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Abstract 9 

Variational data assimilation (VDA) has been implemented to enhance the estimation of the 10 

unknown input parameters of a new agricultural subsurface drainage model (SIDRA-RU) 11 

through assimilating drainage discharge observations. The adjoint model of SIDRA-RU has 12 

been successfully generated through the generic automatic differentiation tool (TAPENADE). 13 

First, the adjoint model is used to explore the local and global adjoint sensitivities of the 14 

valuable function defined over the drainage discharge simulations with respect to model input 15 

parameters. Next, the most influential parameters are estimated by applying the Variational 16 

DA approach. The performed sensitivity analysis shows that the most influential parameters 17 

on drainage discharge are those controlling the dynamics of the water table; the second most 18 

influential parameters manage the drainflow start of each drainage season. Compared to an 19 

alternative gradient-free calibration performance, the estimation of these governing 20 

parameters by the variational method improves the overall quality of the drainage discharge 21 

prediction, in particular in terms of the cumulative water volume. Improved parameters 22 
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generate less than 5 mm (1%) of the discrepancy between simulated and observed water 23 

volumes, based on the five years of daily discharge observations on the Chantemerle 24 

agricultural parcels (36 ha). Preliminary numerical tests have shown the potential presence of 25 

multiple local minima, thus pointing out the equifinality issues. The latter can be highlighted 26 

by the self-compensation of both the physical soil parameters and the main conceptual 27 

parameters. For improving the robustness of the parameter estimates, a novel hybrid 28 

“Bayesian Variational” method is suggested. This method is based on the Bayesian averaging 29 

of an ensemble of optimal estimates. 30 

 31 

Keywords: agricultural drainage model, adjoint sensitivity analysis, variational data 32 

assimilation, Bayesian estimation. 33 

1. INTRODUCTION 34 

Agricultural drainage systems are designed to remove the excess water within soils subjected 35 

to frequent and continuous waterlogging, in particular during the winter season. The 36 

agricultural subsurface drained areas contribute to 10% of French arable soils (Vincent, 37 

2020). The main objectives of agricultural drainage are to ensure better crop yields 38 

(Mohtadullah, 1990) and facilitate grazing and access to cultivated fields by farmers. 39 

Subsurface drainage flow only occurs when the perched water table rises above the drain 40 

depth, as identified by “drainage season”. Three drainage patterns can be distinguished during 41 

an agricultural drainage season (Lesaffre, 1988): (1) the “pre-flow drainage stage”, consists 42 

of a gradual saturation of the soil and a limited flow into drains; (2) the “intensive drainage 43 

stage” (IDS) featuring a continuous and rapid reaction to each rainfall event; (3) the “drying 44 

stage”. The latter is characterized by the water flow decrease until the drainage flow stops 45 

during summer. 46 
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The hydrological behavior of agricultural drainage networks is highly dependent on 47 

hydrometeorological data and soil hydro-physical properties. To understand the hydrology of 48 

drained agricultural lands, several numerical models have been developed to approximate the 49 

underlying dynamics and physical processes. The appropriate modeling of the perched water 50 

table formed in drained soils is complex, time-consuming and still require multiple input data 51 

and parameters. In contrast, some simplified models simulate the outputs from a limited input 52 

dataset but are not able to describe the physics of hydrological and hydraulic processes 53 

(Tournebize et al., 2004; Henine et al., 2010; Henine et al., 2014). 54 

Several models are reported in the literature (Gurovich and Oyarce, 2015) for designing 55 

drainage networks and monitoring hydraulic patterns. DRAINMOD (Skaggs et al., 2012), 56 

EnDrain (Valipour, 2012), CSUID (Alzraiee et al., 2013), and SIDRA that was initially 57 

developed at INRAE (formerly Cemagref) by Lesaffre (1988) describe the hydrological and 58 

hydraulic behavior of drained agricultural lands. More specifically, SIDRA (SImulation of 59 

DRAinage) model simulates water table variations at the mid-drain and calculates discharge 60 

at the drainage network outlet. Since that time, several model improvements have been 61 

proposed by Bouarfa (1995) and Bouarfa and Zimmer (2000), including a better 62 

consideration of the evaporation term and the water table shape. Recently, a new conceptual 63 

module has been introduced to manage the quantity of water seeping through the vadose soil 64 

zone (Jeantet et al., 2021; Henine et al., 2022), referred to as SIDRA-RU (RU “Réserve 65 

Utile” for Water Holding Capacity). 66 

Furthermore, the model uncertainty management is indispensable to enhance the hydrological 67 

prediction (Blöschl et al., 2019). Leaving out the structural uncertainty specific to each 68 

model, one can focus on improving the input/parameter estimation. This could be achieved in 69 

part by considering the most suitable optimization approach in terms of uniqueness, 70 

robustness and stability of the final solution. 71 
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It is known that long-term discharge predictions are needed to adapt and prepare agricultural 72 

lands to cope with the effects of climate change (Jiang et al., 2020; Golmohammadi et al., 73 

2021). Unlike the short-range predictions (e.g. days, weeks), which may require the 74 

knowledge of the hydrological state at the beginning of the prediction window (e.g. flood 75 

forecasting), the long-range predictions are almost fully defined by the driving conditions 76 

(anticipated rainfall and evapotranspiration) and the model parameters. That is why this paper 77 

focuses on solving a classical parameter estimation (calibration) problem for SIDRA-RU 78 

model, using observations of drainage discharge recorded before the prediction window. 79 

First, the most influential model parameters on model outputs should be identified. This can 80 

be achieved through the Sensitivity Analysis (SA), a key preliminary step to the optimization 81 

exercise (Stange et al., 2000; Migliaccio and Chaubey, 2005; Razavi et al., 2021). Several 82 

approaches can be employed in local and global SA, including variance-based approaches 83 

(Sobol, 1993; Saltelli, 2002) and derivative-based methods (Cacuci, 1981; Morris, 1991). The 84 

adjoint sensitivity analysis involves a simultaneous computation of all sensitivities using 85 

adjoint operators within a single model run. In addition, inequality links have been 86 

established between the derivative-based global sensitivity measures (DGSM) and Sobol’s 87 

indices, thus yielding SA for a large number of input parameters (Kucherenko, 2009; 88 

Lamboni et al., 2013). In the same context, Gejadze et al. (2019) derived a generalized 89 

relationship between the global sensitivity indices and the Polynomial Chaos coefficients, 90 

making SA suitable for high-dimensional models. 91 

Once the most influential parameters are identified, one can estimate their values using the 92 

available observations. Several approaches are presently available, ranging from the PAP-GR 93 

Michel’s calibration algorithm (Michel, 1989) highlighted by Mathevet (2005), to more 94 

sophisticated Data Assimilation (DA) methods, such as the Kalman filter and its ensemble 95 
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variants, Particle filters, variational Data Assimilation (VDA) and hybrid methods 96 

(Abbaszadeh et al., 2019). 97 

In particular, VDA method is preferred in operational geophysical large-scale applications, 98 

due to its scalability, robustness and potential to handle nonlinear systems under high 99 

uncertainty (Courtier et al., 1998; Fischer et al., 2005; Gauthier et al., 2007). However, 100 

references on the application of VDA to hydrological models remain relatively scarce. In 101 

recent studies, the optimal estimates of the unknown model variables and/or parameters have 102 

been obtained via minimization of a cost function using the gradient-based methods (Nguyen 103 

et al., 2016; Oubanas et al., 2018; Ghorbanidehno et al., 2020; Jay-Allemand et al., 2020). 104 

This procedure requires developing the adjoint counterpart of the model, which could be 105 

challenging to obtain in some cases (e.g. presence of non-differentiable operators). 106 

Application of filtering methods is natural for solving the state or state-parameter estimation 107 

problems to unable the short and medium range state forecasting. For the pure calibration 108 

problems the ‘full sample’ data processing approach such as VDA should be preferred, given 109 

the adjoint model is available. 110 

A common issue when solving ill-posed problems in a variational formulation using the 111 

gradient-based minimization is the likely presence of multiple local minima in the cost 112 

function (Dennis and Moré, 1977). A comparison between different optimization algorithms 113 

applied to hydrological models was presented by Arsenault et al. (2014). Some of these 114 

methods can be highly sensitive to the choice of the initial guess, known as the “background” 115 

in DA or the “prior” in statistics. This finding was supported by Pan and Wu (1998), in which 116 

an original approach based on the simplex method was used to reveal and avoid the 117 

convergence to local minima. Furthermore, Skahill and Doherty (2006) proposed a simple 118 

methodology to address the local minima issue. Based on a local search algorithm, their 119 

methodology consists of starting the minimization process with different parameter values to 120 
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increase the probability of reaching the global minima. The same concept has been deployed 121 

when calibrating 3D morphodynamic model data (Shoarinezhad et al., 2020) using the PEST 122 

parameter estimation package (Welter et al., 2012), thus showing that the optimization 123 

process is substantially affected by the local minima issue. 124 

However, the presence of multiple local minima is, essentially, a sign of ill-posedness in 125 

terms of non-uniqueness (equifinality thesis, Beven (2006)). In these circumstances, one 126 

should look for the mean of the posterior distribution rather than for one of its modes. The 127 

posterior mean is a natural output of the Bayesian methods. Since the direct use of these 128 

methods may be difficult in high dimensions, we suggest a simple hybrid approach referred 129 

below as the Bayesian Variational (BV) method. That is, the mean is computed over an 130 

ensemble of parameter estimates obtained by the variational method, whereas each ensemble 131 

member is weighed by the corresponding likelihood. The method is described in detail in 132 

Section 2.4.2. 133 

2. MATERIALS AND METHODS 134 

This paper focuses on improving the long-range predictive performance of the SIDRA-RU 135 

model (Henine et al., 2022) that runs with a daily time step and requires knowledge of the 136 

rainfall, potential evapotranspiration and a set of model parameters. First, the adjoint local 137 

and global sensitivity analysis are performed, in accordance with the methodologies 138 

presented in Goutal et al. (2018) and Gejadze et al. (2019). Next, the VDA method is applied 139 

to improve the estimation of the most influential model parameters. Therefore, the uniqueness 140 

(equifinality) of the parameter estimation problem is investigated by running the ensemble of 141 

minimizations from different starting points. Then, the hybrid BV method is performed to 142 

improve the robustness of the estimates. A flowchart is embedded below to indicate the 143 

connections between the methodology elements (Figure 1). 144 
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 145 

Figure 1. A flowchart clarifying connections existing between the methodology elements  146 

2.1. Study area description and data 147 

The Chantemerle agricultural sub-catchment (36 ha) has been considered for this study. The 148 

field includes a set of artificially drained agricultural parcels. On average, the drains are laid 149 

at a depth of 0.9 m and spaced by 10 to 12 meters. The study area is located in Aulnoy 150 

(“Seine et Marne” department; 70 km east of Paris), within the Orgeval catchment (Tallec 151 

(2012); Figure 2). 152 
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 153 

Figure 2. The “Chantemerle” agricultural field and its general location (48°50' N, 3° 6' E), 154 

“Seine et Marne department”, France) 155 

The study site experiments are operated by the GIS-ORACLE research observatory 156 

(https://gisoracle.inrae.fr/). The soil is luvisol type (FAO, 2006; Tournebize et al., 2015) with 157 

a silty texture (mixture of sand and clay), which is belong to the Aqualf suborder following 158 

the US taxonomy system. This type of soil gives rise to a temporary water table, causing fast 159 

and continuous water flows during wet periods. The outlet of the subsurface drainage 160 

network has been monitored by the water level measurement device (SE-200 OTT). Then, the 161 

water level has been transformed into discharge value using calibrated rating curve. The 162 

rainfall has been measured near the study site using a rain gauge. Daily potential 163 

evapotranspiration (PET) data have been extracted from the SAFRAN database (Vidal et al., 164 

2010). PET values have been calculated according to the Penman-Monteith formula. 165 

Available data cover September 1st, 2008 to August 31st, 2013 (Figure 3). 166 

Among all recorded data, two wet hydrological years, 2010/2011 and 2012/2013 can be 167 

distinguished, accumulating respectively 172 mm and 217 mm of drained water. The three 168 

remaining dry years account for a combined 209 mm, nearly equal to the drained water 169 
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accumulated in just a single wet season. This contrast in the quantity of drained water (i.e. 170 

succession of dry and wet seasons) lends more reliability to our results. 171 

 172 

Figure 3. Five years (2008-2013) of daily drainage discharge data (Q, black) and rainfall (P, 173 

blue) recorded at the “Chantemerle” field scale. The related daily potential evapotranspiration 174 

values (PET, green) are extracted from the SAFRAN database. 175 

2.2. The SIDRA-RU model 176 

SIDRA-RU is a semi-analytical and semi-conceptual model, which is run at the scale of 177 

agricultural plots with a daily time step. The model is based on three coupled modules 178 

(Figure 4; Henine et al. (2022)): 179 

- The first module estimates the net infiltration based on more realistic 180 

evapotranspiration, referred to herein as corrected evapotranspiration (CET). This 181 

variable takes into account the potential evapotranspiration rate (PET), the available 182 

soil water content in the soil reservoir, and the crop coefficient (β). The net infiltration 183 
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is calculated as the difference between the precipitation (P) and the CET (Appendix 184 

A; formulas A.1). 185 

- Based on a conceptual reservoir approach, the second module calculates the net 186 

recharge to the perched water table as a function of the actual water level in the soil 187 

reservoir (S(t)). Three distinct soil reservoir thresholds are accordingly defined 188 

namely minimum (Smin), intermediate (Sinter) and maximum (Smax). When S(t) lies 189 

between Sinter and Smax, the model splits the net infiltration rate into two components 190 

via partition parameter (α). The first part (α) recharges the water table (R) while the 191 

second part (1-α) continues to fill the soil reservoir. When S(t) reaches the maximum 192 

level (Smax), the entire net infiltration recharges the water table (Appendix A; formulas 193 

A.2). It is worthwhile to note that S(t) level at the beginning of the hydrological year 194 

(N) is based on the soil saturation degree of the year (N-1). 195 

- The third module simulates drainage discharge (Q) and the mid-drain water table 196 

height  (h) above drain by applying the SIDRA model (Lesaffre, 1988). Note that Q 197 

and h values are calculated considering the Hooghoudt equation (Hooghoudt, 1940) 198 

(Appendix A; formulas A.3). 199 
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 200 

Figure 4. Diagram presenting the three SIDRA-RU modules (Henine et al., 2022) 201 

SIDRA-RU inputs are precipitation (P) and potential evapotranspiration data (PET), both 202 

considered as forcing variables, along with the model parameters to simulate the mid-drain 203 

water level variations (h) and drainage discharges (Q) outputs (Figure 4). The model contains 204 

two state variables h(t) and S(t), and eleven parameters. 205 

The parameter set of the model is listed in Table 1. This set includes the SIDRA model 206 

parameters ( ���� and µ) and the two soil reservoir parameters, i.e., intermediate soil reservoir 207 

level (��	�
�) and reservoir storage capacity during the intensive drainage season (��
�) 208 

which is equal to the difference between ���� and  ��	�
�. The remaining parameters are 209 

considered as either given invariants, regardless of field characteristics, or typical invariant 210 

characteristics at the field scale. It should be pointed out that the presence of an impermeable 211 

layer, on which the drains are laid, limits deep infiltrations (aspect not considered herein). In 212 

addition, Augeard et al. (2005) showed that surface runoff becomes negligible under the same 213 

Stage 3: R = P-CET

Stage 2: R = α*(P-CET) 

Stage 1: R = 0 

1) Soil surface:  

Calculation of net 

infiltration (P-CET) 

2) Unsaturated zone:  

Calculation of water 

table recharge (R) 

3) Saturated zone: 

Calculation of drainage 

discharge (Q) 
 

Smax 

h 
  

l/2 

Water Table 

Smin 

Sinter 

CET = f (PET, S(t)) 

P CET 
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field conditions since the agricultural plots are being extensively drained, which leads to 214 

infrequent soil overflow. 215 

Table 1. Classification of SIDRA-RU parameters 216 

Type Parameters Unit Notes 

SIDRA model Saturated hydraulic conductivity (Ksat) m/day Measurable but often 

inaccessible Drainage porosity (µ) (-) 

Water table shape coefficients (A and C) (-) Fixed model parameters 

Drainage design Parcels area (S) m² Values usually known 

and dependent on the 

studied field 
Drain spacing (l) m 

Drain depth (P) m 

Evapotranspiration 

correction 

Crop coefficient (β) (-)  Internal parameters 

Soil reservoir Water share coefficient (α)  (-) 

Intermediate threshold (Sinter) mm Not measurable at the 

field scale Reservoir storage capacity (SSDI) mm 

2.3. Adjoint sensitivity analysis 217 

In addition to the climate data of rainfall and potential evapotranspiration, SIDRA-RU 218 

features 11 input parameters (Table 1), some of which are difficult to assess directly, such as 219 

SIDRA and soil reservoir parameters. In order to reveal the most important parameters to be 220 

estimated, a sensitivity analysis (SA) is initially performed. Next, the chosen parameters form 221 

the control vector to be estimated using the data assimilation method (see Section 2.4). 222 
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The present paper investigates both local and global adjoint sensitivities. The latter are 223 

computed using the derivative-based approaches involving the SIDRA-RU adjoint model to 224 

evaluate the gradient of a valuable function �, defined over the model response. Note that the 225 

formulation of � depends on the purpose of the study. 226 

The adjoint model is generated using the automatic differentiation (AD) tool TAPENADE 227 

(Hascoet and Pascual, 2013), developed at Inria (https://team.inria.fr/ecuador/en/tapenade/). 228 

The AD engine processes the Fortran code which implements the mapping from the model 229 

inputs to the valuable function �(�). For the AD procedure to succeed, one has to ensure that 230 

all operators of the code are differentiable. This is not always the case, especially with 231 

conceptual models. For example, the flow routing scheme originally used in AIGA model 232 

(described in  Jay-Allemand et al. (2020)) was not differentiable. Since the need for a more 233 

accurate routing scheme was obvious, the new one has been developed taking into account 234 

the differentiability requirement. Concerning SIDRA-RU model, a brief inspection of the 235 

model equations (see Appendix A) shows that it is conditionally differentiable. Here, 236 

‘conditionally’ means that all parameters are explicitly involved inside the continuous 237 

operators, so the gradient with respect to all parameters does exist. However, some 238 

parameters and state variable S(t) are involved as arguments in the logical expressions (if-239 

then/elseif-then/endif), which are not differentiable. This means that the computed gradient is 240 

approximate since it does not include the component associated to the unaccounted graphs. In 241 

practice, this component is usually quite small in comparison to the explicit component and, 242 

therefore, does not affect the minimization result significantly. To check this, any logical 243 

expression can be substituted with the numerical one using the logistic function �(�) =244 

1/(1 + �����), where k is a big enough real.  Since the exponent is a computationally 245 

expensive function, one has to keep a compromise between the gradient accuracy and the 246 
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computational cost in the modified version of the code. Concerning SIDRA-RU model, no 247 

modifications have been considered as necessary. 248 

2.3.1. Local adjoint sensitivity analysis (LASA) 249 

Let us consider a model M that transforms input vector � into model output vector �: 250 

�(�) = �                                                                        (1) 251 

In the particular case of the SIDRA-RU model, input vector � includes the vector of 252 

parameters �� and the climate forcing datasets (i.e. rainfall and potential evapotranspiration): 253 

� = � (!),  #$(!), �%                                                        (2) 254 

In this study, rainfall P and evapotranspiration PET are considered to be known with high 255 

accuracy; thus, their values are not estimated. The input parameters vector � is defined as 256 

follows: 257 

� = ��, &, ����, μ, (, ),  , ��	�
�, ��
�, *, +%                               (3) 258 

Where: ��
� = ���� − ��	�
� 259 

The model response � represents the simulated temporal evolution of drainage discharge -: 260 

� = -(!)   tϵ[0,T]                                                           (4) 261 

Since in the current SA framework the model output is directly and completely observed, no 262 

observation operator is required, and the corresponding observations are hereafter 263 

denoted �∗. 264 

In the local SA context, the sensitivity of the model response with respect to inputs is 265 

quantified locally around a given point. Since the true value of � is unknown, it is typically 266 

substituted by a prior �/, where index “b” stands for the “background” information in DA. 267 
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Reasonable initial guess of � can be provided by an expert evaluation or through introducing 268 

a pre-calibration step. 269 

Adjoint SA method computes the sensitivity of the model response � with respect to the 270 

model inputs � via the gradient of the valuable function �0�(�)1 ≔ �(�) at the point �/ 271 

(background value): 272 

34(56)35 = 734(56)358 , … , 34(56)35: ;                                                   (5) 273 

All components of the gradient are computed simultaneously using a single adjoint model 274 

run, which is the main advantage of the adjoint approach as compared to the finite-difference 275 

or statistical methods. Moreover, the derivative obtained is exact (up to the machine 276 

accuracy, if all operators involved are differentiable), rather than a finite-difference 277 

approximation. 278 

Next, the gradient components must be properly scaled to construct the local sensitivities 279 

meaningful in terms of the Analysis of Variance (ANOVA) approach. Let us consider a 280 

Gaussian perturbation <~>(0, @), where @ = ABCD(E��), B = 1, … , > and E� is the standard 281 

deviation. It can be seen that 282 

FCGH�I = # J0�(�/ + <) − �(�/)1�K = ∑ 7E� 34(56)35M ;�N�OP   (6) 283 

It follows from the above formula that each component of the gradient Q�(�/) Q(��)⁄  has to 284 

be scaled by the corresponding E�. 285 

In this study, the Kling-Gupta Efficiency (KGE, Gupta et al. (2009)) has been chosen as a 286 

valuable function �(�). KGE is widely used to assess the performance of hydrological 287 

models and improve simulation quality (Pechlivanidis et al., 2011; Patil and Stieglitz, 2015; 288 

Haas et al., 2016; Santos, 2018). The KGE metric ranges from -∞ to 1, where 1 corresponds 289 

to the best match between simulations and observations. 290 
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�(�, �∗) = 1 −  S(G − 1)� + (A − 1)� + (T − 1)�                                   (7) 291 

where: 292 

- T = U
U∗: the ratio between the mean of the simulated and observed data. 293 

- G = ∑ 0UM�U1(UM∗�U∗):MV8
W∑ 0UM�U1X:MV8 W∑ (UM∗�U∗)X:MV8

: the Pearson correlation coefficient. 294 

- A = U∗W∑ 0UM�U1X:MV8
UW∑ (UM∗�U∗)X:MV8

: the ratio between the standard deviation of simulated and 295 

observed values. 296 

Moreover, the use of KGE allows the performance of adjoint-based and Sobol methods 297 

(Sobol, 1993) to be compared. The latter had recently been explored in (Henine et al., 2022). 298 

2.3.2. Global adjoint sensitivity analysis (GASA) 299 

While the local SA answers how a small perturbation around the background value �/ 300 

influences the model response �, the global SA focuses on the model output variance or, 301 

more precisely, on how the input variability influences the output variance. The global SA 302 

reveals which parts of the output variance are due to different inputs by estimating Sobol 303 

indices, which are a central tool (and key point) since they provide a quantitative and rigorous 304 

overview of the influence of inputs on the model response. The commonly used global SA 305 

method is the variance-based ANOVA decomposition. This paper introduces the adjoint-306 

based global SA described in (Gejadze et al., 2019), featuring a methodology that derives a 307 

generalized relationship between the global sensitivity indices and the Polynomial Chaos 308 

coefficients. 309 

The variability of inputs is represented by a sample of random vectors from a given 310 

probability distribution. For example, one can consider the Gaussian distribution using the 311 
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background vector �/ as its mode. Since in our case the informative priors for � are either 312 

not available or not accurate enough, we use the uniform distribution to define a random 313 

sample within a defined interval HC� , Y�I for each element of �, as follows: 314 

 
<�~Z(C�, Y�)<� = (Y� − C�) ∗ [� + C�               ,      [�~Z(0,1)                           (8) 315 

The bounds C and Y are specified for all SIDRA-RU parameters. The choice of the uniform 316 

distribution overcomes the need for background �/ and, subsequently, for the pre-calibration 317 

step. 318 

The sample size is chosen by taking into account the computational requirements and model 319 

complexity into account. Since the SIDRA-RU is relatively inexpensive, it is feasible to use a 320 

relatively large sample size, which can be chosen to compromise between the stability of the 321 

sensitivities and CPU time. 322 

In this paper, we only consider the first-order ‘main-effect’ �� indices as well as the ‘total-323 

effect’ ��\ indices (Saltelli, 2002), defined as follows: 324 

]̂
_ �� = `��7aJ�(<)b<�K;

`��04(c)1                    
��\ = `��(4(c))�`��(aJ�(<)b<��K)

`��(4(c))
                                                  (9) 325 

Where �(<)|<� represents the random value of �, with the input component <� being fixed at 326 

its generic value; <�� stands for ‘all, but i’, and FCG(�(<)) is the total variance of �(<). 327 

While the main-effect indices, which are commonly used in ANOVA analysis, quantify the 328 

single influence of individual variables or some groups of variables, the total-effect indices 329 

measure the influence of a variable jointly with all its interactions with other variables. 330 

Alternatively, these indices can be viewed as a measure of the variability remaining to the 331 

output when all but one input variables are fixed. If the total sensitivity index of a variable is 332 
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sufficiently small, this variable can be removed from further analysis, because neither the 333 

variable nor any of its order interactions have an impact on the valuable function. Thus, the 334 

total sensitivity index can be used to detect the essential variables for the calibration process. 335 

The methodology presented in Gejadze et al. (2019) suggests a generalized approximation for 336 

the upper bound of the total-effect indices ��\ based on a computation of the derivative of the 337 

valuable function �. We limit ourselves here to the first-order analysis. Future work will 338 

investigate the approximation of ��\ in considering second-order interactions. Given that < is 339 

a vector constituted of independent and identically distributed normal random variables, the 340 

following estimate holds: 341 

��\FCG0�(<)1 ≤ # f734(c)3cM ;�g                                                   (10) 342 

In the case of independent uniformly distributed variables defined over the interval HC�, Y�I 343 

(Lamboni et al., 2013), the following can be written: 344 

��\FCG0�(<)1 ≤ # f734(c)
3cM: ;�g 7(/M��M)h ;�

                                           (11) 345 

Similarly, we employ the same formulation of the valuable function introduced in Section 346 

2.3.1. The gradient of � within the GASA framework is computed using automatic 347 

differentiation. A detailed algorithm of the GASA applied to the SIDRA-RU model is 348 

described in Figure 5. 349 
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 350 

Figure 5. Simplified version of the global adjoint SA algorithm 351 

2.4. Variational data assimilation algorithm 352 

Data assimilation methods are widely used in the geophysical sciences (Reichle, 2008). These 353 

methods provide the best possible estimates of unknown model inputs (initial and driving 354 

conditions, parameters) by combining all available information: observations, a priori data 355 

(coming from expertise or preprocessing), and knowledge of the physics of the underlying 356 

phenomena incorporated into the model. 357 



 

20 
 

 358 

Figure 6. Scheme describing the operating mode of the direct problem (blue arrows) and 359 

inverse problem (red arrows) methods for the case of the SIDRA-RU model 360 

In the ‘forward’ or ‘simulation’ mode, the forcing terms (rainfall and PET) and the SIDRA-361 

RU model parameters are provided as known inputs in order to simulate the drainage 362 

discharge. The ‘backward’ or 'inverse' mode seeks to estimate the unknown input parameters 363 

by assimilating available information from the observed output discharge (Figure 6). 364 

The recent paper written by Jeantet et al. (2021) presents an example that uses the “Michel 365 

calibration (PAP-GR)” algorithm to estimate the parameters (Ksat, µ , SSDI and Sinter). This 366 

algorithm was originally developed at INRAE (formerly IRSTEA) to calibrate the GR (Génie 367 

Rural) hydrological models (Perrin et al., 2003). An operational version of the algorithm 368 

(airGR) is available in an R package (Coron et al., 2017). This method is initially based on 369 

assigning a probability distribution law for each calibrated parameter in order to target the 370 

optimal variation domain. The calibration procedure is then refined by searching for the 371 

optimal parameter values within the pre-selected bounds. The objective function used through 372 
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the PAP-GR routine depends on the calibration target (e.g. low or high flow, volume 373 

improvement). For more detail, one can refer to the paper of (Jeantet et al., 2021). 374 

The VDA yields optimal estimates of the unknown parameters by minimizing the cost 375 

function 376 

�(�)  =  P� i0j�P/��(�1 − �∗)i� + P� i@�P/�(� − �/)i�
   (12)                       377 

Under the box constraints C ≤ � ≤ Y. Here, @ =  #(</</\) and j = #(<k<k\) are the 378 

covariance matrics of the background and observation errors, </ and <k, respectively. As in 379 

Section 2.3.1, we consider @ = ABCD(E��), B = 1, … , lm, where E� is the standard deviation, and 380 

lm is the dimension of the control subset. Note that a-priory information on the parameters is 381 

represented by the bounds C and Y. Since (12) implies the Gaussian distribution of </, we 382 

define E� = ((Y� − C�)/2)/3. 383 

The observation error <k includes directly the measurement error, plus projections into the 384 

observation space of orher errors (forcing data errors, structural errors). Since j is difficult to 385 

evaluate, we assume it is diagonal, with uniform variance *�. Then (12) can be written in the 386 

form 387 

�(�, *)  =  P� ‖(�(�) − �∗)‖� + qX
� i@�P/�(� − �/)i�

   (12a) 388 

Where α has to be estimated alongside � from an auxiliary condition on �. This is a ‘relaxed’ 389 

formulation which roughtly takes into account all uncertainties not included into the control 390 

vector. In practice, instead of solving this problem explicitly, one can consider the 391 

minimization problem for the cost function 392 

�(r)  =  P� i0�(�/ + @P/�r1 − �∗)i�
     (13) 393 
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Where r is defined via the change of variables � = �/ + @P/�r, complemented with an 394 

appropriate iterations stopping criteria (L-curve). This is an iterative regularization 395 

implementation of (12a), as described in (Gejadze and Malaterre, 2017; Oubanas et al., 396 

2018). 397 

In the present study, a limited memory L-BFGS-B algorithm (Zhu et al., 1997) has been 398 

employed to perform the minimization step involving box-constrained set of parameters in 399 

order to avoid unphysical solutions. As explained above, the choice of the VDA method is 400 

largely motivated by the need to investigate and optimize the upgraded version of SIDRA-401 

RU (to be reported in a future paper), which will be able to simulate the daily nitrate 402 

concentration values by integrating the unknown distributed variable, in addition to the model 403 

input parameters. The mentioned distributed variable represents the potentially leachable 404 

quantity of the nitrate initially trapped in the soil surface layer. This quantity is estimated 405 

once a year, generally at the end of the autumn season. The control vector will then be 406 

extended accordingly. For this reason, the choice of variational DA is justified since the 407 

algorithm sought needs to be robust to the present uncertainties and heterogeneity of the 408 

variables involved. Hence, this paper offers the first implementation of the VDA to SIDRA-409 

type models, which will be adapted to the new upgraded version. 410 

Let us note that (12) is the strong-constraint variational formulation, which is valid under the 411 

perfect model assumption. In the variational DA framework, the model error is usually 412 

treated via the weak-constraint formulation (Tremolet, 2006). This approach is proved useful 413 

in the classical DA in weather and ocean prediction systems, where the model state at the 414 

beginning of the prediction window is of major concern. In hydrology, the method has been 415 

used as a part of the hybrid-filtering algorithm in (Abbaszadeh et al., 2019). However, the 416 

usefulness of the weak formulation for solving the pure calibration problems is far less 417 

evident. Besides, being a conceptual and approximate model, SIDRA-RU is characterized by 418 
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a structural uncertainty, which is not exactly the model error as it is understood in the 419 

classical applications (for example, due to random forcing). A more appropriate approach to 420 

deal with the structural uncertainty seems the model selection in the Expectation-421 

Maximization framework (Beal, 2003). This is a topic for a possible future development, but 422 

we keep the strong-constraint DA formulation as a first step in this direction. 423 

2.4.1. Toward avoiding the local minima issues 424 

Due to the ill-posedness of certain inverse problems, the corresponding minimization process 425 

may suffer from the presence of the local minima, which prevent it from reaching the global 426 

one. Various approaches have been investigated to mitigate this difficulty. Inspired by the 427 

works of Duan et al. (1992) and Skahill and Doherty (2006), we suggest using an ensemble 428 

minimization framework. The idea here is to start each individual minimization process from 429 

a different first guess, which might result in different minimization trajectories, thus limiting 430 

the dependence of the optimal solution from the prior knowledge and its uncertainty. The 431 

ensemble of priors/backgrounds (used as initial points for minimization) is generated using a 432 

uniform distribution and is limited to the sufficient subset elements, as identified through the 433 

GASA method (see Section 3.1). Two configurations have been tested herein: 1) the input 434 

parameters are perturbed one by one, setting the remaining ones at their optimal values; and 435 

2) parameters are perturbed simultaneously. The ensemble size is then chosen to compromise 436 

target accuracy and available computational resources. 437 

2.4.2. Hybrid BV method: description 438 

As mentioned above, if the estimation problem is ill-posed in terms of the uniqueness 439 

condition, looking for the global minimum might be useless in principle. That is, the resulting 440 

posterior distribution could be multi-modal, with modes having nearly the same probability 441 

values, but corresponding to noticeably different combinations of parameters. Since both the 442 
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model and the observations are not ’perfect’, choosing the posterior mode with the largest 443 

probability (or the ’global’ minimum in terms of the cost-function) could be a wrong 444 

decision. Thus, the remedy is to look for the posterior mean instead. This should result into 445 

more robust (reliable) parameter estimates. Since the direct use of the Bayesian methods 446 

could be computationally too expensive, we suggest a novel hybrid BV method combining 447 

variational and Bayesian elements, which can be considered as an upgrade to the method 448 

presented in (Skahill and Doherty, 2006). 449 

Let us consider an ensemble of optimal solutions Ui, i = 1, . . ., N, where each Ui is the result 450 

of minimization of the cost-function (13), involving a randomly chosen background Ub from 451 

the probability distribution ρ(U). Let Ji = J(Ui) be the corresponding value of (13), and Jmin – 452 

the minimum value of Ji over the ensemble. Now we introduce the likelihood function in the 453 

form: 454 

s�� = ��t u−2� 7�� ���	v − 1;�w                                (14) 455 

where k is the parameter, which controls the decay rate of the likelihood function. This 456 

parameter is similar to the regularization parameter used in the classical Tikhonov approach. 457 

Then, the posterior ensemble mean and variance are computed as follows: 458 

� � = Px8 ∑ ��s��y(��)N�OP                                             (15) 459 

FCG(�)� = Px8 ∑ 0�� − � �1o0�� − � �1s��y(��)N�OP                           (16) 460 

where                                                  )P = PN ∑ s��y(��)N�OP  461 

The L-curve approach is adapted here for choosing k. L-curve is defined as a parametric 462 

curve ��(�|�), 
�%, } =  −20, . . . , 20, where 463 


� = (�|� − �|��)\(FCG(�)�)�Po(�|� − �|��)   (17) 464 
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is the probabilistic (Mahalanobis) distance between �|� and 465 

��� = PN ∑ �	N	OP                                       (18) 466 

The idea of the ‘L-curve’ method is to choose the value of k located near the corner, so that 467 

both the cost-function �(�|�) and the distance 
� are simultaneously minimized. One 468 

particular example of the L-curve encountered during computations is presented in Figure 13. 469 

Note that the uniform prior distribution for �/ is assumed in this paper, therefore the 470 

posterior moments are fully defined by the likelihood function (14). 471 

2.5. Evaluation of the temporal robustness of the model 472 

An ensemble of operational tests proposed by KlemeŠ (1986) has been widely used to 473 

evaluate the spatiotemporal robustness of hydrological models (Henriksen et al., 2003; Guo et 474 

al., 2020; Jeantet et al., 2021). In the following, we have selected the split sample test to 475 

evaluate the temporal robustness of the SIDRA-RU model. This method divides the study 476 

period into two subperiods (e.g.  P and  �). The first window  P is considered as an 477 

assimilation period. Hence, the daily discharge is assimilated using VDA in order to estimate 478 

the control vector �. The parameter estimates obtained are then validated by comparing the 479 

corresponding model predictions with observations over the period  �. Next, the assimilation 480 

and validation periods  P and  � are swapped to validate the estimator’s temporal robustness. 481 

Overall, four metrics have been selected to evaluate the model's predictive performance. One 482 

can recall the cost function (Section 2.4; Equation 13) and the KGE metric (Section 2.3.1; 483 

Equation 7), relevant to assess the variability of the drainage discharge. In addition, we use 484 

the root mean square error (RMSE (Kenney, 1939)), which informs of the residuals spread. 485 

j��# = W∑ (UM∗�UM)X�MV8 N                                                            (19) 486 
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and the Nash-Sutcliffe Efficiency (NSE (Nash and Sutcliffe, 1970)), as defined in Equation 487 

20, which is introduced to assess the performance of several hydrological and water quality 488 

models. 489 

>�# = 1 − ∑ (UM∗�UM)X�MV8∑ (UM�U∗)X�MV8                                                            (20) 490 

In addition, we are quantifying the water balance conservation by calculating the discrepancy 491 

on cumulative drained water volumes. 492 

3. RESULTS 493 

3.1. Adjoint local and global sensitivity analyses 494 

The LASA method was first applied to assess the influence of SIDRA-RU input parameters 495 

on the KGE metric. First, the local sensitivity around 'pre-calibrated prior' (Table 2) was 496 

computed (as illustrated in Figure 7 with red crosses) using the entire data (Figure 3). Results 497 

show that the highest sensitivities are to soil parameters µ  and ���� and reservoir parameter 498 

��	�
�. 499 

Second, in order to investigate the impact of the prior on the resulting sensitivities, a set of 500 

1000 random input values has been generated using the uniform distribution defined over the 501 

interval [a,b] (Equation 8 and Table 2). The corresponding sensitivities have been then 502 

computed using LASA. The boxplots in Figure 7 show the range of impact of each 503 

parameter. The highest range is observed for parameters ����, µ and further ��	�
� A and + 504 

whereas the smallest range was identified for parameters S, P and α. 505 
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 506 

Figure 7. Sensitivities of the “KGE metric” using a single 'pre-calibrated prior', in red 507 

crosses; using ensemble of priors, in boxplots 508 

Further analysis has therefore been performed using the GASA method over the entire range 509 

of parameter variation, as defined within bounds [a,b]. A random ensemble of SIDRA-RU 510 

input parameters has been generated from the uniform distribution. The ensemble size was 511 

chosen to balance the stability of results and low CPU time. Hence, testing different ensemble 512 

sizes (ranging from 100 to 10000) allowed the selection of n = 2000, ensuring stable 513 

sensitivity results. One can note that only ~2.6 s was needed to complete the 2000 514 

simulations. 515 

Table 2 lists the values of the boundaries (a) and (b) assigned according to both the prior 516 

knowledge of SIDRA-RU model parameters and the data collected from the Chantemerle 517 

field. Accordingly, ���� , µ,  ��	�
�, and ��
� parameter bounds have been selected from 518 

(Henine et al., 2022). The other parameter boundaries was assigned so as to avoid outliers. 519 
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Table 2. Minimum (a) and maximum (b) values defined for each parameter 520 

Input S 

(ha) 

l 

(m) 

Ksat 

(m/day) 

µ    

(-) 

A  

(-) 

C  

(-) 

P 

(m) 

SSDI 

(mm) 

S
inter 

(mm) 

�  

(-) 

β  

(-) 

a 35.40 3.50 0.02 0.010 0.80 0.85 0.60 10.00 55.00 0.00 0.50 

b 37.40 6.00 1.00 0.130 0.90 0.95 1.20 55.00 225.00 1.00 1.00 

Pre-

calibrated 

Prior 

36.40 5.00 0.27 0.042 0.86 0.89 0.90 46.48 92.58 0.33 0.90 

The obtained ‘total-effect’ sensitivities using the GASA approach are shown in Figure 8. The 521 

results indicate that the saturated hydraulic conductivity ���� is the most influential input 522 

parameter, followed by the drainage porosity µ  and then the intermediate water level 523 

threshold in the conceptual reservoir ��	�
�, followed by the other parameters. This finding 524 

means that only ����, µ  and subsequent ��	�
�  parameters exert the strongest impact on KGE 525 

values. Although ��
� is classified as a low-impact parameter, it is included in the control 526 

vector due to its strong link with  ��	�
� parameter (Section 2.2). 527 
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 528 

Figure 8. The influence of input parameters on the valuable function J (KGE) 529 

3.2. SIDRA-RU parameters estimation using the VDA method 530 

Based on the results of GASA (Section 3.1), the VDA method was implemented to estimate 531 

the impacting part of the input vector on the model output (i.e. � = �����, μ, ��	�
�, ��
�%). 532 

Two experimental set-ups have been considered: 533 

a) the split sample test, considering the two-time windows  P, covering the period from 534 

2008 to 2010, and  � covering the period 2010-2013, to assess the model's predictive 535 

performance; 536 

b) the full sample test (over the entire observation period,  P ∪  �), with the resulting 537 

simulated discharge to be compared to the one obtained with parameters estimated 538 

using the PAP-GR calibration method. 539 
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3.2.1. Validation of the variational DA framework 540 

Table 3 shows the results of the split sample test. Good performance in terms of KGE, NSE 541 

and RMSE is achieved for both the assimilation and validation periods (KGE > 0.66; NSE > 542 

0.53; RMSE < 2.44 l/s). Moreover, swapping the assimilation and validation periods  P and 543 

 � leads to relatively comparable estimates (e.g. Sinter estimated at 71.2 mm and 85.8 mm 544 

over periods  P and  �, respectively), and similar performance metric values. One can also 545 

notice that distances between the SIDRA parameters (e.g. μ on P1 vs μ on P2) are smaller 546 

compared to those for the conceptual parameters (e.g. ��	�
� on P1 vs ��	�
� on P2). 547 

Table 3. Split sample test results based on assimilation of the drainage discharge data 548 

Simulations 

Estimation period 

P1 (2008-2010) 

Validation period 

P2 (2010-2013) 

Estimated parameters 

 

RMSE 

(l/s) 

NSE 

(-) 

KGE 

(-) 

Cost 

(-) 

RMSE 

(l/s) 

NSE 

(-) 

KGE 

(-) 

Cost 

(-) 

Ksat  

(m/d) 

µ 

(-) 

 SSDI 

(mm) 

Sinter 

(mm) 

P1 � P2 1.62 0.56 0.66 0.74 2.44 0.71 0.77 2.50 0.19 0.042 40.8 71.2 

 
Validation period 

P1 (2008-2010) 

Estimation period 

P2 (2010-2013) 

Estimated parameters 

P2 � P1 1.66 0.53 0.70 0.78 2.41 0.72 0.77 2.45 0.23 0.042 35.2 85.8 

3.2.2. VDA vs. Gradient-free PAP-GR method 549 

Below, the VDA method is compared to the gradient-free PAP-GR calibration method by 550 

estimating the control vector values over the entire observation period (2008-2013). Three 551 

experimental configurations are considered with the following sets of input parameters: 552 

• (a) Non-informative (open-loop) inputs (priors/backgrounds)  553 

• (b) Calibrated inputs from Michel’s calibration algorithm (PAP-GR) 554 

• (c) Estimated inputs from the VDA method, taking the background values from (a) 555 
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Table 4 shows the input parameters obtained for configurations (a), (b) and (c), along with 556 

the corresponding performance metrics values. Note that the improvement achieved by VDA 557 

compared to the PAP-GR calibration algorithm is indicated in green brackets. 558 

Table 4. Performance criteria resulting from: (a) the use of open-loop parameters; the 559 

parameter estimation using both (b) the PAP-GR and (c) the VDA minimization methods 560 

 Control vector values Performance criteria 

 Ksat 

(m/day) 

µ 

(-) 

SSDI 

(mm) 

Sinter 

(mm) 

RMSE 

(l/s) 

NSE 

(-) 

KGE 

(-) 

a 0.9 0.06 18.0 30.0 4.66 -0.46 0.08 

b 0.272 0.043 46.48 92.58 2.13 0.70 0.76 

c 0.228 0.044 41.93 84.84 2.07 (-0.06) 0.71 (+0.01) 0.78 (+0.02) 

In the experimental set-up (c), the VDA is used starting from a non-informative background 561 

from (a) in order to estimate input parameters ���� , μ, ��	�
� ClA ��
� simultaneously. Since 562 

the bounds of the physical parameters range have not been integrated into SIDRA-RU, a 563 

constrained cost minimization is performed using the L-BFGS-B method to eliminate all non-564 

physical solutions. Table 5 summarizes the lower and upper bounds assigned to each 565 

parameter. The choice of ���� and μ bounds is based on field measurements carried out in 70 566 

referenced soils in France (Lagacherie, 1987). ��
� and ��	�
� bounds are presented in 567 

(Henine et al., 2022). The estimated control vector (c) is comparable to that derived from the 568 

split sample test in the first experiment (Table 3). 569 

Table 5. Assigned lower and upper bound values of each calibrated input parameter 570 

Parameter Ksat (m/day) µ (-) SSDI (mm) Sinter (mm) 

Lower bound  0.03 0.02 10.0 55.0 

Upper bound 1.5 0.07 60.0 225.0 
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Figure 9 illustrates the observed and simulated discharges, over the total target period, 571 

according to the three experimental configurations (a, b, c). In addition, the respective 572 

cumulative water volume has been plotted in (d), thus making it possible to compare the 573 

performance obtained using the variational calibration method and that resulting from the 574 

application of the PAP-GR calibration algorithm. 575 

The model performance after VDA is slightly better in terms of KGE, NSE and RMSE 576 

values, as compared to the PAP-GR calibration routine. Excluding the first year of data, 577 

generally used as a warming period to adjust the saturation degree in the conceptual reservoir, 578 

the discharge values are well represented in both cases (Figure 9b and 9c). In addition, the 579 

analysis of the simulated cumulative drained water over the total target period (five drainage 580 

seasons) in comparison with the measured discharge, indicates only a 1% ratio between 581 

measured and simulated total drained water volume using VDA (∆F = 4.8 mm over five 582 

years of data; Figure 9d) versus 10% when using the PAP-GR calibration algorithm (∆F =583 

58.7 mm). 584 
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 585 

Figure 9. Graphical comparison between experimental configurations (a), (b) and (c);  586 

(d) shows the corresponding cumulative drainage discharge 587 

3.3. Investigating the local minima issue 588 

The second part of this study focuses on the issue of local minima. Two experimental set-ups 589 

have been considered. First, we analyze the convergence process for a given single 590 
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parameter, assuming that the remaining parameters are known and set to their optimal values. 591 

Second, we investigate the convergence process when all parameters are updated 592 

simultaneously. 593 

3.3.1. Single parameter estimation 594 

In this experiment, each parameter �� is estimated separately while assuming that all other 595 

inputs are known and set to their optimal values (Table 4, Row C). Hence, the control vector 596 

includes one parameter at a time. For each parameter ��, an ensemble of priors/backgrounds 597 

of size n=100 is generated and an ensemble estimation using the VDA is performed. Figure 598 

10 illustrates the convergence process for each parameter, starting from different initial 599 

values within the given ensemble. The red color represents successful minimization cases, 600 

where a cost function minimization has been reached. The corresponding ratios are presented 601 

in the legend, together with the unsuccessful cases shown in gray. Note that minimum cost 602 

values are generally reached after only 10 iterations. 603 

 604 

Figure 10. Convergence trajectories of parameters from prior/background values towards the 605 

optimal values during the single parameter estimation process 606 
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It can be noticed that the ensembles of parameters ���� and µ  converge towards unique 607 

values of 0.22 m.d-1 and 0.047, respectively, regardless of the initial background value. 608 

However, ��
� and ��	�
� parameters converge towards different optimal values. Those 609 

corresponding to the minimum cost function are 42 mm and 82 mm, respectively, which are 610 

still consistent with the result obtained in Section 3.2. 611 

3.3.2. Simultaneous minimization 612 

Similar to the first set-up, in this second experiment, an ensemble of size n=100 of 613 

prior/background vectors is generated. The simultaneous minimization of all parameters was 614 

then performed using the VDA method. Figure 11 shows the parameter sets that converge 615 

toward minimum cost function values, presented here in red. Four main clusters (red dots) 616 

have been identified. Similar cluster positions for the two physically based parameters ���� 617 

[0.19-0.25] m.d-1 and µ [0.040-0.047] can be detected. Interestingly, the conceptual-based 618 

parameters ��
� [47-61] mm and ��	�
� [65-81] mm display opposite cluster positions. 619 

 620 

Figure 11. Final cost values according to their corresponding parameter values 621 
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Similar to the first experiment, Figure 12 shows the minimization trajectories. The red color 622 

refers to the successful convergence cases reaching the minimum cost function value. It can 623 

be observed that several solutions are possible when estimating all parameters and no global 624 

minimum can be clearly identified. Dashed lines correspond to the optimal solution of each 625 

parameter in terms of the minimized cost function. The best control vector estimates 626 

corresponds to:  ���� = 0.22 m/day, µ= 0.044 (-), ��
� = 48.68 mm, and ��	�
� = 78.76 mm. 627 

 628 

Figure 12. Convergence trajectories from prior/background values towards optimal values  629 

(case of simultaneous minimization) 630 

3.4. Hybrid BV approach to improve the solution stability 631 

The model parameters are estimated by the hybrid BV method following the “split sample 632 

test” methodology (see Section 2.5). 633 

The parameter estimations presented in Table 3 (for P1 and P2), and Table 4 (for P) have 634 

been embedded in Table 6 to allow a better comparison between hybrid DA and variational 635 

DA methods. First, one can notice that the difference between the estimates Ksat and Sinter 636 

obtained using the hybrid DA on different periods P1 and P2 is less, whereas for μ and SSDI 637 
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is slightly larger. One key model characteristic which defines the water table dynamics is 638 

given by Smax = SSDI + Sinter. The difference Smax|P2 − Smax|P1 by the hybrid BV method 639 

makes 5.29 mm, against 9.1 mm by the variational DA. This indicates that the results by the 640 

hybrid BV method, as expected, are generally more robust. Secondly, while the estimates 641 

Ksat|P and μ|P are nearly the same for both methods, they are slightly different for SSDI|P and 642 

Sinter|P. 643 

Table 6: Robust SIDRA-RU parameter estimations obtained by applying both, Hybrid BV 644 

and VDA methods 645 

Method 
Parameter Ksat (mm.day-1) µ (-) SSDI 

(mm) 

Sinter (mm) Smax (mm) k 

Hybrid BV 

Period P1 (2008-2010) 0.252 0.049 40.74 71.52 112.26 10 

Period P2 (2010-2013) 0.225 0.043 34.01 83.54 117.55 13 

Full period (2008-2013) 0.227 0.045 50.86 76.67 127.53 15 

VDA 

Period P1 (2008-2010) 0.190 0.042 40.80 71.20 112.00 - 

Period P2 (2010-2013) 0.230 0.042 35.20 85.80 121.00 - 

Full period (2008-2013) 0.228 0.044 41.93 84.84 126.77 - 

As an example, Figure 13 shows the L-curve obtained by processing the ensemble of optimal 646 

solutions corresponding to P2 period. Here, one can see a distinctive corner at k = 13. This 647 

position ensures the robustness of the solution by selecting low values of D(k) and J(k). 648 
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 649 

Figure 13. L-curve, Chantemerle P2 2010-13, “k” are plotted in dark-red color 650 

4. DISCUSSION 651 

The paper’s content revolves around improving the new agricultural drainage model. First, 652 

the adjoint sensitivity analysis (local and global) has been conducted to identify the most 653 

impacting parameters of the SIDRA-RU model. Then, VDA and hybrid BV frameworks have 654 

been validated over five years of daily-observed discharge data and used afterwards to 655 

estimate the best combination of SIDRA-RU parameters. 656 

4.1. Adjoint SA 657 

The local adjoint SA result suggests that µ  and Ksat are the most influential parameters. 658 

However, one can notice that the choice of prior could change the parameter ranking which 659 

emphasizes the importance of the global analysis. In fact, no priors are required to apply the 660 

global adjoint approach. The global SA method indicates that Ksat and µ  have the most impact 661 
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on the model output. These two parameters govern the physically based part of the model and 662 

describe the dynamics and reactivity of the perched water table and discharges. The 663 

conceptual parameter ��	�
�, ranked third, controls the beginning of the intensive drainage 664 

season, which generally occurs during winter, while β is dependent on the type of vegetation 665 

cover. Since information on crop rotation is not always available, parameter β is set by 666 

default equal to 1. Future work will investigate the possibilities of integrating a crop rotation 667 

module should data be available. 668 

The results obtained are consistent with the analysis performed using Sobol’s total and main-669 

order sensitivity indices in (Henine et al., 2022). This output confirms that ���� and µ  have 670 

the highest impact on KGE, whereas ��
� and ��	�
� parameters practically determine the 671 

starting date of the drainage season. These four parameters constitute the sufficient control 672 

subset of parameters, or the 'control vector'. It should be noted that one limitation of the 673 

Sobol method is the significant computing resources required (Iooss and Lemaître, 2015; 674 

Zhang et al., 2015). This constraint accounts for the main reason why the analysis was 675 

conducted on a limited input vector in (Henine et al., 2022) paper. Such a limitation has been 676 

overcome by using the adjoint-based sensitivity analysis approach, which allows considering 677 

all SIDRA-RU inputs in a single model run. In addition, the limited number of SIDRA-RU 678 

input parameters avoids the need to use sophisticated sampling methods, e.g. Latin hypercube 679 

(Viana, 2016), which are typically reserved for models with higher number of inputs 680 

(Manache and Melching, 2004). 681 

4.2. Model parameters improvement 682 

The split sample test validates the accurate implementation of the VDA method. Moreover, 683 

we compare the estimated values of SIDRA-RU parameters with those found in the literature. 684 

Therefore, it has been possible to verify the estimated parameters against more than 100 685 
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reported values of ���� and µ, corresponding to the silty soil (consistent with the Chantemerle 686 

soil texture). The latter have been extracted by Jeantet et al. (2021) from the drainage 687 

reference sector reports (Lagacherie, 1987). The probability density functions (PDF) of the 688 

saturated hydraulic conductivity (����) and drainage porosity (µ) have been calculated using 689 

their lognormal distributions, with the most frequently observed values (modes) 690 

corresponding to 0.235 m.day-1, 0.017 for ���� and µ, respectively. The same soil texture 691 

could be found at the Arrou agricultural catchment (located 50 km south of Chartres, France), 692 

where the measured value of ���� at subsoil depth equals 0.41 m.day-1 (Zimmer et al., 1995). 693 

Therefore, the published data values of ���� and µ are close and consistent with the estimated 694 

values obtained by the VDA method. 695 

Furthermore, Jamagne et al. (1977) and Goulet et al. (2004) sought to determine the water 696 

holding capacity (WHC) function of certain soil parameters (e.g. water content at field 697 

capacity and wilting point, apparent density). In these studies, the WHC ranged between 1 698 

mm.cm-1 and 1.75 mm.cm-1 for silty soil. Based on the drain depth of the Chantemerle field 699 

(90 cm), these values correspond to 90 mm and 157.5 mm, respectively. The estimates using 700 

VDA are therefore consistent with these values and lie within the WHC variation interval. 701 

The estimated SIDRA-RU parameters are listed in Table 7 alongside the field-scale observed 702 

data. 703 

Table 7. Estimated SIDRA-RU parameters using VDA compared with those found in the 704 

literature 705 

Source ���� (m.day-1) µ (-) ���� (mm) 

Variational calibration 0.19; 0.23 0.044 112; 121 

(Lagacherie, 1987) 0.235 0.017 - 

(Bouarfa, 1995) 0.4 0.026  

(Zimmer et al., 1995) 0.41 - - 
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Jamagne et al. (1977) & 

Goulet et al. (2004) 

- - [90, 157] 

One can see that VDA performs slightly better in terms of metrics evaluation (e.g. NSE, 706 

KGE) than the PAP-GR calibration. These results indicate that VDA could be seen as a 707 

relevant methodology to improve the predictive performance of the SIDRA-RU model. While 708 

the adjoint model of SIDRA-RU has been successfully obtained through the automatic 709 

differentiation (AD) tool TAPENADE, other large-scale models may need substantial 710 

programming effort and forward model adaptation to get the adjoint code. As an alternative, 711 

some methods, including the reduced adjoint approach, have been proposed to avoid 712 

laborious adjoint implementations (Antoulas, 2005; Altaf et al., 2013) but they require many 713 

function evaluations and converge towards approximate solutions (LeGresley and Alonso, 714 

2000). Overall, the task of generating the adjoint of any upgraded version of the conceptual 715 

SIDRA-RU model looks straightforward, given that certain coding rules are being respected. 716 

4.3. Water balance simulation 717 

A recent drainage modeling study, which aims to demonstrate the benefit of using a multi-718 

objective minimization approach to improve the estimation of HYDRUS parameters, has 719 

shown a significant deviation (25%) between the cumulative measured and simulated water 720 

volumes, which corresponds to 50 mm in just one drainage season (Turunen et al., 2020). In 721 

this paper, a relevant result confirms the strong ability of VDA to simulate accurately the 722 

volume of water exported from drained agricultural fields. In fact, less than 1% ratio between 723 

measured and simulated total drained water volume is obtained using VDA (∆F = 4.8 mm 724 

over five years of data, less than 1 mm/year). The robustness of the VDA method 725 

implemented with the SIDRA-RU model has been successfully validated in Section 3.2.1 726 

using the split sample test. It allows for a robust estimation of model parameters consistent 727 

with the in-situ values found in the literature. Moreover, the estimation of SIDRA-RU 728 
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parameters using VDA instead of the PAP-GR calibration approach improves the daily 729 

discharge simulations and the cumulative water volume predictions, in particular. Finally, it 730 

would be worthwhile to investigate the impact of the sampling interval on the water volume 731 

prediction by considering weekly or be-weekly discharge observations instead of daily ones 732 

(Oubanas et al., 2018). 733 

4.4. Local minima issues 734 

Local minima issues is commonly encountered when solving ill-posed problems in 735 

variational formulations involving a gradient-based minimization. The application of 736 

sophisticated global optimization methods (e.g. Monte Carlo) could be useful to deal with 737 

strongly nonlinear systems (Hoteit, 2008). Here, we investigate a preliminary ensemble 738 

minimization framework, aiming to reach a stable global minima solution. 739 

Consequently, the convergence of ���� and µ  parameters towards a global minimum during 740 

the single optimization experiment highlights the strong consistency of the physically based 741 

SIDRA-RU module. However, the convergence pattern for parameters ��
� and ��	�
� 742 

differs: dependent on the priors, the minimization process converges to different cost function 743 

values, which underscores the presence of local minima or equifinality issues. In fact, these 744 

two parameters manage the conceptual part of the SIDRA-RU model; their contribution is 745 

limited to a short period, essentially during the first few days of each drainage season. Our 746 

results suggest that their values may require a dynamic year update during the minimization 747 

process. Additional information on the reservoir capacity or beginning of the drainage season 748 

may be needed to constrain further the minimization protocol concerning these reservoir 749 

parameters. 750 

It is worth noting that the convergence speed may depend on the modeling approach (e.g. 751 

conceptual or physical, distributed or not), the choice of the optimization algorithm, and the 752 
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parameter type. In fact, SIDRA module parameters (e.g. Ksat, µ) find a stable solution 753 

following 20 iterations while conceptual ones (e.g. SSDI, Sinter) generally need 30 iterations. 754 

This explains the notable difference observed between the cost function thresholds. 755 

Chossat and Saugnac (1985) highlight a potential relationship between ���� and µ  for 756 

different soil textures. Our finding suggests that these two groups of parameters are 757 

complementary and may compensate each other, which typically leads to the occurrence of 758 

local minima and equifinality issues (nearly the same prediction obtained with different 759 

parameter values). The equifinality issue can be mitigated when assimilating additional 760 

information by the VDA, e.g. water level variations ℎ(!). We suggest herein that 761 

complementary information (namely nitrate concentrations [NO3
-] and fluxes) will 762 

additionally constrain the solution in the upgraded SIDRA-RU version. The featured methods 763 

have been implemented in order to improve both the understanding and estimation of the 764 

SIDRA-RU input parameters. The present work can be extended to other drainage models. 765 

4.5. The potential of the hybrid BV approach 766 

The implementation of the hybrid BV framework improves the stability of the obtained 767 

solution compared to the classical VDA. That is, the estimated parameters are more 768 

consistent from one study period to the other, which demonstrates the robustness of the 769 

proposed method. In fact, the estimated parameter values on P1 and P2 are similar (Table 6), 770 

in particular for the parameters Ksat and Smax (the reported difference between P1 and P2 771 

estimated values are 0.027 mm.day-1 and 5.3 mm, respectively). Moreover, the approach 772 

offers an automatic tool to select, cleverly and objectively, the most suitable and robust set of 773 

parameters, which was not the case by using visual interpretations (section 3.3). It is 774 

worthwhile in this context to discuss the results of the latest SIDRA-RU developments 775 

(Jeantet et al., 2021; Henine et al., 2022), which highlight the performance of the model in 776 
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terms of discharge simulations and the robustness of the estimated parameters. It was 777 

observed that conceptual based parameters (e.g. Smax = SSDI + Sinter) show a large deviation 778 

range [50 mm, 150 mm]. These estimated values remain scattered, regardless of their 779 

consistency as compared to the literature-based values (c.f. Table 7, last row). Otherwise, the 780 

limited number of information available in the literature makes complex any confrontation 781 

between the estimated conceptual parameters of the model and the field measurement values. 782 

Moreover, the structure of the conceptual block of the model may need some additional 783 

information to be able to manage the related parameters in a robust way and with a reduced 784 

level of uncertainty (e.g. hourly discharge observations, time-variant estimation of the 785 

conceptual parameters). In addition, let us note that any reliable conclusions on the relative 786 

performance of the two methods (hybrid BV against variational DA) cannot be made on a 787 

single test example, even within the identical twin experiment framework, where the ’true’ 788 

values of parameters are known. This is significantly more difficult when considering 789 

realistic data and an approximate model (which is often the case with conceptual models). 790 

5. CONCLUSIONS 791 

Our first objective has been to evaluate the impact of the SIDRA-RU input parameters on the 792 

model output, to rank them and form a sufficient control set. This has been achieved using 793 

both local and global adjoint sensitivity analysis. Then, the parameters from the control set 794 

have been estimated by assimilating the drainage discharge data, collected from the 36-ha 795 

Chantemerle agricultural field for the period 2008-2013, using VDA. 796 

In addition to the local adjoint SA, the global adjoint SA method has been investigated in 797 

application to the SIDRA-RU model. Based on estimating the upper bound of the “total-798 

effect” Sobol indices, the GASA method has shown results consistent with the classical Sobol 799 

method (applied to the same model). In particular, the results of this analysis demonstrate that 800 
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the two most influential parameters are ���� and µ. The GASA method has proven to be 801 

capable of estimating the impact of all input parameters at a very low computational time (≈ 802 

2.6 s). As a result, only 4 (out of 11) parameters have been selected for the calibration step. 803 

The VDA method has been successfully implemented on the conceptual-analytical model 804 

SIDRA-RU. This method has been validated using the ‘split sample test’ and compared to 805 

Michel’s step-by-step calibration method (PAP-GR). Slightly better performance could be 806 

noted with the VDA method, which allowed estimating the best parameter set and 807 

reproducing a satisfactory daily drainage discharge simulation (KGE = 0.76 for PAP-GR vs. 808 

0.78 for VDA). An important advantage of these estimates has been revealed by comparing 809 

the total cumulative drainage volumes. The parameters estimated using the VDA method 810 

yielded a cumulative volume close to the observed volume at the field outlet (not exceeding 811 

4.8 mm and less than 1% discrepancy) compared to values obtained with PAP-GR (58.7 mm, 812 

for a 10% error). Moreover, the corresponding parameter values are consistent with those 813 

found in the literature under similar soil conditions (i.e. texture, climate). A planned 814 

forthcoming work will be to assimilate the nitrate concentration observations using the 815 

upgraded version of SIDRA-RU, which will integrate a newly developed nitrate transport 816 

model. We expect that the advantages of the implemented approach will be particularly 817 

beneficial for the coupled drainage/nitrate model, since it requires yearly estimations of a 818 

given input variable. 819 

Lastly, the local minima issue has been explored. Our results here are in line with findings 820 

reported in the literature. It has been confirmed that using gradient-based minimization may 821 

lead to multiple possible solutions due to local minima. Therefore, a novel hybrid BV method 822 

has been implemented. Starting from an ensemble of optimal solutions given by VDA, the 823 

posterior PDF is computed using a specially defined likelihood function. At least, in theory, 824 
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the hybrid BV method has to provide a more robust estimate of the parameters (in average 825 

sense, i.e. over a representative set of the test cases). The fact that significantly different 826 

estimates for SSDI and Sinter have been obtained in the split sample test underlines the 827 

importance for further investigation in this direction. 828 
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APPENDIX A 1088 

A.1. calculation of the corrected evapotranspiration (CET) 1089 

Case 1: If (S(t) > 0.6 ∗ S����  )  CET = β ∗ PET                                   
Case 2: If (S(t) < 0.6 ∗ S����  )             CET = β ∗ PET ∗ exp 7− ¨.©∗ª«¬­®¯ � ª(�) 

ª(�) ;
Case 3: If (S(t) < 0 )                     CET = 0                                                 

                            (A.1) 1090 

A.2. Recharge (R) and water level in the soil reservoir (S) calculation 1091 

Case 1: If (0 < �(!) < S����  )         S(t) =  S(t − 1) +  (P − CET);                                              R(t) = 0 Case 2: If (S����  < S(t) < S²³´ )    S(t) = S(t − 1) + (1 − α) ∗ (P − CET);    R(t) =  α ∗ (P − CET) Case 3: If (S(t) < 0 )                          S(t) = 0;       R(t) =  α ∗ (P − CET)                                                             (A.2) 1092 

A.3. Water table level and discharge calculation 1093 

h(t)          = h(t − 1) + 7R(t) − K·³� ¸(��P)²
º² ; μCv         

Q(t)          = AJ(h(t)) + (1 − A)R(t)                                
J(h(t))     = K·³� ¸(�)²

º²                                                             
                      (A.3) 1094 




