fixed-point version codes require
significantly less energy than the floating-point codes. For instance, the energy
saved on CPU and DRAM reaches « 43% for ”carbonGas” program and more
than 75% for ”jetEngine” program. Let us note that this observation is also valid
for the remaining user requirements with slight variations of savings. Finally, we
present the results in terms of speed for each of our benchmarks in Table 2. We
denote respectively by ”tfloat”,”tsynthesis” and ”tfix” the time of execution of
floating-point programs, the total synthesis time of POPiX and the execution
time of fixed-point programs all given in milliseconds. We visualize that the time
spent by POPiX for the majority of benchmarks is negligible not exceeding 342
ms for the ”carbonGas” program (« 30 LOCs). Although our synthesis method
is fast (few seconds), we observe that the execution time remains the same for
the floating and fixed-point codes with negilible slow-down for some benchmarks.

5 Related Work

In recent years, many authors have investigated the possibility of automating
fixed-point code synthesis. A similar approach to our work is the TAFFO tool
proposed by Cherubin et al. [4]. TAFFO is a static precision tuning tool that
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Fig. 4: Measurement of the energy consumption (CPU and DRAM) of the
floating-point and fixed-point version of our benchmarks.

converts floating-point computations into a fixed-point version with comparable
semantics. The common point between POPiX and TAFFO is that the esti-
mation of the errors is generated by the precision tuning process. Meanwhile,
POPiX is much faster and takes only few seconds to synthesize the new fixed-
point formats of the program.

Another solution for code conversion was introduced by Cattaneo et al. [3].
Their method relies on a self-contained compiler transformation pass imple-
mented within LLVM to perform the conversion. Their tool was especially ded-
icated to MIOSIX, a real time operating system targeting embedded system.

The goal of the dissertation of Jha [9] is to give an algorithm for optimal
fixed-point expressions synthesis based on inductive synthesis. Two years later,
Darulova et al. [5] proposed a fixed-point program synthesis methodology based
on expression rewriting and genetic programming. Their algorithm uses abstract
interpretation to estimate the error bound of a fixed-point implementation. How-
ever, the latter two techniques provide pessimistic bounds for non-linear ex-
pressions and are limited to straight-line programs. Coversely, Aslan et al. [2]
developed a tool that takes an n-bit fixed-point input and creates an m-bit
floating-point output with IEEE754 and custom formats.

In the context of polynomials, linear filters and signal processing algorithms,
the members of the DEFIS project [13] presented many approaches for fixed-
point code synthesis. To mention a few, the idea described in [6] works by infer-
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4 bits 8 bits 16 bits

Program tfloat tsynthesis tfix tsynthesis tfix tsynthesis tfix

azimuth 1.91 340 1.8 301 2.6 233 3.2

carbonGas 0.17 342 0.29 233 0.31 201 0.46

CRadius 0.10 240 1.31 192 1.33 186 1.36

CTheta 0.38 203 0.56 223 0.57 273 0.57

doppler1 0.16 205 0.53 249 0.54 225 0.57

doppler2 0.24 188 0.28 225 0.29 207 0.30

doppler3 0.17 243 0.30 195 0.32 207 0.34

instantCurrent 1.01 264 1.99 265 2.36 273 2.73

jetEngine 0.34 294 1.18 264 1.24 276 1.82

LeadLagSystem 0.53 352 0.71 394 0.86 346 1.09

CX 0.43 178 0.29 208 0.37 175 0.52

CY 0.39 203 0.41 197 0.55 197 0.68

triangle12 0.17 199 1.57 208 1.63 203 2.53

turbine1 0.24 220 0.31 228 0.35 269 0.49

turbine2 0.28 246 0.49 222 0.61 212 1.01

turbine3 0.48 247 0.47 253 0.49 217 0.83

Table 2: Execution time measurements obtained during the experiments.

ring high-level convolution operations from the original source code, and mod-
eling them as part of the program representation. In addition, Najahi et al. [12]
presented an automated approach to synthesize codes in fixed-point arithmetic
for some linear algebra basic blocks. They take a mathematical description of
the problem as well as the range of the input variables and generate fixed-point
code. Lopez [11] addresses the transformation of linear filters and controllers
into hardware operators using fixed-point arithmetic. His main contribution is
a complete error analysis, with respect to the internal word-lengths and the
formulation of the word-length optimization as a convex non-linear integer opti-
mization problem solved using appropriate heuristics. An extension of this work
to the full class of linear time invariant algorithms has been proposed in [14].

6 Conclusion

In this article, we have presented a new method for fixed-point code synthesis
respecting an accuracy requirement imposed by the user. Our method is based on
a static analysis of the code implemented by means of system of constraints which
gives the minimal format needed to encode each value. Experimental results show
the performance of the codes synthesized in terms of execution time, memory
and energy savings on a set of benchmark related to embedded systems.

In the future we would like to validate our method by considering architec-
tures more commonly used in embedded systems. Also, we aim at generating
hardware instead of software fixed-point implementations, using FPGAs. Tar-
geting FPGAs has two justifications: this type of hardware is becoming more
and more popular today and it presents the advantage of allowing fully custom
designs. Finally, for adoption reasons in real-world applications, we aim at ex-
tending POPiX in order to handle full C programs via an integration to LLVM.
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