Sofiane Bessaï
email: sofiane.bessai@etudiant.univ-perp.fr

Ben Dorra

Khalifa

Hanane Benmaghnia
email: hanane.benmaghnia@univ-perp.fr

Matthieu Martel
email: matthieu.martel@univ-perp.fr

Fixed-Point Code Synthesis Based on Constraint Generation ‹

Keywords: Fixed-point arithmetic, code synthesis, precision tuning, linear programming, static analysis

Fixed-point arithmetic is a well-known alternative to floatingpoint arithmetic on embedded systems. It is used to reduce some computation costs in terms of speed and power consumption on certain platforms, e.g. medical devices, cars, and robots. In this article, we present POPiX, a novel fixed-point program synthesis tool based on static analysis. The originality of our method is to solve a system of constraints generated from the program source code. Thus, the solution of our constraints gives the new fixed-point formats while accomplishing the accuracy required by the user. Basically, POPiX takes as input an imperative program running in floating-point arithmetic and synthesizes a new program coupled to a fixed-point library relying on integers only. We evaluate POPiX on a collection of floating-point benchmarks coming from FPBench. Results demonstrate the efficiency of our analysis by achieving memory savings up to 75% with energy savings up to 3.5ˆ.

Introduction

Floating-point arithmetic is the dominant approximation to represent a large spectrum of real numbers. Although it offers better precision, programmers do not always need the high level of accuracy offered by the largest floating-point formats. In addition, owing to its complex internal circuitry and the increased memory requirements, floating-point arithmetic can be exorbitant in terms of speed and power consumption on certain platforms such as mobile phones, video game consoles, and digital controllers. To bridge this gap and since many embedded architectures can be implemented using very low bit-width numbers, the solution is to deploy the fixed-point arithmetic as an alternative to the floatingpoint one as it can be efficiently realized using integer arithmetic. Fixed-point numbers in a certain format maintain a fixed divisor (so the name fixed-point).

With this kind of arithmetic, the number of bits splits into two parts, respectively named integer part and fractional part with a radix point that lies between them. Besides, many fields have revived their interest in fixed-point arithmetic when searching for cost effective hardware processors with less design effort. For instance, machine learning algorithms and models have been recently implemented using fixed-points with little accuracy loss [START_REF] Gupta | Deep learning with limited numerical precision[END_REF][START_REF] Lin | Fixed point quantization of deep convolutional networks[END_REF]. The conversion of code designed for embedded systems from floating to a fixed-point equivalent version is a long-established problem addressed in the litterature [START_REF] Cattaneo | Embedded operating system optimization through floating to fixed point compiler transformation[END_REF][START_REF] Cherubin | Dynamic precision autotuning with TAFFO[END_REF][START_REF] Darulova | Synthesis of fixed-point programs[END_REF][START_REF] Deest | Toward scalable source level accuracy analysis for floating-point to fixed-point conversion[END_REF][START_REF] Martel | Trade-offs of certified fixedpoint code synthesis for linear algebra basic blocks[END_REF]. Nevertheless, rarely we found tools (except for [START_REF] Cherubin | Dynamic precision autotuning with TAFFO[END_REF]) that deal with adjusting the floating-point formats in the original program before the conversion pass. Practically, programmers do not always need the high level of accuracy in the floating-point formats. However, manually adapting the precision of the variables may require considerable programming skill and application domain expertise. Given this consideration, automating the task of adjusting the program variables precision to improve its performance characteristics, before conversion, can help programmers to achieve performance benefits. Generally, this process of adjustment, also called precision tuning, involves a user requirement of accuracy and a semantic analysis of the program. The benefit of this tuning phase is to provide an optimized mixed-precision programs and pieces of information indicating the most suitable fixed-point data formats in the converted program.

The goal of this article is to propose POPiX: a new tool to transform a given numerical floating-point program into semantically equivalent one that exploits fixed-point computations with integers only. The key idea of this work relies on a semantic modelling of the numerical errors propagation throughout the floating-point program. In order to achieve the conversion, POPiX combines two fundamental steps. The first step consists in generating an Integer Linear Problem (ILP) from the original program in order to obtain the minimal formats (number of bits before and after the radix point) which fulfill the accuracy requirements. Basically, this is done by reasoning on the most significant bit and the number of significant bits of the values. The ILP problem can be optimally solved in one shot by a classical linear programming solver (LP) with no iteration. To the best of our knowledge, this is the first work that interests in statically synthetizing fixed-point code using an ILP formulation of the program. At the end of the tuning phase, the second step collects each information provided by the former step. The tool internally calls a fixed-point library to convert the associated indications into ones that exploit fixed-point computation with the number of bits required for each of the integer and the fractional parts. We evaluate POPiX on a set of benchmarks coming from the FPBench community. The POPiX source code, and all the data and results presented in this article are publicly available at: https://github.com/sbessai/popix. The remainder of this article is organized as follows. In Section 2 we present a motivating example describing our approach. Section 3 provides all the technical details about our new developed fixed-point code synthesis framework. Experimental results are presented in Section 4. We discuss related work in Section 5, and conclude in Section 6.

Overview

Before we dive into the technical details of our tool, we present in this section an overview of our method using the example of a FIR low-pass filter code given in Figure 1. The starting point of our analysis is to assume that all the variables are in a given IEEE754 precision (here we use single precision) and that a range is given for the inputs of the program. In addition, the statement require nsb(res,8) is a postcondition added by the user to specify that res must have 8 significant bits at the end of the execution. POPiX first performs a range determination by dynamic analysis for all the program variables at each control point. Based on semantic equations, POPiX generates an ILP problem from the program source code annotated with the results of the range analysis and the accuracy requirement. This yields a system of constraints:

C " $ ' ' ' & ' ' ' %
nsbp+q ℓ 548 ą" nsbpresq ℓ 549 , nsbpresq ℓ 549 ą" nsbpifq ℓ 551 , nsbpresq ℓ 511 ą" nsbpresq ℓ 545 , nsbpresq ℓ 545 ą" nsbp+q ℓ 548 `8 `carrypq ´8 nsbpresq ℓ 545 ą" nsbp+q ℓ 548 `8 `carrypq ´8, nsbpresq ℓ 548 ą" nsbpresq ℓ 549 , nsbpaux0q ℓ 547 ą" nsbp+q ℓ 548 `6 `carrypq ´8, nsbpaux0q ℓ 543 ą" nsbpaux0q ℓ 547 For instance, the system C of Equation (1) below describes the constraints generated for the addition and assignement statements for Line 23 of Figure 1 (left hand side). Some notations can be highlighted for the system of Equation [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF]. First, each variable of our program is assigned to a unique control point ℓ P Lab in order to determine easily their number of significant bits. Second, the function carrypq is used to compute if a carry bit can occur through the operation (returns 0 or 1). Concerning scalability, we generate a linear number of constraints and variables in the size of the analyzed program (« 500 for the FIR low-pass filter code). The solution to our system of constraints gives the minimal number of bits needed with an accuracy guarantee on the results (highlighted in blue in the left hand side of Figure 1). If we take back Line 23 under discussion, the pair |8, 10| denotes that the unit in the first place of variable res is 8 whereas it has 10 significant bits. More details about the nature of constraints that we generate for the language of our input programs was detailed in [START_REF] Adjé | Fast and efficient bit-level precision tuning[END_REF].

Based on the tuning results, POPiX synthesizes the C code given in the right hand side of Figure 1. First, it selects the best format (int16 t, int32 t, etc.) for each variable (this is called mixed-precision). For example, at lines 6 and 7, vectors x, y and z are defined as int16 t variables while the vector derivCoeffs is defined as int8 t. The data type selected by POPiX for each variable is the minimal one enabling us to encode the fixed-point value following the formats coming from the ILP solution. For example, the variable res has 10 significant bits (lines 29 and 31 of Figure 1) and can consequently be encoded into int16 t. POPiX determines the initial formats xM, Ly of the variables occurring in the code and synthesizes the alignments needed to change the formats, before performing some operation. For example, the shifts performed at lines 29 and 30 are done in order to align the operand of the addition of Line 31. Similarly, the shift of Line 28 is done to obtain the right format for the result of the multiplication of Line 27. Currently, the fixed-point operation are generated sequentially and some additional optimizations could be done, for example by using only one shift for lines 27 and 29.

Floating to Fixed-Point Programs Synthesis

POPiX workflow is based on two frameworks as depicted in Figure 3: a developed fixed-point library (Section 3.1) and a precision tuning framework (Section 3.2). In the rest of this section, we explain how the combination of these features are achieved and which benefits they provide.

Fixed-Point Arithmetic

Since fixed-point operations rely on integer operations, computing with fixedpoint numbers is highly efficient for embedded systems with small memories and simpler CPUs. However, this arithmetic is more difficult to handle for the developer. There exists some fixed-point libraries such as Libfixmath 3 , Fixmath 4 Fig. 2: Fixed-point representation of a in a format xM, Ly . and FPM 5 , but we have developed our own library in order to dispose of all the features we need such as mixed-precision, elementary functions, etc.

A fixed-point number is represented by a sign s P t0, 1u, an integer value V P N in base 2 and a format xM, Ly as shown in Figure 2. The number of bits before, respectively after, the radix point is M P Z (respectively L P N). The value of a fixed-point number is obtained by multiplying the integer value V by the sign s and a scaling factor 2 ´L as follows:

a " p´1q s ˆV ˆ2´L .

(

) 2
Example 1 The fixed-point number a " 3 ă2,1ą corresponds to the value 1.5. Using Equation (2), we obtain a " p´1q 0 ˆ3 ˆ2´1 " 1.5.

Let us note that the number of bits M of the integer part already presented in Figure 2 is computed through the unit in the first place (ufp) defined by @x P F, ufppxq "

minti P Z : 2 i`1 ą |x|u " tlog 2 p|x|qu if x ‰ 0, 0 if x " 0 . (3)
Hence, the number of bits M before the radix point is given by

M " ufpp|a|q `1 . (4
)
Let W be the number of bits used to encode a. The number of bits L of the fractional part of a is

L " W ´M ´1 . (5
)
The difficulty of the fixed-point representation is to manage the format xM, Ly manually against the floating-point representation which manages it automatically, thanks to the exponent. Let ˚be a fixed-point elementary operation with P {', a, b, c} and let us consider the fixed-point numbers a, b and c such that c " a ˚b. For the addition and subtraction, the resulting format of c is given by

xM c , L c y " xmax pM a , M b q `1, W c ´max pM a , M b q ´1y . (6
)
For the multiplication and division, the resulting formats of c are

xM c , L c y " xM a `M b , W c ´M a ´M b ą . (7
)
and The algorithms of these elementary operations are detailed in [11,[START_REF] Martel | Trade-offs of certified fixedpoint code synthesis for linear algebra basic blocks[END_REF]. Let us consider a fixed-point elementary function f P {abs, sqrt, sin, cos, arctan} and the fixed-point number c " f paq. For the square root function, the value of the result can be approximated by the digit recurrence iteration algorithm defined in [START_REF] Martel | Trade-offs of certified fixedpoint code synthesis for linear algebra basic blocks[END_REF]. For f P {sin, cos, arctan}, Taylor's formula is used to approximate the result. For example, the corresponding formula of sine is sinpaq « a ' pppa b aq b aq c 6q. The order of the Taylor series development depends on the number of significant bits needed for the result. In the following, we describe how we compute the fixed-point numbers occuring in our programs.

xM c , L c y " xM a `Lb , W c ´M a ´Lb y . (8)

Constraint Generation by Static Analysis

POPiX presents a novel static technique based on a semantic modelling of the propagation of the numerical errors throughout the code. In practical terms, our approach depends on two integer quantities: iq The ufp of the values (see Equation (3)); iiq A user requirement denoting the final accuracy wanted for the outputs. Hereby, the term accuracy refers to the number of significant bits required by the user on a variable of the program, denoted by nsb. Formally, let x be the approximation of x in finite precision and let εpxq " |x ´x| be the absolute error. So, if nsbpxq " k, for x " 0, then we have

εpxq ď 2 ufppxq´k`1 . (10
)
An ILP problem can be generated from the program source code which can be optimally solved by a LP solver (we use GLPK 6 , in practice). Concerning our resulting data types, the key feature of our method consists in finding directly the minimal number of bits needed at each control point of the original program. Next, these precisions can be approximated to the upper number of bits corresponding to an existing format int16 t, int32 t, etc. By way of illustration, if a variable x has nsbpxq " 18 bits, then x is tuned to the int32 t format. After solving the ILP problem, POPiX collects a new key information concerning the optimized precisions (along with the ufp integer quantity already computed by range analysis) in order to fully specify the fixed-point formats xM, Ly introduced in Section 3.1. Finally, we call our fixed-point library to synthetize a fixed-point version of the program with only integer numbers. Through this technique, it is possible to achieve memory savings up to more than double with a precision cost that depends on the original program being optimized and energy savings up to 3.5ˆ(see Section 4).

Implementation Details POPiX has been developed in JAVA and C++ and uses the ANTLR tool v4.7.17 to parse the input programs. To be able to guarantee that no overflows will occur in computations, we perform a range analysis by launching the execution of the program a certain number of times in order to determine dynamically an under-approximation of the range of variables by using the ufp of the values. In the future, we plan to use a static analyzer. Nevertheless, POPiX uses the simple imperative language below.

x P Id ℓ P Lab d P {+, -, ˆ, ˜} math P {sin, cos, tan, arcsin, log, . . .} Expr Q e : e :

:= c#p | x | e ℓ 1 1 d e ℓ 2 2 | mathpe ℓ 1 q | sqrtpe ℓ 1 q Cmd Q c : c ::" c ℓ 1 1 ; c ℓ 2 2 | x " e ℓ 1 | while b ℓ 0 do c ℓ 1 1 | if b ℓ 0 then c ℓ 1 1 else c ℓ 2 | create vectorpv, sq | create matrixpm, r, cq | require nsbpx, nq
We denote by Id the set of identifiers and by Lab the set of control points of the program used to assign to each element e P Expr and c P Cmd a unique control point ℓ P Lab. Fortunately, POPiX is able to handle loops, conditionals and arrays. The declaration of vectors is expressed by the statement create vector(v,s), while s denotes the size of the vector v. The declaration of a matrix m is expressed by the statement create matrix pm, r, cq , while r and c denote respectively the number of rows and columns of the matrix. The statement require nsb(x,n) indicates the minimal nsb n that a variable x must have at a control point. The rest of the grammar is standard. Note that the usual mathematical elementary functions are supported.

Cost functions Cost functions are given as optimization objective to the linear solver. Depending on which cost function is used, different criteria may be considered for the tuning phase. POPiX currently handles the following cost functions: CF1 Optimizes the sum of the number of significant bits of all the variables at each control point of the program. CF2 Optimizes the sum of accuracies of only the variables assigned in the program. Compared to CF1, this cost function minimizes the size of the variables and the number of bits needed for the operators to store the intermediary results. Let us note that CF2 is used in the experiments of Section 4. CF3 Minimizes the maximal accuracy needed in the program, i.e. the worst accuracy at some control point of the tuned program. This function is usefull to make a program fit in a certain format (for example all variables in 16 or 32 bits.) CF4 Optimizes only the sum of the accuracies of the arithmetic operators and elementary functions. This function is relevant from an hardware point of view, for example to limit the size of the operators in FPGAs [START_REF] Gao | Numerical program optimization for high-level synthesis[END_REF]. CF5 Minimizes the number of type conversions. Indeed, type conversions introduced by the mixed-precision tuning may slow down the execution of the programs and one may prefer a compromise between memory savings and execution time. This function addresses this problem. Note that these cost functions are modified when dealing with arrays: the tool multiplies the precision by the number of elements and this process is done only once for each array instead of several times for each use of arrays.

Experimental Evaluation

In this section, we conduct some experiments to show the effectiveness of our code synthesis method presented in Section 3.

Experimental Metrics

In our experiments, our goal is to evaluate the benefits of POPiX in terms of mixed-precision, memory savings and energy consumption which are important metrics to validate our synthesis method. We also measure the time of analysis spent by POPiX and the execution time of the fixed-point progam with respect to the floating-point program in which we assume that all variables are in single precision (32 bits) before the analysis. For our benchmarks, we use applications from FPBench 8 , a synthetic benchmark for floating-point performance. We run each program with three accuracy requirements arbitrarily chosen by the user: 4, 8 and 16 bits which bound the relative error of the result. All the results we report in this section where gathered on two machines: Ubuntu 20.04 LTS, with an 2.7GHz i7 core and 16 GB of RAM and Ubuntu 20.04 LTS, with a CPU AMD Ryzen 5 3500u and 5.7 GB of RAM. Let us state that the reason we use the Intel machine is to exploit the Jouleit 9 tool in order to estimate the power consumption of the CPU, RAM and integrated GPU.

Results Analysis Table 1 shows the mixed-precision configurations obtained after analysis in terms of number of variables or operations that we may tune into int8 t, int16 t and int32 t and consequently the memory savings in terms of number of bits. The second left-most column of Table 1 headed "call" refers to the number of elementary functions in the code and the next column headed "op" denotes the number of elementary operations. In this experiment, we assume that 100% is the percentage of all variables initially in single precision. Clearly, the memory savings compared to the initial number of bits for the majority of the original programs is considerable reaching 75% for "CRadius" program for a requirement of 4 bits. For instance, the "carbonGas" program has a total of 13 variables all in single precision before analysis. In the synthesized code we obtain 7 variables tuned into int8 t and 6 variables in int16 t achieving a gain in number of bits of 63,5%. Concerning "azimuth"program, our analysis failed to infer mixed precision for a user accuracy requirement of 16 bits whereas it 4 depicts the energy consumed by the execution of the benchmarks for a requirement of 4 bits. We observe that the fixed-point version codes require significantly less energy than the floating-point codes. For instance, the energy saved on CPU and DRAM reaches « 43% for "carbonGas" program and more than 75% for "jetEngine" program. Let us note that this observation is also valid for the remaining user requirements with slight variations of savings. Finally, we present the results in terms of speed for each of our benchmarks in Table 2. We denote respectively by "t f loat ","t synthesis " and "t f ix " the time of execution of floating-point programs, the total synthesis time of POPiX and the execution time of fixed-point programs all given in milliseconds. We visualize that the time spent by POPiX for the majority of benchmarks is negligible not exceeding 342 ms for the "carbonGas" program (« 30 LOCs). Although our synthesis method is fast (few seconds), we observe that the execution time remains the same for the floating and fixed-point codes with negilible slow-down for some benchmarks.

Related Work

In recent years, many authors have investigated the possibility of automating fixed-point code synthesis. A similar approach to our work is the TAFFO tool proposed by Cherubin et al. [START_REF] Cherubin | Dynamic precision autotuning with TAFFO[END_REF]. TAFFO is a static precision tuning tool that Another solution for code conversion was introduced by Cattaneo et al. [START_REF] Cattaneo | Embedded operating system optimization through floating to fixed point compiler transformation[END_REF]. Their method relies on a self-contained compiler transformation pass implemented within LLVM to perform the conversion. Their tool was especially dedicated to MIOSIX, a real time operating system targeting embedded system.

The goal of the dissertation of Jha [START_REF] Jha | Towards Automated System Synthesis Using SCIDUCTION[END_REF] is to give an algorithm for optimal fixed-point expressions synthesis based on inductive synthesis. Two years later, Darulova et al. [START_REF] Darulova | Synthesis of fixed-point programs[END_REF] proposed a fixed-point program synthesis methodology based on expression rewriting and genetic programming. Their algorithm uses abstract interpretation to estimate the error bound of a fixed-point implementation. However, the latter two techniques provide pessimistic bounds for non-linear expressions and are limited to straight-line programs. Coversely, Aslan et al. [START_REF] Semih Aslan | A high-level synthesis and verification tool for fixed to floating point conversion[END_REF] developed a tool that takes an n-bit fixed-point input and creates an m-bit floating-point output with IEEE754 and custom formats.

In the context of polynomials, linear filters and signal processing algorithms, the members of the DEFIS project [13] presented many approaches for fixedpoint code synthesis. To mention a few, the idea described in [START_REF] Deest | Toward scalable source level accuracy analysis for floating-point to fixed-point conversion[END_REF] works by infer- ring high-level convolution operations from the original source code, and modeling them as part of the program representation. In addition, Najahi et al. [START_REF] Martel | Trade-offs of certified fixedpoint code synthesis for linear algebra basic blocks[END_REF] presented an automated approach to synthesize codes in fixed-point arithmetic for some linear algebra basic blocks. They take a mathematical description of the problem as well as the range of the input variables and generate fixed-point code. Lopez [11] addresses the transformation of linear filters and controllers into hardware operators using fixed-point arithmetic. His main contribution is a complete error analysis, with respect to the internal word-lengths and the formulation of the word-length optimization as a convex non-linear integer optimization problem solved using appropriate heuristics. An extension of this work to the full class of linear time invariant algorithms has been proposed in [START_REF] Volkova | Towards reliable implementation of digital filters[END_REF].

Conclusion

In this article, we have presented a new method for fixed-point code synthesis respecting an accuracy requirement imposed by the user. Our method is based on a static analysis of the code implemented by means of system of constraints which gives the minimal format needed to encode each value. Experimental results show the performance of the codes synthesized in terms of execution time, memory and energy savings on a set of benchmark related to embedded systems.

In the future we would like to validate our method by considering architectures more commonly used in embedded systems. Also, we aim at generating hardware instead of software fixed-point implementations, using FPGAs. Targeting FPGAs has two justifications: this type of hardware is becoming more and more popular today and it presents the advantage of allowing fully custom designs. Finally, for adoption reasons in real-world applications, we aim at extending POPiX in order to handle full C programs via an integration to LLVM.

Fig. 1 :

 1 Fig. 1: Left: tuned program generated with a pair |ufp, nsb| for each variable as highlighted in blue. Right: Program C generated with fixed point formats.

Fig. 3 :

 3 Fig. 3: POPiX workflow.

Fig. 4 :

 4 Fig. 4: Measurement of the energy consumption (CPU and DRAM) of the floating-point and fixed-point version of our benchmarks.

Table 1 :

 1 Mixed fixed-point formats in 4, 8 and 16 bits for the synthesized program with the precentages of the number of bits saved. reaches 4.2% and 2.8% respectively for requirements of 4 bits and 8 bits. Another observation is that for a requirement of only 4 bits, 17 variables are tuned into int32 t. A possible explanation of this result is the call to the elementary functions in the code (call = 7) which can use intermediate variables that request greater precision than the user accuracy requirement. Figure

	8 https://fpbench.org/
	9 https://github.com/powerapi-ng/jouleit

Table 2 :

 2 Execution time measurements obtained during the experiments.

			4 bits		8 bits		16 bits
	Program	t f loat	t synthesis	t f ix	t synthesis	t f ix	t synthesis	t f ix
	azimuth	1.91	340	1.8	301	2.6	233	3.2
	carbonGas	0.17	342	0.29	233	0.31	201	0.46
	CRadius	0.10	240	1.31	192	1.33	186	1.36
	CTheta	0.38	203	0.56	223	0.57	273	0.57
	doppler1	0.16	205	0.53	249	0.54	225	0.57
	doppler2	0.24	188	0.28	225	0.29	207	0.30
	doppler3	0.17	243	0.30	195	0.32	207	0.34
	instantCurrent	1.01	264	1.99	265	2.36	273	2.73
	jetEngine	0.34	294	1.18	264	1.24	276	1.82
	LeadLagSystem	0.53	352	0.71	394	0.86	346	1.09
	CX	0.43	178	0.29	208	0.37	175	0.52
	CY	0.39	203	0.41	197	0.55	197	0.68
	triangle12	0.17	199	1.57	208	1.63	203	2.53
	turbine1	0.24	220	0.31	228	0.35	269	0.49
	turbine2	0.28	246	0.49	222	0.61	212	1.01
	turbine3	0.48	247	0.47	253	0.49	217	0.83

https://code.google.com/archive/p/libfixmath/

http://savannah.nongnu.org/projects/fixmath/

https://github.com/MikeLankamp/fpm

https://www.gnu.org/software/glpk/

https://www.antlr.org/

‹ This work is supported by La Région Occitanie under Grant GRAINE -SYFI: https://www.laregion.fr.