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On the decoding of lattices constructed via a single
parity check

Vincent Corlay, Member, IEEE, Joseph J. Boutros, Senior Member, IEEE, Philippe Ciblat, Senior Member, IEEE,
and Loı̈c Brunel, Senior Member, IEEE

Abstract—This paper investigates the decoding of a remarkable
set of lattices: We treat in a unified framework the Leech lattice
in dimension 24, the Nebe lattice in dimension 72, and the Barnes-
Wall lattices. A new interesting lattice is constructed as a simple
application of single parity-check principle on the Leech lattice.
The common aspect of these lattices is that they can be obtained
via a single parity check or via the k-ing construction. We exploit
these constructions to introduce a new efficient paradigm for
decoding. This leads to efficient list decoders and quasi-optimal
decoders on the Gaussian channel. Both theoretical and practical
performance (point error probability and complexity) of the new
decoders are provided.

Index Terms—Single parity check, Leech lattice, Nebe lattice,
Barnes-Wall lattices, bounded-distance decoding, list decoding.

I. INTRODUCTION

The Leech lattice was discovered at the dawn of the
communications era [26]. Recently, it was proved that the
Leech lattice is the densest packing of congruent spheres in
24 dimensions [6]. Between these two major events, it has
been subject to countless studies. This 24-dimensional lattice
is exceptionally dense for its dimension and has a remarkable
structure. For instance, it contains the densest known lattices
in many lower dimensions and it can be obtained in different
ways from these lower dimensional lattices. In fact, finding
the simplest structure for efficient decoding of the Leech
lattice has become a challenge among engineers. Forney even
refers to the performance of the best algorithm as a world
record [17]. Of course, decoding the Leech lattice is not
just an amusing game between engineers as it has many
practical interests: Its high fundamental coding gain of 6 dB
makes it a good candidate for high spectral efficiency short
block length channel coding and its spherical-like Voronoi
region of 16969680 facets [10] enables to get state-of-the-
art performance for operations such as vector quantization or
lattice shaping.
Recently, Nebe solved a long standing open problem when

V. Corlay is with Mitsubishi Electric R&D Centre Europe, Rennes, France,
and Telecom Paris, Palaiseau, France (v.corlay@fr.merce.mee.com). J. J.
Boutros is with the Department of Electrical and Computer Engineering,
Texas A&M University at Qatar, Doha, Qatar (boutros@tamu.edu). P. Ciblat
is with Telecom Paris, Palaiseau, France (philippe.ciblat@telecom-paris.fr).
L. Brunel is with Mitsubishi Electric R&D Centre Europe, Rennes, France
(l.brunel@fr.merce.mee.com).

Part of the section on Barnes-Wall lattices was presented at the IEEE
International Symposium on Information Theory, Los Angeles, USA, July
2020.

Copyright (c) 2017 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

she found an extremal even unimodular lattice in dimen-
sion 72 [35]. The construction she used to obtain this new
lattice involves the Leech lattice and Turyn’s construction [43]
[29, Chap. 18, Sec 7.4]. This 72-dimensional extremal lattice
(referred to as the Nebe lattice) is likely to have better property
than the Leech lattice for the operations mentioned above.
However, unlike the Leech lattice, its decoding aspect has
not been studied much and, to the best of our knowledge,
no efficient decoding algorithm is known in the literature.
Moreover, none of the existing decoding algorithms for the
Leech lattice seems to scale to the Nebe lattice. The primary
motivation of this work was to propose a new decoder for this
lattice1.

In this paper, the Leech lattice and the Nebe lattice are
presented as special instances of general constructions: the k-
ing construction Γ(V, α, β, k) and the single parity-check k-
lattices Γ(V, β, k)P , where Γ(V, β, k)P ⊆ Γ(V, α, β, k). These
constructions consist in using lattices in smaller dimensions,
e.g. n/k, along with a single parity check (and a repetition
code for the k-ing construction) to obtain a new lattice in
dimension n. Definitions of these constructions are provided
in Section III-A. As examples, the set of lattices obtained as
Γ(V, α, β, k) for k = 3 (known as Turyn’s construction [29,
Chap. 18, Sec 7.4]) include the Leech lattice and the Nebe
lattice. Regarding the single parity-check k-lattices, Barnes-
Wall lattices are part of the case k = 2.

This framework enables to jointly investigate the con-
struction of several lattices and to present a new decoding
paradigm for all of them. The paradigm can either be used
for bounded-distance decoding (BDD), for list decoding, or
for (quasi or exact)-maximum likelihood decoding (MLD) on
the additive white Gaussian channel. For regular list decoding
(i.e. enumerating all the lattice points in a sphere whose radius
is greater than half the minimum distance2 of the lattice),
the paradigm can be combined with a technique called the
splitting strategy which enables to reduce the complexity.
Regarding quasi-optimal decoding on the Gaussian channel,
our analysis reveals that regular list decoding is not the best
choice with our decoding paradigm from a complexity point
of view. A modified version of the regular list decoder is
therefore presented. Formulas to predict the performance of
these algorithms on the Gaussian channel are provided.

The paper is organized as follows. Section II gives pre-
liminaries. The k-ing construction and the single parity-check

1An efficient decoder was found, see Section VI.
2In this paper, we consider squared distances. Therefore, for consistency

we should have stated: Greater than a quarter of the minimum distance.
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k-lattices are introduced in Section III. It is then shown how
famous lattices are obtained from these constructions, as well
as the parity lattices. The decoding paradigms are presented in
Section IV. Section V is dedicated to the study of parity lat-
tices. Formulas to assess the performance of these algorithms
on the Gaussian channel are then provided. In Section V-D, we
further investigate the recursive list-decoding algorithms for
the parity lattices with k = 2 (Barnes-Wall lattices). Section VI
focus on the decoding of the Leech and Nebe lattices as special
cases of the k-ing construction. Section VII presents additional
numerical results: A benchmark of the performance of existing
schemes is provided. Finally, we draw the conclusions in
Section VIII and the appendices are located in Section IX.

The main contributions of this paper are:
• A new decoding paradigm to decode Γ(V, β, k)P is sum-

marized within Algorithm 1. Two list decoding versions
of this first algorithm (without and with a technique
called the splitting strategy) are then presented. Moreover,
Algorithm 5 is a direct application of Algorithm 1 to
decode Γ(V, α, β, k). See Section IV.

• A recursive version of the algorithm of Section IV is
presented to decode the parity lattices recursively built
as Γ(V, β, k)P . A modified list-decoding algorithm is
proposed for the Gaussian channel. Analytic expressions
to assess the performance are provided, along with ex-
amples. See Section V.

• We show that the parity lattice L3·24 = Γ(V, β, 3)P , as
sublattice of N72, has performance only 0.2 dB apart
from the Nebe lattice N72 on the Gaussian channel.
Moreover, the decoding complexity of L3·24 is signifi-
cantly reduced. See Section V-C. This is a remarkable
result in finding a complexity-performance trade-off.

• The case Γ(V, β, 2)P , which includes Barnes-Wall (BW )
lattices, is also investigated. We achieve a lower decoding
complexity than the one of existing list decoders for
BW lattices. The modified list-decoding algorithm yields
quasi-optimal decoding performance of BW lattices over
the Gaussian channel, at a reasonable complexity, up to
dimension 128. See Section V.

• New decoding algorithms for Λ24 and N72 are devel-
oped as an application of our decoding paradigm. See
Section VI.

• These new decoding algorithms uncover the performance
of several lattices on the Gaussian channel. For instance,
Barnes-Wall lattices, the Nebe lattice, and the 3-parity-
Leech lattice L3·24 are very competitive in their respec-
tive dimension: We observe that they have performance
similar to known lattices whose dimension is an order of
magnitude larger. See Section VII.

II. PRELIMINARIES

Lattice. We define a lattice as a free J-module, where the
possible rings J considered in this paper are Z, Z[i], and Z[λ],
λ = 1+i

√
7

2 . If J is the regular ring of integers Z, the lattice Λ
is a discrete additive subgroup of Rn. If J is a complex ring
of integers, Λ is a discrete additive subgroup of Cn and we
say that the lattice is complex. Given a lattice Λ of rank-n in

Rn, the rows of a n×n generator matrix G constitute a basis
of the lattice and any lattice point x is obtained via x = z ·G,
where z ∈ Zn. If it is of rank-n in Cn, a generator matrix
for the corresponding real lattice in R2n can be obtained as
follows. Map each component a+ ib of the complex generator
matrix to[

a b
−b a

]
or
[

a b

(a−
√

7b)/2 (b+
√

7a)/2

]
, (1)

if J is respectively Z[i] and Z[λ].
Given a complex lattice ΛC with generator matrix GC, the
lattice generated by

θ ·GC (2)

is denoted θΛC. Let Λ, with generator matrix G, be the real
lattice obtained via (1) from the complex lattice ΛC. The real
version of θΛC, denoted by θΛ, can be either obtained using
(1) on (2) or from G as follows. Let R(2, θ) be the 2 × 2
matrix obtained from θ via (1), e.g.

R(2, λ) =

[
1/2

√
7/2

−
√

7/2 1/2

]
and R(2, φ) =

[
1 1
−1 1

]
, (3)

where φ = 1 + i. The scaling-rotation operator R(n, θ) in
dimension n is defined by the application of R(2, θ) on
each pair of components. I.e. the scaling-rotation operator is
R(n, θ) = In/2⊗R(2, θ), where In is the n×n identity matrix
and ⊗ is the Kronecker product. Then, the real version of θΛC

is generated by G ·R(n, θ).
For a Z-lattice Λ, the Gram matrix is G · GT . The Voronoi
cell of x ∈ Λ is:

V(x) = {y ∈ Rn : ‖y − x‖ ≤ ‖y − x′‖,∀x′ ∈ Λ}. (4)

The fundamental volume of Λ, i.e. the volume of its Voronoi
cell and its fundamental parallelotope, is denoted by vol(Λ).
The minimal distance (or minimal squared norm) of Λ is
denoted d(Λ) and the packing radius is ρ(Λ) =

√
d(Λ)/2.

We also use R(Λ) for the covering radius of Λ, defined as

R(Λ) = max
y∈Rn

min
x∈Λ

√
d(y, x), (5)

where d(x, y) represents the squared Euclidean norm between
two elements x, y ∈ Rn. The number of lattice points located
at a distance d(Λ) from the origin is the kissing number τ(Λ).
The fundamental coding gain γ of a lattice Λ is given by the
following ratio

γ(Λ) =
d(Λ)

vol(Λ)
2
n

. (6)

We say that an integral lattice (i.e. the Gram matrix has integer
entries) is even if ‖x‖2 is even for any x in Λ. Moreover,
an integral lattice with vol(Λ) = 1 is called a unimodular
or a self-dual lattice. Two lattices are equivalent Λ′ ∼= Λ if
their generator matrices, respectively G′ and G, are related by
G′ = cUGB, where c is a non zero constant, U a unimodular
matrix, and B an orthogonal matrix. If the constant c should
be explicit, we write Λ′ ∼= cΛ.

Let Λ and Λ′ be lattices where Λ′ ⊆ Λ. If the order of
the quotient group Λ/Λ′ is q, then Λ can be expressed as the
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union of q cosets of Λ′. We denote by [Λ/Λ′] a system of
coset representatives for this quotient group. It follows that

Λ =
⋃

xi∈[Λ/Λ′]

Λ′ + xi = Λ′ + [Λ/Λ′].

It is simple to prove that [15, Lem. 1]

|Λ/Λ′| = vol(Λ′)
vol(Λ)

. (7)

Let Br(y) be a ball of radius r centered at y ∈ Rn. The
set Λ∩Br(y), Λ ⊂ Rn, represents the elements x ∈ Λ where
d(x, y) ≤ r. Let L(Λ, r, y) = |Λ ∩ Br(y)| be the number of
elements in the set Λ ∩Br(y). The quantity

L(Λ, r) = max
y∈Rn

|Λ ∩Br(y)| (8)

denotes the maximum number of elements in the set Λ∩Br(y),
for any y ∈ Rn. In most situations it will be convenient to
consider the relative radius δ = r/d(Λ), which enables to
define l(Λ, δ, y) = L(Λ, r, y) and l(Λ, δ) = L(Λ, r). By abuse
of notations, we set Br(y) = Bδ(y); it should be clear from
the context whether the radius or relative radius is used. We
also define the relative distance: δ(x, y) = d(x,y)

d(Λ) .
The following Johnson-type bound on the list size for

arbitrary lattices is proved in [32, Chapter 5].

Theorem 1. Let Λ be a lattice in Rn. The list size L(Λ, r),
defined by (8), is bounded as:

• L(Λ, r) ≤ 1
2ε if r ≤ d(Λ)(1/2− ε), 0 < ε ≤ 1/4.

• L(Λ, r) ≤ 2n if r ≤ d(Λ)/2.

Let Λn ∈ Rn be part of a family of lattices with instances
in several dimensions n. If we want to specify the list size for
the lattice in a given dimension n, we simplify the notations
as follows. We let L(n, r) = L(Λn, r) and l(n, δ) = l(Λn, δ).

BDD, list decoding, optimal and quasi-optimal decoding
(with Gaussian noise). Given a lattice Λ, a radius r > 0, and
any point y ∈ Rn, the task of a list decoder is to determine
all points x ∈ Λ satisfying d(x, y) ≤ r: i.e. compute the
set Λ ∩ Br(y). If r < ρ2(Λ), there is either no point or a
unique point found and the decoder is known as BDD. In
this paper, BDD means that we consider a decoding radius
r = ρ2(Λ) where in case of a tie between several lattice
points, one of them is randomly chosen by the decoder. When
d(x, y) < ρ2(Λ), we say that y is within the guaranteed (or
unique) error-correction radius of the lattice. If r ≥ ρ2(Λ),
there may be more than one point in the sphere. In this case,
the process is called list decoding rather than BDD.
Note that a modified list decoder may output a set of lattice
points T 6= Λ∩Br(y). Therefore, we may refer to list decoders
where T = Λ ∩Br(y) as “regular” list decoders.
Optimal decoding simply refers to finding the closest lattice
point in Λ to any point y ∈ Rn. In the literature, it is usually
said that an optimal decoder solves the closest vector problem
(CVP). If regular list decoding is used, it is equivalent to
choosing a decoding radius equal to R(Λ) and keeping the
closest point to y in the list outputted by the list decoder.

Let x ∈ Λ and w be a Gaussian vector where each
component is i.i.d with distribution N (0, σ2). Consider the
point y obtained as

y = x+ w. (9)

Since this model is often used in digital communications,
x is referred to as the transmitted point, y the received
point, and the model described by (9) is called a Gaussian
channel. The point error probability under optimal decoding
is Pe(opt, σ2) = P (y /∈ V(x)). On the Gaussian channel,
given equiprobable symbols, optimal decoding is also referred
to as maximum likelihood decoding (MLD). Moreover, at
a fixed dimension n, we say that a decoder is quasi-MLD
(QMLD) if there exists σ2

0 > 0 and ε ∈ (0, 1) such that
Pe(dec, σ

2
0) ≤ Pe(opt, σ2

0) · (1 + ε).
In the scope of (infinite) lattices, the transmitted information
rate and the signal-to-noise ratio based on the second-order
moment are meaningless. Poltyrev introduced the general-
ized capacity [36], the analog of Shannon capacity for lat-
tices. The Poltyrev limit corresponds to a noise variance of
σ2
max = vol(Λ)

2
n /(2πe). The point error rate on the Gaussian

channel is therefore evaluated with respect to the distance to
Poltyrev limit, also called the volume-to-noise ratio (VNR),
i.e. ∆ = σ2

max/σ
2.

The performance of the considered lattices with Gaussian
noise, along with their decoders, are compared with the sphere
lower bound (see Section V-D4). For N72, we also plot an
approximation of the MLD performance. If the MLD perfor-
mance is far enough from the Poltyrev limit, the approximation
can be based on a truncated union bound estimate, which
considers only the first lattice shell3. However, as explained
in [19], this approximation is not accurate if the MLD
performance approaches the Poltyrev capacity4. Therefore,
our truncated union bound estimate for N72 is improved by
considering two shells of the lattice:

τ ·Q

(√
d(Λ)

4σ2

)
+ τ ′ ·Q

(√
d(Λ)′

4σ2

)
, (10)

where τ ′ and d(Λ)′ are respectively the population and the
squared norm of the second lattice shell, and Q(·) is the
Gaussian tail function. This union bound takes into account
that not all facets of the Voronoi region are generated by the
first shell. The dropped terms in the theta series of a lattice
[10] are small o of the first two terms for small σ2, so (10)
is tight at high signal-to-noise ratio.

Complexity analysis. The complexity of the algorithms is
denoted by C or CA.i, where i represents the index of the
algorithm. The decoding complexity of a lattice Λ is expressed
as C(Λ), where the decoding technique considered is clear
from the context. In general, C denotes the worst-case running
time. By abuse of notation, we use equalities (e.g. C = X)
even though we only provide upper-bounds on the worst-
case running time. We adopt this approach to characterize the

3A lattice shell denotes the set of lattice points at a given distance from
the origin.

4More precisely, since only finite-power constellations are discussed in [19],
they state that the union bound estimate is not accurate beyond the cutoff rate.
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complexity of the proposed algorithms, which does not take
into account the position of the point to decode y. However,
to assess the complexity of the algorithms on the Gaussian
channel, we take advantage of the distribution of the point y
to decode and assess the average complexity Ey[C] (warning:
Ey[C] does not denote the average worst-case complexity but
the average complexity).

The complexity of decoding in a lattice Λ with a specific
decoder is denoted by CΛ

dec, where “dec” should be replaced by
the name of the decoder: E.g. the complexity of BDD, optimal
decoding, MLD, and quasi-MLD are CΛ

BDD, CΛ
opt, CΛ

MLD,
CΛ
QMLD, respectively. Moreover, we denote by CΛ∩Bδ(y),

CΛ
stor., and Cclos.(n), the complexity of computing the set

Λ∩Bδ(y), storing an element belonging to Λ, and finding the
closest element to y among n elements, respectively. If not
specified, the set Λ ∩ Bδ(y) can be computed via the sphere
decoding algorithm [46]. In this case CΛ∩Bδ(y) = CΛ

Sph.dec.,δ .
In general, we assume that CΛ

dec >> CΛ
stor. and that kCΛ

dec >>
Cclos.(k). Hence, we have

kCΛ
dec + kCΛ

stor. + Cclos.(k) ≈ kCΛ
dec. (11)

Similarly, we also have:

CΛ∩Bδ(y) + l(Λ, δ)CΛ
stor. + Cclos.(l(Λ, δ)) ≈ CΛ∩Bδ(y). (12)

By abuse of notations, we may write kCΛ
dec + kCΛ

stor. +
Cclos.(k) = kCΛ

dec (e.g. if Λ ∈ Rn
k , we sometimes write

kCΛ
dec + O(n) = kCΛ

dec if the O(n) is not relevant in the
context). When recursively decoding a lattice Λn ⊂ Rn, we
simplify the notation C(Λn, δ) by C(n, δ).

The Õ notations is used to ignore the logarithmic factors.
The notation f(n) = Õ(h(n)) is equivalent to ∃k such that
f(n) = O(h(n) logk(h(n))) (since logk(n) is always o(nε)
for any ε > 0).

Extremal lattice. The fundamental coding gain of an even
unimodular lattice of dimension n is at most 2b n24c + 2.
Lattices achieving this coding gain are called extremal.

III. LATTICE CONSTRUCTION

A. The k-ing construction and the single parity-check lattice

Consider lattices S, T, V , where V ⊂ T ⊂ S. Let us
denote α = [S/T ] and β = [T/V ], two groups of coset
representatives. The k-ing construction of a lattice Γ is defined
as

Γ(V, α, β, k) ={(m+ t1,m+ t2, ...,m+ tk),

m ∈ V + α︸ ︷︷ ︸
T∗

, ti ∈ V + β︸ ︷︷ ︸
T

,

k∑
i=1

ti ∈ V } ⊆ Sk, (13)

since V +β is the lattice T . We denote V +α by T ∗. T ∗ is a
lattice. Indeed, after noticing that T ∗ = S − β, one can prove
that 0 ∈ T ∗, −x ∈ T ∗, and x + y ∈ T ∗, for any x, y ∈ T ∗.
Γ(V, α, β, k) being a lattice follows immediately, because T
and T ∗ are lattices. Γ(V, α, β, k) can alternatively be denoted
by Γ(V, T ∗, T, k).

An obvious sublattice of Γ(V, α, β, k) is the single parity-
check lattice in T k:

Γ(V, β, k)P = Γ(V, T, k)P = {(t1, t2, ..., tk) ∈ T k|
k∑
i=1

ti ∈ V },

= {(t1, t2, ..., vk −
∑
i 6=k

ti), vk ∈ V, ti ∈ T},

(14)

where the last expression is the most useful in practice.
Using Γ(V, β, k)P , the lattice Γ(V, α, β, k) can be repre-

sented as follows, an expression useful for decoding:

Γ(V, α, β, k) =
⋃
m∈α

{Γ(V, β, k)P +mk}, (15)

where mk = (m, ...,m) (repeated k times). The set V +α for
m in (13) becomes α in (15) after moving the V components
into the t′is.

From (14), we easily see that d(Γ(V, β, k)P) =
min{d(V ), 2d(T )}. The minimum distance of Γ(V, α, β, k)
is provided by the next theorem, proved in [16] [12].

Theorem 2. The minimum distance of Γ(V, α, β, k) satisfies

min{d(V ), 2d(T )} ≥ d(Γ(V, α, β, k)) ≥ min{d(V ), 2d(T ), kd(S)}.
(16)

Families of single parity-check lattices can be
built by recursively applying the single parity-check
construction (Equation (14)). For instance, a new
family of lattices is obtained as follows. First, since
d(Γ(V, β, k)P) = min{2d(T ), d(V )}, we shall consider only
lattices where d(V ) = 2d(T ). In order to find two lattices
having this property, with V ⊂ T , we consider a lattice T
over a complex ring J , and rotate it by an element θ ∈ J ,
with |θ| =

√
2, to get V : i.e. V = θ ·T . This yields V ∼=

√
2T

and d(Γ(θT, β, k)P) = 2d(T ). The ring J can for instance
be Z[i] or Z[λ]. More formally, let ΛC

c ∈ Cc/2 be a lattice
over a complex ring J , where J is either Z[i] or Z[λ]. We
denote by Λc ∈ Rc the corresponding real lattice, with real
dimension c. Let Ln be the real lattice obtained via (1) from
a complex lattice LC

n. In the sequel, θLn is the notation for
the real lattice obtained from θ · LC

n. Also, β = [Ln/θLn].

Definition 1. Let n = c · kt, t ≥ 0. The parity lattices in
dimension kn are defined by the following recursion:

Lkn = Γ(θLn, β, k)P ,

= {(v1 + n1, v2 + n2, ..., vk −
∑
i 6=k

ni), vi ∈ θLn, ni ∈ β},

= {(t1, t2, ..., v′k −
∑
i 6=k

ti), v
′
k ∈ θLn, ti ∈ Ln},

(17)

with initial condition Lc = Λc. The number of recursive steps
t should not be confused with ti ∈ Ln.

As we shall see in the sequel, several famous lattices can
be obtained via the k-ing construction or as parity lattices,
including the Leech lattice and the Nebe lattice as well as the
Barnes-Wall lattices.

Most papers study the k-ing construction for a fixed k. As a
result, various names exist for this construction given a fixed k:
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If k = 3, it is Turyn’s construction [29, Chap. 18, sec 7.4] (also
known as the cubing construction [16]). If k = 4, it is the two-
level squaring construction [16]. If k = 5, it is the quinting
construction [28]. If k = 7, it is the septing construction [28].
Example. Take V = 2Z and T = Z. Then, β = [Z/2Z]. The
checkerboard lattice is Dn = Γ(V, β, n)P .

B. Parity lattices with k = 2 (BW lattices)
We consider the parity lattices obtained with k = 2, Lc =

Z2 and θ = φ = 1 + i. They are called Barnes-Wall lattices in
the literature [10]. These lattices are recursively expressed as

BW2n = Γ(φBWn, β, 2)P where BW2 = Z2. (18)

In general, the lattice φBWn is denoted by RBWn [16].
We adopt this latter notation for the rest of the paper. These
BW lattices were one of the first series discovered with an
infinitely increasing fundamental coding gain [3]: It increases
as γ(BWn) =

√
2 · γ(BWn/2) =

√
n/2.

C. Leech lattice and Nebe lattice
Both Leech and Nebe lattices can be obtained via Turyn’s

construction, i.e. as Γ(V, α, β, 3).
Among the three lattices S, T, V used in the construction

Γ(V, α, β, 3), let us take V = 2S. To build the Leech lattice,
we have S, T ∼= E8 and to build the Nebe lattice we have
S, T ∼= Λ24. Moreover, to obtain these two lattices via the k-
ing construction, the set of coset representatives α should be
chosen such that d(Γ(V, α, β, 3)) > 3d(S) (instead of ≥ as in
Theorem 2). We already established via (13) that choosing α
is equivalent to choosing T ∗. In the next section, we explain
how to get T ∗ via lattice polarisation [35].

1) The polarisation of lattices: Assume that the lattices
S, T, T ∗, V = 2S are of rank n. Here, T ∗ is a rotation of
T by an angle of 2ω. Therefore, it is denoted T2ω .

Definition 2. Given a lattice S, we call (T, T2ω) a polarisa-
tion of S [35] if

S ∼= T ∼= T2ω, S = T2ω + T, and T2ω

⋂
T = 2S. (19)

Let GS be a generator matrix of S. Finding a polarisa-
tion of the lattice S (if it exists) is equivalent to finding
a scaling-rotation matrix R, R · RT = 2I , with GT =
GS · R and GT2ω

= GS · RT , such that the basis vectors giT
and giT2ω

, 1 ≤ i ≤ n, are versions of the vectors giS scaled by
a factor of

√
2 and rotated by an angle of ±ω = arctan

√
7.

Indeed, consider two vectors giT and giT2ω
of the same size and

having an angle of 2ω. Summing these two vectors yields a
vector giS having half the size of giT : ||giS ||2 = ||giT+giT2ω

||2 =
0.5 × ||giT ||2, since cos (2ω) = −3/4. One would thus get
GS = GT +GT2ω . The rotation matrix R can be found via a
Z[λ]-structure of S; Let GC

S be a (complex) generator matrix
of S over the ring of integers Z[λ], λ =

√
2eiω = 1+i

√
7

2 .
Multiplying GC

S by λ yields a matrix whose rows are new
vectors belonging to the lattice, scaled by

√
2, and having

the desired angle with the basis vectors. Hence, GC
T can be

obtained as λGC
S and GC

T2ω
as ψGC

S , where ψ = λ̄ is the
conjugate of λ. Therefore, if we let GS be the real generator
matrix obtained from GC

S (via (1)), the real rotation matrix R
for polarisation is R(n, λ) = In/2 ⊗R(2, λ).

2) Leech lattice and Nebe lattice: Given three lattices S,
T and T2ω , respecting properties (19), we consider the lattice
Γ(2S, T2ω, T, 3). A generator matrix of Γ(2S, T2ω, T, 3) is

GΓ(2S,T2ω,T,3) =

[
G(3,1) ⊗GT2ω

G(3,2) ⊗GT

]
, (20)

where G(3,1) and G(3,2) are generator matrices for the (3, 1)
binary repetition code and the (3, 2) binary single parity-check
code, respectively. Obviously, F2 is naturally embedded into
Z for the two binary codes. From (20), a generator matrix of
Γ(2S, T2ω, T, 3) over Z[λ] can be expressed as

GC
Γ(2S,T2ω,T,3) =

λ λ λ
ψ ψ 0
0 ψ ψ


︸ ︷︷ ︸

=Pb

⊗GC
S , (21)

where GC
S is a generator matrix of S over Z[λ], λGC

S a
generator matrix of T , and ψGC

S a generator matrix of T2ω .

Theorem 3. Let S ∼= E8 and T ,T2ω be two lattices respecting
properties (19). Then, Γ(2S, T2ω, T, 3) is the Leech lattice
[42][27][37].

See Appendix IX-A for a proof. A similar proof can also be
used to show that when S ∼= Λ24 and T ,T2ω are two lattices
respecting properties (19), then the lattice Γ(2S, T2ω, T, 3) has
a fundamental coding gain equal to 6 or 8 [21]. In this case, the
polarisation does not ensure Γ(2S, T2ω, T, 3) > 3d(S) = 6.
Additional work to choose T2ω is needed. Nebe considers in
[35] the following construction. Let S be the Z[λ]-structure
Λ24 with automorphism group SL2(25). Set T2ω = λS and
T = ψS. The resulting lattice Γ(2S, T2ω, T, 3) is named the
Nebe lattice N72. It is possible to check that N72 has no vector
of length 6, which leads to the following theorem, obtained
in [35].

Theorem 4. N72 has a fundamental coding gain equal to 8
[35].

IV. DECODING PARADIGM FOR THE SINGLE
PARITY-CHECK LATTICE AND THE k-ING LATTICE

A. The existing decoding algorithm for Γ(V, α, β, k) (and
Γ(V, β, k)P )

To the best of the authors’ knowledge, there exists only one
“efficient” optimal algorithm for the k-ing construction called
trellis decoding [16]. This decoding algorithm uses a graph-
based representation to efficiently explore all the cosets of V k

in Γ(V, α, β, k). As an example, the trellis for Γ(V, α, β, 3)
is illustrated on Figure 1 with |α| = 3 and |β| = 2. Each
path in this three sections trellis corresponds to a coset of V 3

in Γ(V, α, β, 3). Each edge is associated with a coset of V
in S: E.g. given α = {m1,m2,m3} and β = {n1, n2}, the
two upper edges on the left should be labeled m1 + n1 and
m1 + n2, respectively. All the edges in the upper part of the
trellis correspond to the same m1 and the sub-trellis formed by
these edges is a standard single parity-check trellis. This sub-
trellis is repeated three times for m1,m2, and m3. Standard
trellis algorithms, such as the Viterbi algorithm, can then be
used to decode.
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α
β

Fig. 1: Trellis representing a Γ(V, α, β, 3) with |α| = 3 and
|β| = 2. The edges labeled with the same α are associated
with the same m1 ∈ α.

Trellis decoding of Γ(V, α, β, k) involves decoding in V
for each edge in the trellis. The number of edges in the
trellis is 2|α||β|+(k−2)|α||β|2. Therefore, the complexity is
dominated by the quantity |α||β|2CVdec. For more information
on trellis decoding, the reader should refer to [16] or [13].

Of course, trellis decoding can also be used to decode
the single parity-check k-lattices Γ(V, β, k)P . The number of
edges in the standard single parity-check trellis is 2|β|+ (k−
2)|β|2.

B. Decoding paradigm for Γ(V, β, k)P

Set y ∈ Rkn and let x = (t1, t2, ..., tk) ∈ Γ(V, β, k)P be
the closest element to y. The minimum distance of the lattice
V is (in general) larger than the one of T . Consequently,
decoding yj in the coset of V to which the element tj belongs
is safer than decoding in T . Moreover, any set of k − 1 tj’s
is enough to know in which coset of V k in Γ(V, β, k)P the
point x is located. Hence, given t1, t2, ...tk−1, the element
tk can be recovered by decoding yk − (−

∑k−1
j=1 tj) in V

(and adding back −
∑k−1
j=1 tj on the decoded element), as

shown by Algorithm 1. It is easily seen that the complexity
of Algorithm 1 is

CA.1 = kCTdec + kCVdec, (22)

where we used the simplification of Equation (11).

Algorithm 1 Decoder for Γ(V, β, k)P

Input: y = (y1, y2, ..., yk) ∈ Rkn.

1: Decode y1, y2, ..., yk in T as t1, t2, ..., tk.
2: for 1 ≤ i ≤ k do
3: Decode yi − (−

∑
j 6=i tj) in V as vi. Add

(t1, ..., ti−1, vi + (−
∑
j 6=i tj), ti+1, ..., tk) to the

list T .
4: end for
5: Return the closest element of T to y.

Algorithm 1 can be adapted to perform list decoding as
follows. For the sake of simplicity, we assume that V ∼=

√
2T .

We recall that regular list decoding consists in computing
the set Γ(V, β, k)P ∩ Bδ(y), i.e. finding all lattice points
x ∈ Γ(V, β, k)P where d(y, x) ≤ r, y ∈ Rkn. The parameter
δ = r/d(Γ(V, β, k)P) is the relative decoding radius. Remem-
ber that d(Γ(V, β, k)P) = d(V ) = 2d(T ). The list decoding
of Γ(V, β, k)P with a radius r consists in list decoding each
yj (Step 1 of Algorithm 1) in T with a radius r/2 and each
yi− (−

∑
j 6=i tj) (Step 3) in V with a radius r (see the proof

of Lemma 1 for explanations on this choice). In both cases the

relative radius is δ = r
2d(T ) = r

d(V ) and the maximum number
of elements in each list is l(T, δ) = l(V, δ) = L(T, r2 ) =
L(V, r) (see Section II for the definitions of L(·, ·) and l(·, ·)).
As a result, Step 3 (of Algorithm 1), for a given i, should be
executed for any of the combinations of candidates (for each
tj 6=i) in the k − 1 lists: i.e. l(T, δ)k−1 times. The resulting
maximum number of stored elements (for this given i) is
l(T, δ)k−1 · l(V, δ). Consequently, the number of elements in
T is bounded from above by

k · l(T, δ)k−1 · l(V, δ) = k · l(T, δ)k. (23)

The list-decoding version of Algorithm 1 is presented in
Algorithm 2.

Lemma 1. Algorithm 2 outputs the set Γ(V, β, k)P ∩ Bδ(y)
in worst-case time

CA.2 =kCT∩Bδ(y) + k · l(T, δ)k−1CV ∩Bδ(y). (24)

Proof. We first prove that all points x = (x1, x2, ..., xk) ∈
Γ(V, β, k)P ∩ Bδ(y) are outputted by Algorithm 2. If
d(yi, xi) > r/2 then d(yj , xj) < r/2 for all j 6= i. Hence,
among the k lists T1, T2, ..., Tk computed at Step 1 of the
algorithm, at least k − 1 of them contain the correct t∗j = xj .
Assume (without loss of generality) that all Tj , 1 ≤ j 6= i ≤ n,
contain t∗j . Since d(y, x) ≤ r, one has d(yi, xi) ≤ r.
Therefore, Vi = V ∩ Bδ(yi − (−

∑
j 6=i t

∗
j )) contains v∗i =

xi − (−
∑
j 6=i t

∗
j ).

As a result, all x ∈ Γ(V, β, k)P ∩Bδ(y) are outputted by the
algorithm. The complexity is obtained by reading Algorithm 2,
with the simplification of Equation (11).

Note that if δ < 1
4 (the relative packing radius), there is only

one element in each of the set Tj computed in Algorithm 2.
Algorithm 2 in this case is equivalent to Algorithm 1.

Algorithm 2 List dec. for Γ(V, β, k)P ⊂ Rkn (without the
splitting strategy)
Input: y = (y1, y2, ..., yk) ∈ Rkn, δ ≥ 0.

1: Compute the sets T1 = T ∩ Bδ(y1), T2 = T ∩
Bδ(y2), ..., Tk = T ∩Bδ(yk).

2: for 1 ≤ i ≤ k do
3: Set j1 < j2 < ... < jk−1, where {j1, j2, ..., jk−1} =

{1, 2, ..., k}\{i}.
4: for each (tj1 , ..., tjk−1

) ∈ Tj1 × Tj2 × ...× Tjk−1
do

5: Compute the set Vi = V ∩Bδ(yi − (−
∑k−1
j′=1 tjj′ )).

6: for vi ∈ Vi do
7: Add (tj1 , ..., tji−1

, vi + (−
∑k−1
j′=1 tjj′ ), tji , ..., tjk−1

)
to the list T .

8: end for
9: end for

10: end for
11: Return T .

In some cases, the complexity of Algorithm 2 can be
reduced via a technique we call the splitting strategy. It
exploits the following observation: Let x = (x1, x2, ..., xk) ∈
Γ(V, β, k)P . Assume (without loss of generality) that
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d(yi, xi) >
r
2 (and thus

∑
j 6=i d(xj , yj) ≤ r

2 ). This case can
be split into two sub-cases. Let 0 ≤ a′ ≤ r

2 .
• If a′ ≤

∑
j 6=i d(xj , yj) ≤ r

2 then r
2 < d(xi, yi) ≤ r− a′:

Then, each yj should be list decoded in T with a radius
r
2 and yi − (−

∑
j 6=i tj) should be list decoded, for all

resulting combinations of tj , in V with a radius r − a′.
• Else 0 ≤

∑
j 6=i d(xj , yj) < a′ and r

2 < d(xi, yi) ≤ r:
Then, each yj should be list decoded in T with a radius
a′, and yi − (−

∑
j 6=i tj) should be list decoded, for all

resulting combinations of tj , in V with a radius r.
The number of stored elements (when computing each sub-
case) is bounded by
• l(T, δ)k−1 · l(V, a1 = r−a′

d(V ) ), for the first sub-case,
• l(T, a2 = a′

d(T ) )k−1 · l(V, δ) for the second sub-case.

Consequently, if we choose a1 = a2 = 2
3δ, the number of

elements in the list T , outputted by a list decoder with this
splitting strategy, is bounded from above by

k
[
l(T, δ)k−1l(V,

2

3
δ) + l(T,

2

3
δ)k−1l(V, δ)

]
, (25)

which is likely to be smaller than k · l(T, δ)k, the bound
obtained without the splitting strategy.

Similarly, we can also split the case 0 ≤ d(xj , yj) ≤ r
2 ,

j 6= i, into several sub-cases. Let 0 ≤ a′ ≤ r
2 . We recall that

we have
∑
j 6=i d(xj , yj) ≤ r

2 .
• If a′ ≤ d(xj , yj) ≤ r

2 then 0 ≤ d(xl, yl) ≤ r
2 − a

′, ∀l
where 1 ≤ l 6= j 6= i ≤ k:
Then, yj should be list decoded in T with a radius r

2 and
each yl list decoded in T with a radius r

2 − a
′.

• Else 0 ≤ d(xj , yj) < a′ and for one l, 1 ≤ l 6= j 6= i ≤ k,
one may have a′ ≤ d(xl, yl) ≤ r

2 :
Then, yj should be list decoded in T with a radius a′, yl
list decoded in T with a radius r

2 , and all the remaining
y′s list decoded in T with a radius a′.

Of course, since it is not possible to know the index l where5

a′ ≤ d(xl, yl) ≤ r
2 , all k− 2 possibilities should be computed

(which yields k − 1 possibilities if we include the first sub-
case a′ ≤ d(xj , yj) ≤ r

2 ). If we choose a′ = r
2 − a

′ = r
4 ,

the product of the maximum list size of each k − 1 case
is l(T, δ)l(T, δ2 )k−2. As a result, the maximum number of
possibilities to consider for

∑
j 6=i tj is

(k − 1)l(T, δ)l(T,
δ

2
)k−2, (26)

instead of l(T, δ)k−1 without this strategy.
Substituting (26) in (25), the number of element in a list T ,

outtputed by a list decoder with these two splitting strategies,
is bounded from above by

k(k − 1)
[
l(T, δ)l(T,

δ

2
)k−2l(V,

2

3
δ) + l(T,

2

3
δ)l(T,

δ

3
)k−2l(V, δ)

]
,

= k(k − 1)l(T, δ)l(T,
2

3
δ)
[
l(T,

δ

2
)k−2 + l(T,

δ

3
)k−2],

(27)

where we used l(T, δ) = l(V, δ).
We shall refer to these two splitting strategies as the first

and second splitting strategy, respectively. The first splitting

5One may not have a′ ≤ d(xl, yl), ∀l, 1 ≤ l 6= i ≤ k. It is not an issue
as we would then simply decode with a radius greater than necessary.

strategy is listed in Algorithm 3 and can be used without
or with the second splitting strategy. The function SubR1 or
SubR2, listed in Algorithm 4, is used accordingly.

Algorithm 3 List dec. for Γ(V, β, k)P ⊂ Rkn with the
splitting strategy
Input: y = (y1, y2, ..., yk) ∈ Rkn, δ ≥ 0.
// The sets T

δ
2
i and T

δ
3
i are computed only if used by the

subroutine.
1: for η ∈ {δ, 2

3δ,
δ
2 ,

δ
3} do

2: Set T η1 , T
η

2 , ..., T
η
k as global variables.

3: Compute the sets T η1 = T ∩ Bη(y1), T η2 = T ∩
Bη(y2), ..., T ηk = T ∩Bη(yk).

4: end for
5: for 1 ≤ i ≤ k do
6: T1 ← SubR(y1, y2, ..., yk, δ,

2
3δ, i).

7: T2 ← SubR(y1, y2, ..., yk,
2
3δ, δ, i).

// Use SubR1 or SubR2 (listed in Algorithm 4) if
the (second) splitting strategy is not used or used,
respectively.

8: end for
9: Return T = {T1, T2}.

Algorithm 4 Subroutines of Algorithm 3
Input: y = (y1, y2, ..., yk) ∈ Rkn, t ≥ 1, δ1, δ2 ≥ 0, 1 ≤ i ≤ k.
Function SubR1(y1, y2, ..., yk, δ1, δ2, i) // no second splitting strat-
egy

1: Set j1 < j2 < ... < jk−1, where {j1, j2, ..., jk−1} =
{1, 2, ..., k}\{i}.

2: for each (tj1 , ..., tjk−1) ∈ T δ1j1 × T
δ1
j2
...× T δ1jk−1

do
3: Compute the sets Vi = V ∩Bδ2

(
yi − (−

∑
j′ tjj′ )

)
4: for vi ∈ Vi do
5: Add (tj1 , ..., tji−1 , vi + (−

∑
j′ tjj′ ), tji , ..., tjk−1) to the

list T .
6: end for
7: end for
8: Return T .

Function SubR2(y1, y2, ..., yk, δ1, δ2, i) // with the second splitting
strategy

1: for 1 ≤ l 6= i ≤ k do
2: Set j1 < j2 < ... < jk−2, where {j1, j2, ..., jk−2} =

{1, 2, ..., k}\{i, l}.
3: for each (tl, tj1 , ..., tjk−2) ∈ T δ1l ×T

δ1/2
j1

×T δ1/2j2
...×T δ1/2jk−2

do
4: Compute the sets Vδ2i = V ∩Bδ2

(
yi − (−tl −

∑
j′ tjj′ )

)
5: for vi ∈ Vδ2i do
6: Add (tj1 , ..., tl, ...tji−1 , vi + (−tl −∑

j′ tjj′ ), tji , ..., tjk−1) to the list T .
7: end for
8: end for
9: end for

10: Return T .

Lemma 2 (Complexity with the splitting strategy). Algo-
rithm 3, with the subroutine SubR2 listed in Algorithm 4,
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outputs the set Γ(V, β, k)P ∩Bδ(y) in worst-case time

CA.3 = kCT∩Bδ(y)+(k2 − k)
[
l(T, δ)l(T,

δ

2
)k−2CV ∩B 2

3
δ
(y)+

l(T,
2

3
δ)l(T,

δ

3
)k−2CV ∩Bδ(y)

]
.

(28)

C. Decoding paradigm for Γ(V, α, β, k)

The proposed decoding algorithm simply uses representa-
tion (15) of the k-ing construction: Γ(V, α, β, k) is decoded
via |α| use of Algorithm 1, as described in Algorithm 5. The
complexity of Algorithm 5 is

CA.5 = |α|(kCTdec + kCVdec). (29)

Algorithm 5 Decoder for Γ(V, α, β, k)

Input: y = (y1, y2, ..., yk) ∈ Rkn.

1: for m ∈ α do
2: y′ ← y −mk

3: Use Algorithm 1 with y′ as input.
4: end for
5: Return the closest element of T to y.

V. DECODERS FOR THE PARITY LATTICES

A. Recursive decoding

The decoding paradigms presented in the previous section
can be adapted to decode lattices recursively built from the
single parity-check construction. As an example, we adapt
Algorithm 2 in the recursive Algorithm 6 to decode the parity
lattices Lkn = Γ(θLn, β, k). Hence, we have T = Ln and
V = θLn. Since l(Ln, δ) = l(θLn, δ), we set l(n, δ) =
L(n, r) = l(Ln, δ) to simplify the notations. Moreover, we
also write C(δ) for C(nk , δ) and l(δ) for l(nk , δ).

In Algorithm 6 the “removing” steps (Steps 14 and 15 ) are
added to ensure that a list with no more than l(n, δ) elements
is returned by each recursive call. This enables to control the
complexity of the algorithm (see e.g. Section V-D3). However,
we shall see that the step in bold is not always necessary for
the Gaussian channel.

Note that this algorithm with δ = 1/4 yields a recursive
BDD whose complexity is provided by the next theorem.

Theorem 5. Let n = c ·kt and y ∈ Rn. If d(y, Ln) < ρ2(Ln),
then Algorithm 6 with δ = 1/4 outputs the closest lattice point
to y in time

CA.6(n,
1

4
) = O(n

1+ 1
log2k ). (30)

Proof.

C(n,
1

4
) = 2kC(

n

k
,

1

4
) +O(n) = O(n)

logk n∑
i=0

(
2k

k

)i
,

= O(n
1+ 1

log2k ).

Algorithm 6 Recursive list dec. for Lkn = Γ(θLn, β, k)P ⊂
Rkn, n = c · kt−1

Function ListRecL(y, t, δ)
Input: y = (y1, y2, ..., yk) ∈ Rkn, 0 ≤ t, 0 ≤ δ.

1: if t = 0 then
2: T ← The set Λc ∩Bδ(y).
3: else
4: T1 ← ListRecL(y1, t− 1, δ), T2 ← ListRecL(y2, t−

1, δ),..., Tk ← ListRecL(yk, t− 1, δ).
5: for 1 ≤ i ≤ k do
6: Set j1 < j2 < ... < jk−1, where {j1, j2, ..., jk−1} =

{1, 2, ..., k}\{i}.
7: for each (tj1 , ..., tjk−1

) ∈ Tj1 × Tj2 ...× Tjk−1
do

8: Vi ← ListRecL([yi − (−
∑
j′ tjj′ )] · R(c ·

kt, θ)T , t− 1, δ) ·R(c · kt, θ).
9: for vi ∈ Vi do

10: Add (tj1 , ..., tji−1 , vi +
(−
∑
j′ tjj′ ), tji , ..., tjk−1

) in the list T .
11: end for
12: end for
13: end for
14: Remove all elements in T at a relative distance > δ

from y.
15: Sort the remaining elements in T in a lexicographic

order and remove all duplicates.
16: end if
17: Return T .

B. Decoding performance on the Gaussian channel
Lemma 3. Let x ∈ Λ ⊂ Rn and let y ∈ Rn be the point
to decode. Let T denote the list outputted by a list-decoding
algorithm. The point error probability under list decoding is
bounded from above by:

Pe(dec) ≤Pe(opt) + P (x /∈ T ). (31)

Proof.

Pe(dec) =P (y /∈ V(x)) + P (x /∈ T ∩ y ∈ V(x)),

≤P (y /∈ V(x)) + P (x /∈ T ).
(32)

In the sequel, we derive formulas to estimate the term
P (x /∈ T ).

1) Choosing the decoding radius for regular list decoding
on the Gaussian channel: Consider the Gaussian channel
where y = x + w, with y ∈ Rkn, x ∈ Lkn, and w ∈ Rkn
with i.i.d N (0, σ2) components. With a regular list decoder
T = Λ ∩Bδ(y) and

P (x /∈ T ) = P (||w||2 > r). (33)

Since ||w||2 is a Chi-square random variable with n degrees
of freedom, P (||w||2 > r) = F (n, r, σ2), where, for n even :

F (n, r, σ2) = e
− r

2σ2

n/2−1∑
k=0

1

k!

( r

2σ2

)k
. (34)

Lemma 4. Consider Algorithm 6 with the following input
parameters. The point y = x + w, where y ∈ Rkn, x ∈ Lkn,
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and w ∈ Rkn with i.i.d N (0, σ2) components. Moreover, t ≥ 0
and δ = r/d(Lkn). We have

P (x /∈ T ) = F (kn, r, σ2). (35)

Based on (31), quasi-optimal performance with regular
list decoding is obtained by choosing a decoding radius
r = E[||w||2](1 + ε) = nσ2(1 + ε) such that F (n, r, σ2) <
η·Pe(opt, σ2) (in practice η = 1/2 is good enough). Moreover,
it is easy to show that ε→ 0 when n→ +∞. We denote by
δ∗ the relative decoding radius corresponding to this specific
r:

δ∗ =
nσ2(1 + ε)

d(Λ)
. (36)

Of course, the greater δ∗, the greater the list-decoding com-
plexity.

2) A modified list-decoding algorithm: Notice that due to
the “removing step” (Steps 14, in bold, of Algorithms 6), if a
point found at the last recursive step is at a distance greater
than r from y, even if it is the unique point found, it is not
kept and an empty list is returned: The decoding radius is r
in V and r/2 in T , but only the points at a distance less than
r from y are kept.

To avoid this situation, we remove Step 14 in Algorithm 6.
We will see in the rest of the paper that this enables to
choose smaller decoding radii for QMLD than with regular
list decoding and reduce the complexity despite the absence
of the removing step. In terms of error probability, decoding
in a sphere is the best choice given a finite decoding volume
around the received point y. However, there may be larger
non-spherical volumes that achieve satisfactory performance
but that are less complex to explore. This is the main idea
behind this modified list-decoding algorithm. This subsection
concentrates on the analysis of the error probability of the
modified algorithm.

Theorem 6. Consider Algorithm 6 without Step 14 with the
following input parameters. The point y is obtained on a
Gaussian channel with VNR ∆ = vol(Lkn)2/kn/2πeσ2 as
y = x+w, where y ∈ Rkn, x ∈ Lkn, and w ∈ Rkn with i.i.d
N (0, σ2) components. Moreover, t ≥ 0 and δ is the relative
decoding radius. We have

P (x /∈ T ) ≤ Ukn(δ,∆), (37)

where

Un(δ,∆) = min
{(k

2

)
Un
k

(δ,
∆

2
1
k

)2+

kUn
k

(δ, 2
k−1
k ∆)(1− Un

k
(δ,

∆

2
1
k

))k−1, 1
}
.

(38)

The initial condition Uc(δ,∆) corresponds to the decoding
performance in Lc: Uc(δ,∆) = P (x /∈ Tc), where Tc denotes
the list of candidates obtained when list decoding in Lc.

To help the reader understand the result, we provide the
beginning of the proof below.

Proof. If Step 14 is removed at the last recursive iteration of
Algorithm 6 the sent point x = (x1, x2, ..., xk) is not in the
outputted list if:
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Fig. 2: Performance curves for Example 1.

• xi /∈ Ti for at least two lists Ti (at Step 4 of Algorithm 6),
• or if x1, ..., xj 6=i, ..., xk ∈ T1, ..., Tj , ..., Tk, and xi −

(−
∑
j 6=i xj) /∈ Vi (for at least one i).

Let the noise w = (w1, ..., wi, ..., wk). Due to the i.i.d property
of the noise, we have P (||w1||2 > r

2 ) = P (||wi||2 > r
2 ) for

all 1 ≤ i ≤ k. As a result, P (x /∈ T ) becomes

P (x /∈ T ) ≤

(
k

2

)
P (||wi||2 >

r

2
)2+

kP (||wi||2 > r)P (||wi||2 <
r

2
)k−1,

=

(
k

2

)
F (
n

2
,
r

2
, σ2)2 + kF (

n

2
, r, σ2)F (

n

2
,
r

2
, σ2)k−1.

(39)

The rest of the proof is provided in Appendix IX-B.

For instance, a regular list decoder for Lc with relative
decoding radius δ is used in Algorithm 6. Consequently, the
initial condition would be

Uc(δ,∆) = F (c, f(δ), f(∆)), (40)

with f(δ) = δ · d(Lc), and f(∆) = vol(Lc)
2
c /(2πe∆).

As illustrated by the next example, (38) means that the
lattices of smaller dimensions are decoded with the same
relative radius but with a VNR that is either greater, 2

k−1
k ∆, or

smaller, ∆/2
1
k . This result is a consequence of the following

properties of the parity lattices: vol(Ln)
2
n = vol(Lkn)

2
kn /2

1
k

and d(Ln) = d(Lkn)/2 (see Appendix IX-B for justifications).

Example 1. Let Λ24 be the Leech lattice and let β =
[Λ24/λΛ24], where λ = 1+i

√
7

2 (see Section III-C1 for more
details on λΛ24). The k-parity-Leech lattices are defined as
Lkn = Γ(λLn, β, k)P with initial condition Λc = Λ24. On
the Gaussian channel and with Algorithm 6 without Step 14,
the probability that the transmitted lattice point is not in the
outputted list is given by (38). We let the initial condition
U24(∆) be the performance of the optimal decoder for Λ24

(δ is thus irrelevant in this case). It means that Step 2 of
Algorithm 6 is modified by using a MLD decoder for Λ24.
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For the lattice Lk·24, the value of Uk·24(∆) is obtained
(using (38)) by adding the performance curves representing
•
(
k
2

)
· (PΛ24

e (opt,∆))2, shifted by 10 log10(2
1
k ) dB to the

right,
• and k ·PΛ24

e (opt,∆) shifted by 10 log10(2
k−1
k ) dB to the

left (assuming that (1− Un
k

( ∆

2
1
k

))k−1 ≈ 1).

The results for k = 3 and k = 7 are shown by the dashed
line in Figure 2. Since there is only one recursive step,
Algorithm 6 is equivalent to Algorithm 2. The associated
decoding complexity is obtained from (24) where the term
l(T, δ) = 1 (note that (24) reduces to (22) in this case).
Consequently, we get

C(Lk·24) = 2kCΛ24
MLD +O(k · 24). (41)

The probability Uk·k·24(∆) is obtained in a similar manner
from Uk·24(∆). For instance, U7·7·24(∆) is also plotted in the
figure. The corresponding decoding complexity of Lk·k·24 in
this case is obtained from (24) (with l(T, δ) = k, the number
of candidates obtained at the previous recursive step):

C(Lk·k·24) =k(1 + kk−1)C(Lk·24) +O(k · k · 24),

≈2kk+1CΛ24
MLD +O(k224).

(42)

Figure 2 also depicts the QMLD performance of L3·24 (ob-
tained in Section V-C) for comparison.

We shall see in the next section that the Nebe lattice N72,
constructed as Γ(λΛ24, α, β, 3), has the following properties:
vol(N72)

2
n=72 = vol(T = Λ24)

2
n/3 and d(N72) = 2d(Λ24).

Consequently, (38) becomes

Un=72(∆) = min
{

3Un
3

(∆)2 + 3Un
3

(2∆)(1− Un
3

(δ,∆))2, 1
}
.

(43)

Taking Un
3

(∆) = PΛ24
e (opt,∆), we get a similar curve as

U3·24 for L3·24 but shifted by 10 · log10(21/3) = 1 dB to the
left. The curve U72(∆) is shown in Figure 2. See Section VI-C
and Figure 6 for more details on the quasi-MLD performance
of N72.

If the (first) splitting strategy is considered (e.g. in a recur-
sive version of Algorithm 3), the error probability is slightly
greater due to specific cases, such as having simultaneously
2
3
r
2 < ||wj || <

r
2 and 2

3r < ||wi|| < r, which are not correctly
decoded (whereas they were without the splitting strategy).
For the case k = 2, it is shown in Appendix IX-B that with
the splitting strategy we get the recursion

Un(δ,∆) = min
{
Un

2
(δ,

∆√
2

)2+

2
[(
Un

2
(
2

3
δ,

∆√
2

)− Un
2

(δ,
∆√

2
)
)
Un

2
(
2

3
δ,
√

2∆)

+ (1− Un
2

(
2

3
δ,

∆√
2

))Un
2

(δ,
√

2∆)
]
, 1
}
.

(44)

C. The 3-parity-Leech lattice in dimension 72
Consider the 3-parity-Leech lattice L3·24 =

Γ(λΛ24, [Λ24/λΛ24], 3)P presented in Example 1. L3·24
has the same minimum distance as N72 and a volume
vol(L3·24) = vol(N72) × |α| (using (7)). Its fundamental
coding gain is:

γ(L3·24) = γ(Γ(2S, T2ω, T, 3))× 1

(212)
2
72

≈ 6.35. (45)

Lemma 5. The kissing number of L3·24 is 28,894,320.

The proof is provided in Appendix IX-C. The kissing
number is about 27.75 smaller than the kissing number of
N72 (which is 6, 218, 175, 600). As a result, one can state
the following regarding the relative performance of these two
lattices on the Gaussian channel: 1 dB is lost by the parity-
Leech lattice due to a smaller γ, but using the rule of thumb
that 0.1 dB is lost each time the kissing number is doubled
[19], there is also an improvement of 0.8 dB. Overall, we
expect the performance of these two lattices to be only 0.2
dB apart but where the decoding complexity of the 3-parity-
Leech lattice is significantly reduced compared to N72 (see
Section VI). The QMLD performance is shown in Figure 6
and it is indeed at 0.2 dB from the one of N72.

Consider Algorithm 2 for decoding. (38) yields

U3·24(δ,∆) =3U24(δ,
∆

2
1
3

)2 + 3U24(δ, 2
2
3 ∆)(1− U24(δ,

∆

2
1
3

))2.

(46)

A MLD decoder for Λ24 as subroutine is not powerful enough
to get QMLD performance (see the curve for U3·24 on Fig-
ure 2). We can for instance consider a sphere decoder comput-
ing Λ24∩Bδ·d(Λ24)(y). Then U24(δ,∆) = F (24, δ·d(Λ24), σ2)
and the relative decoding radius δ∗ should be chosen such that
3 · F (24, δ∗ · d(Λ24), σ2)2 ≈ 1/2 · PL3·24

e (opt, σ2). We find
δ∗ ≈ 25/64. With Theorem 1 we get that l(Λ24, δ

∗) = 4. The
(worst-case) complexity of Algorithm 2, given by Lemma 1,
becomes

CL3·24
QMLD =3CΛ24∩Bδ∗·d(Λ24)(y) + 3l(Λ24, δ

∗)2CΛ24∩Bδ∗·d(Λ24)(y),

=51 · CΛ24∩Bδ∗·d(Λ24)(y).

(47)

D. Parity lattices with k = 2: Barnes-Wall lattices

1) Existing algorithms: Several algorithms have been pro-
posed to decode BW lattices. [16] uses the trellis repre-
sentation of the two-level squaring construction to introduce
an efficient MLD algorithm for the low dimension instances
of BWn. Nevertheless, the complexity of this algorithm is
intractable for n > 32: The number edges in the trellis
is 2 · 22n/8 + 2 · 23n/8, e.g. decoding in BW128 involves
2 ·248 +2 ·232 decoders of BW32. Forney states in [16] : “The
first four numbers in this sequence6, i.e., 2, 4, 16, and 256, are
well behaved, but then a combinatorial explosion occurs: 65
536 states for BW64, which achieves a coding gain of 7.5 dB,
and more than four billion states for BW128, which achieves a
coding gain of 9 dB. This explosion might have been expected
from capacity and R0 (cut-off rate) considerations”.

Later, [33] proposed the first BDDs running in polynomial
time; a parallel version of complexity O(n2) and a sequential
one of complexity O(n log2 n). The parallel decoder was
generalized in [22] to work beyond the packing radius, still
in polynomial time. It is discussed later in the paper. The
sequential decoder uses the BW multilevel construction to
perform multistage decoding: Each of the ≈ log n levels is
decoded with a Reed-Muller decoder of complexity n log n.

6Forney refers to the number of states per section of the trellis, which is
22n/8.
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This decoder was also further studied, in [23], to design prac-
tical schemes for communications over the AWGN channel.
However, the performance of this sequential decoder is far
from MLD. A simple information-theoretic argument explains
why multistage decoding7 of BW lattices cannot be efficient:
The rates of some component Reed-Muller codes exceed the
channel capacities of the corresponding levels [20][47].

As a result, no BW decoder, being both practical and quasi-
optimal on the Gaussian channel, have been designed and
executed for dimensions greater than 32.

2) A new BDD: Algorithm 6 with k = 2 and δ = 1/4 yields
a new BDD for the Barnes-Wall lattices. We apply Theorem 5
for the case k = 2.

Corollary 1. Let n = 2t+1 and y ∈ Rn. If d(y,BWn) <
ρ2(BWn), then Algorithm 6 with k = 2 and δ = 1/4 outputs
the closest lattice point to y in time O(n2).

3) List decoding BW lattices: The recursive version of
Algorithm 3, with k = 2, can be used to list decode the BW
lattices. For regular list decoding the removing and sorting
steps, as in Algorithm 6, should also be added. Let us name
it Algorithm 3’.

We investigate the complexity of the algorithm of [22]
and Algorithm 3’. As mentioned at the beginning of the
section, [22] adapts the parallel BDD of [33], which uses the
automorphism group of BWn, to output a list of all lattice
points lying at a distance r = d(BWn)(1 − ε), 0 < ε ≤ 1,
from any y ∈ Rn in time

O(n2) · L(n, r2)2. (48)

A critical aspect regarding the complexity of this decoder is
therefore the list size. Theorem 1 provides bounds on the list
size when r ≤ d(BWn)/2. The following lemma, addressing
r > d(BWn)/2, is proved in [22].

Lemma 6 (Results from [22]). The list size of BWn lattices
is bounded as:
• L(n, r) = O(nlog2 4b 3

4ε c) if r ≤ d(BWn)( 3
4 − ε),

0 < ε < 1
4 .

• L(n, r) = O(n2 log2 24) if r = 3
4d(BWn).

• And L(n, r) = O(n8 log2
1
ε ), if r ≤ d(BWn)(1 − ε),

0 < ε < 1
4 .

Lemma 6 shows that the list size of BW lattices is of the
form nO(log 1

ε ) and thus polynomial in the lattice dimension
for any radius bounded away from the minimum distance.
Combining the lemma with (48), the list decoder complexity
becomes nO(log 1

ε ) for any r < d(BWn)(1 − ε), ε > 0. This
result is of theoretical interest: It proves that there exists a
polynomial time decoding algorithm (in the dimension) for any
radius bounded away from the minimum distance. However,
the quadratic dependence is a drawback: As already explained,
finding an algorithm with quasi-linear dependence in the list
size is stated as an open problem in [22].

In the following, we demonstrate that if we use Algo-
rithm 3’, rather than the automorphism group of BWn for
list decoding, we get complexity linear in the list size. This

7Where only one candidate is decoded at each level.

enables to both improve the regular list-decoding complexity
and get a practical quasi-optimal decoding algorithm on the
Gaussian channel up to n = 128.

We compute below the complexity of our algorithm for
δ < 9/16. The complexity analysis for larger δ (which is the
proof of Theorem 7) is provided in Appendix IX-D.

If δ < 3
8 then 2

3δ < 1
4 and we have l(δ) = O(1),

l( 2
3δ) = 1. Moreover, C( 2

3δ) ≤ C( 1
4 ) = O(n2) (Theorem 1).

The complexity becomes

C(n, δ) =4C(δ) + l(δ)O(n2) = l(δ)O(n2 logn) = Õ(n2). (49)

If 3
8 ≤ δ <

9
16 and C( 2

3δ) ≤ C( 3
8 ) = O(n2 log n). We get

C(n, δ) =l(δ)O(n2 logn)

log2 n∑
i=0

(
2l( 2

3
δ) + 2

4

)i
,

=l(δ)O(n1+log2[1+l( 2
3
δ)] logn),

=l(δ)Õ(n1+log2[1+l( 2
3
δ)]),

(50)

which is Õ(n1+log2 3) if δ < 1/2.
Note that for these cases (δ < 1/2) the decoder of [22] is

more efficient: Indeed, Theorem 1 shows that when δ < 1/2
then l(n, δ) = O(1) and the decoding complexity, given by
(48), is O(n2). Nevertheless, the following theorem (proved
in Appendix IX-D) shows that our decoder is better for larger
values of δ and, as we shall see in the next subsection, is
useful even when δ < 1/2 for quasi-optimal decoding on the
Gaussian channel.

Theorem 7. Let n = 2t+1, y ∈ Rn. The set BWn ∩ Bδ(y)
can be computed in worst-case time:
• O(n2) if δ < 1

2 (algorithm of [22]).

• l(δ)O(n2+log2[
l( 2

3
δ)+1

2 ]) ≈ O(n1+log2 4b 3
4ε c

2]) if δ = 3
4−ε,

0 < ε.
• O(n1+log2 432) if δ = 3

4 .
• l(δ)O(n2) = O(n8 log2

1
ε+2) if δ = 1− ε, 0 < ε < 1

4 .

4) Decoding on the Gaussian channel: We apply the anal-
ysis presented in Section V-B to the case k = 2 to establish
the smallest list-decoding radius δ required for quasi-optimal
decoding. The first element needed is the MLD performance
PBWn
e (opt, n, σ2) of BWn. As mentioned earlier it is not

known for n > 32. Nevertheless, PΛ
e (opt, n, σ2) can be lower-

bounded for any lattice Λ in n dimensions using the sphere
lower bound [41] (see also [20] or [24]). Table I provides
the sphere lower bound on the best performance achievable
for PΛ

e (opt, n, σ2) = 10−5. With (34), we can compute the
smallest δ∗, for the corresponding values of σ2, such that
P (x /∈ T ) = P (||w||2 > r) / 10−5 with regular list de-
coding. Using δ∗ yields quasi-optimal decoding performance,
regardless of the MLD performance of BWn. The values of δ∗

as a function of n are presented in Figure 3. The corresponding
(worst-case) decoding complexity is obtained with Theorem 7.
It is super-quadratic for all n ≥ 16.

Running the simulations (with δ∗ found at the sphere bound)
enables to estimate the MLD performance of BWn lattices.
The results are presented8 in Table I, and are at ≈ 0.5 dB of

8These estimations were not performed with the regular list decoder, but
with the algorithm presented in the rest of the section.
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Dimension n 16 32 64 128 256

Dist. to Polt. (dB) sphere bound 4.05 3.2 2.5 1.9 1.4

Dist. to Polt. (dB) MLD 4.5 3.7 3.1 2.3 ?

TABLE I: Sphere lower bound on the best performance
achievable by any lattice Λ for PΛ

e (opt, n, σ2) = 10−5 and
MLD performance of BWn for Pe(opt, n, σ2) = 10−5.

16 32 64 128 256

0.2

0.4

0.6

0.8

1

1.2

1.4

Fig. 3: Values of the list-decoding relative radius δ∗, for BWn,
such that P (x /∈ T ) ≈ 10−5.

the sphere bound9. In Figure 3 the corresponding values of δ∗

(still with regular list decoding) are depicted by the diamonds.
For n = 128, we have δ∗ > 3/4. Even though the complexity
of the regular list decoder is linear in the list size, it remains
O(n8 log2

1
ε+2) for δ = 1 − ε, 0 < ε < 1/4. This is much

too high to run on a computer in a reasonable time (linear
in the list size doesn’t mean low complexity in this case).
Consequently, we consider a slightly different strategy to get
a practical algorithm for the Gaussian channel.

As explained in Section V-B, the error probability of the
list-decoding algorithm without the removing step can be esti-
mated with Equation (38) without the splitting strategy or (44)
with the first splitting strategy. Hence, we can also compute the
smallest δ∗ such that with this algorithm P (x /∈ T δ) / 10−5

(at the MLD performance). However, the decoding complexity
should be updated to take into account the fact that there is
no removing step in the algorithm even when δ < 1/2.

We consider Algorithm 3’ without the removing step. To
mitigate the complexity and simplify the analysis, whenever
δ ≤ 1/4 we shall use the BDD presented in Section V-D2
(i.e. when δ ≤ 1/4, we fix it to 1/4). Hence, in (44),
Un(δ ≤ 1

4 ,∆) = Pe(BDD,n,∆). The error probability
Pe(BDD,n,∆) is shown in Figure 4. In the literature, the
performance of BDDs is often estimated via the “effective
error coefficient” [18] [39]. Nevertheless, it it not always
accurate, especially in high dimensions. We therefore rely
on the Monte Carlo simulations presented in the figure for

9We have not yet investigated the case n = 256.

1 1.5 2 2.5 3 3.5

Distance to Poltyrev limit(dB)

10
-3

10
-2

10
-1

P
o
in

t 
E

rr
o
r 

P
ro

b
a
b
ili

ty

Fig. 4: Performance of the recursive BDD for the Barnes-Wall
lattices on the Gaussian channel.

Pe(BDD,n,∆). The estimated δ∗ with this decoder, shown in
Figure 3, are significantly smaller than the ones obtained with
the regular list decoder. In particular, δ∗ < 3/8 for n ≤ 64
and δ∗ < 1/2 for n = 128.

We now study the complexity of this latter algorithm.
We shall use the notation l′(n, δ, y) to denote the number
of elements returned by the decoding algorithm (without a
removing step). If δ ≤ 3/8, we get

l′(n, δ) ≤ 2
[
l′(

1

4
)l′(δ) + l′(δ)l′(

1

4
)] = 4l′(δ)

= 4log2 n · l(Z2, δ) = O(n2).
(51)

However, considering the average complexity, and taking
into account the fact that we remove the duplicates at each
recursive step, one has

Ey[l′(n, δ, y)] ≤2
[
l′(

1

4
)Ey[l′(δ)] + Ey[l′(δ)]l′(

1

4
)−

l′(
1

4
)l′(

1

4
)]− Ecy.

=4Ey[l′(δ)]− 2− Ecy,

(52)

where Ecy denotes the average number of common elements
in the lists returned by the recursive calls. We observed
experimentally that for δ ≤ 3/8, Ey[l′(n, δ, y)] is close to 1.
This observation is not taken into account in the next theorem,
which bounds the average list size and the average complexity.
It is however in the interpretation following the theorem.

Theorem 8. Let Ey[l′(n, δ, y)] be the average list size
of Algorithm 3’ without the removing step. Let η denote
Ey[l′(n, 3/8, y)]. If 3/8 < δ ≤ 9/16, Ey[l′(n, δ, y)] is
bounded from above as

Ey[l′(n, δ, y)] = O(n2+log2 η). (53)

And the average complexity is bounded from above as:

• Ey[C(n, δ)] = ηÕ(n2) if δ ≤ 3/8.
• Ey[C(n, δ)] = Ey[l′(δ, y)]Õ(n1+log2[1+η]) if

3/8 < δ ≤ 9/16.
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Fig. 5: Simulation results for the BW lattices up to n = 128
and the universal bounds of [41]. ∗For n = 128, ℵ(δ) = 1000
and ℵ(2/3δ) = 4.

See Appendix IX-E for the proof.
As a result, based on the observation that η is close to 1, the
average complexity is estimated as:
• Ey[C(n, δ)] = Õ(n2) if δ ≤ 3/8.
• Ey[C(n, δ)] = Õ(n4) if 3/8 < δ ≤ 9/16.
Since δ∗ < 3/8 for n < 64 and δ∗ < 1/2 for n = 128 for

QMLD, we conclude that the decoding complexity is quadratic
for n ≤ 64 and quartic for n = 128.

For a practical implementation, we can use Algorithm 3’
(without the removing step) whose advantage is to have
the above theoretical analysis in terms of performance and
complexity. Alternatively, we can perform the following
minor modifications which improves the computational
efficiency but makes a performance analysis not possible (the
parameters mus be found via trial and error).
We can bound the maximum number of points kept at each
recursive step: At the end of each recursive call, the ℵ(δ)
best candidates are kept. The size of the list ℵ(δ), for a given
δ, is a parameter to be fine tuned: For n =16, 32, 64, we
set ℵ(δ) =5, 10, 20, respectively. For n = 128, choosing
ℵ(δ) = 1000 (<< than our bound in O(n2) on Ey[l′(δ, y)])
and ℵ(2/3δ) = 4 yields quasi-MLD performance. Figure 5
depicts the simulation results for BW lattices up to n = 128.

VI. DECODERS FOR LEECH AND NEBE LATTICES

A. Existing decoding algorithms for Λ24 and N72

1) History of the decoders of Λ24: Λ24 appeared under
many different forms in the literature (which may be equivalent
to Turyn’s construction). Among others, Λ24 can be obtained
as (i) 8192 cosets of 4D24, (ii) 4096 cosets of (

√
2E8)3,

(iii) 2 cosets of the half-Leech lattice H24, where H24 is
constructed by applying Construction B on the Golay code
C24, and (iv) 4 cosets of the quarter-Leech lattice, where
quarter-Leech lattice is also built with Construction B but

applied on a subcode of C24. Finally, one of the simplest
constructions is due to [5], where the Leech lattice is obtained
via Construction A applied on the quaternary Golay code.

The history of maximum-likelihood decoding (MLD) al-
gorithms for Λ24 starts with [8], where Conway and Sloane
used (i) to compute the second moment of the Voronoi region
of Λ24. The first efficient decoder was presented in [9] by
the same authors using construction (ii). Two years later,
Forney reduced the complexity of the decoder by exploiting
the same construction (ii), which he rediscovered in the scope
of the “cubing construction”, with a 256-state trellis diagram
representation [16] (see Section IV-A for a presentation of
trellis). A year later, it was further improved in [25] and [4]
thanks to (iii) combined with an efficient decoder of C24.
Finally, (iv) along with the hexacode is used to build the fastest
ever known MLD decoder by Vardy and Be’ery [44].

To further reduce the complexity, (suboptimal) BDD were
also investigated based on the same constructions: e.g. [17]
with (iii) and [2][45][18] with (iv). In these papers, it is shown
that these BDD do not change the error exponent (i.e. the
effective minimum distance is not diminished) but increase the
“equivalent error coefficient”. The extra loss is roughly 0.1 dB
on the Gaussian channel compared to the optimal performance.
As we shall see in the sequel, our decoding paradigm applied
to the Leech lattice is more complex than the state-of-the-
art decoders of Vardy [45][18] which requires only ≈ 300
real operations. But again, this latter decoder is specific to the
Leech lattice whereas our decoder is more universal as it can
be used, among others, to decode the Nebe lattice and the
Barnes-Wall lattices.

2) The decoder of the Nebe lattice in [31]: While the
decoding of Λ24 has been extensively studied, the literature
on decoders for N72 is not as rich: Only [31] studied this
aspect, but the proposed decoder is highly suboptimal.

First, notice that we can multiply (on the left) the matrix
Pb given in (21) by a unimodular matrix to get the following
matrix Pb′:

Pb′ =

1 1 λ
0 ψ ψ
0 0 2

 =

1 1 0
0 0 1
ψ −λ 0

 · Pb. (54)

Similarly to (21), Pb′⊗GC
S , S ∼= Λ24, is a basis for the Nebe

lattice which induces the following structure:

N72 = {(a, b, c) ∈ C36 :

a ∈ S, b− a ∈ T, c− (b− a)− λa ∈ 2S},
(55)

where (55) is derived from the columns of Pb′. A successive-
cancellation-like algorithm can thus be considered: given y =
(y1, y2, y3) in C36, y1 is first decoded in S as t1, y2 − t1
is then decoded in T as t2, and y3 − t2 − λt1 is decoded
in 2S as t3. In [31], this successive-cancellation algorithm
is proposed, with several candidates for t1 which are obtained
via sphere decoding with a given radius r. Among all resulting
approximations, the closest to y is kept. It is proved in [31],
that the lattice point x̂ outputted by the algorithm using a
decoding radius r = R(S), the covering radius of S, has an
approximation factor ||y− x̂|| ≤

√
7||y− xopt||. Additionally,

this algorithm is guaranteed to output the closest point xopt ∈
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Γ(2S, T2ω, T, 3) to y if d(y, xopt) ≤ R(S), where R(S) is
unfortunately smaller by a factor

√
2 than the packing radius

ρ(N72).

B. New decoders for Γ(2S, T2ω, T, 3)

We first adapt Algorithm 5 to Γ(2S, T2ω, T, 3) by choosing
the decoders for T and V = 2S as BDDs. We name it
Algorithm 5’.

Theorem 9. Let Γ(2S, T2ω, T, 3) and y be respectively a
lattice and a point in R3n. If d(y,Γ(2S, T2ω, T, 3)) <
ρ2(Γ(2S, T2ω, T, 3)), then Algorithm 5’ outputs the closest
lattice point x ∈ Γ(2S, T2ω, T, 3) to y in time

CA.5′ = 6|α|CSBDD. (56)

Proof. We first show that x is the closest lattice point to y.
Assume that, at Steps 1-2, m corresponds to the coset of
the closest lattice point to y. Then, the result follows from
Theorem 1 since Algorithm 5’ is a special case of Algorithm 2
used α times.
Regarding the complexity, we use Equation (29) with k = 3
and where CSBDD = C2S

BDD.

It is insightful to compare Algorithm 5’ to trellis decod-
ing. The complexity is reduced from ≈ |α||β|2CSCV P to
≈ |α|CSBDD (but where trellis decoding is optimal unlike
Algorithm 5’).

We name Algorithm 3” the list-decoding version of Algo-
rithm 5’: It consists in repeating |α| times (once for each
coset of Γ(2S, β, 3)P ) Algorithm 3, with k=3, using the first
splitting strategy and the second splitting strategy (i.e. the
function SubR2). We use Lemma 2 to get the following
theorem.

Theorem 10. Let Γ(2S, T2ω, T, 3) and y be respectively a
lattice and a point in R3n. Algorithm 3” outputs the set
Γ(2S, T2ω, T, 3) ∩Bδ(y) in worst-case time

CA.3′′(δ) = |α|
[
3CT∩Bδ(y) + 6l(T, δ)l(T,

δ

2
)CV ∩B 2

3
δ
(y)+

6l(T,
2

3
δ)l(T,

δ

3
)CV ∩Bδ(y)

]
.

(57)

Corollary 2. Let Λ24 = Γ(2S, T2ω, T, 3) (constructed as in
Lemma 3). Algorithm 3” with a decoding radius r = d(T ) =
d(E8), i.e. δ = d(E8)/d(Λ24) = 1/2, solves the CVP for Λ24
with worst-case complexity

CA.3′(δ =
1

2
) =|α|

[
3CT∩Bδ(y) + 6[2n2CE8∩B 1

3
(y) + 3CE8∩B 1

2
(y)]
]
,

/24 · 6 · 2 · 8 · 2 · CE8∩B 1
2

(y) ≈ 211CE8∩B 1
2

(y).

(58)

Proof. If S ∼= E8, d(T ) = R2(Γ(2S, T2ω, T, 3)) (the covering
radius).

To the best of our knowledge, the covering radius of N72

appears nowhere in the literature. However, Gabriele Nebe
showed in a private communication that it is greater than√

2ρ(N72). The proof is available in Appendix IX-F. As a
result, Algorithm 3” with δ = 1/2 is not optimal for N72. The
algorithm should be used with greater δ to ensure optimality.

C. Decoding Λ24 and N72 on the Gaussian channel

The analysis is similar to the one performed for BW
lattices in Section V-D4. We will therefore be brief on the
explanations.

The sphere lower bound for PΛ
e (opt, n, σ2) = 10−4 in

dimension 72 yields a distance to Poltyrev limit of 2.1 dB.
The MLD performance of Λ24 for this error probability is 3.3
dB. Regarding the relative radius to ensure P (x /∈ T δ) =
P (||w||2 > r) / 10−4 with regular list decoding, we find
with Equation (34) δ∗ ≈ 0.57 for N72 and δ∗ ≈ 0.41 for Λ24.

An important observation (also made at the end of Ex-
ample 1) when computing the performance of the mod-
ified list decoders on the Gaussian channel is the fol-
lowing. Let T ∈ Rn. For Λ24 and N72 constructed as
Γ(2S, T2ω, T, 3), we have (see e.g. the proof of Theorem 3)
vol(Γ(2S, T2ω, T, 3))

2
3n = vol(T )

2
n , whereas for the parity

lattices, we have vol(Lkn)
2

3n = 2
1
k vol(T )

2
n . This means

that the equivalent VNR ∆ is the same when decoding in
Γ(2S, T2ω, T, 3) and in T . This will be taken into account in
the next formulas to estimate δ∗.
Decoding Λ24.
Considering the list-decoding version of Algorithm 5’ (without
the splitting strategy), (38) becomes (see the proof of Theo-
rem 6)

U24(δ,∆) = min{3U8(δ,∆)2 + 3U8(δ, 2∆)(1− U8(δ,∆))2, 1}.
(59)

Assume that δ∗ ≤ 1
4 with this algorithm. If this holds,

T, V ∼= E8 can be decoded with the recursive BDD discussed
in Section V-D (since E8

∼= BW8). Hence, U8( 1
4 ,∆) =

Pe(BDD,∆) is given by the curve n = 8 in Figure 4. With
(59), for ∆ = 3.3 dB we find U24(δ = δ∗,∆) ≤ 10−4,
which confirms that δ∗ < 1/4. As a result, we can use
Algorithm 5’ for quasi-MLD decoding of Λ24. The complexity
of Algorithm 5’ is

CΛ24
QMLD =CA.5′(Λ24, δ = δ∗) = 24(3C(E8) + 3C(RE8)),

=96C(E8).
(60)

Decoding N72.
Regarding N72, with the first decoder we have (similar to (59))

U72(δ,∆) = min{3U24(δ,∆)2 + 3U24(δ, 2∆)(1− U24(δ,∆))2, 1}.
(61)

Consider a MLD decoder for Λ24 such that U24(δ,∆) =
PΛ24
e (opt,∆). Then, when ∆ > 1, U72(δ,∆) ≈

3(PΛ24
e (opt,∆))2. The performance of this decoder for N72 is

shown by the curve U72(∆) on Figure 2 in Example 1. Unlike
for the parity lattices, the curve for PΛ24

e (opt,∆) should not be
shifted to the right before squaring, as explained in Example 1.
We easily see that this decoder is powerful enough to get quasi-
MLD performance for N72. The complexity is then

CN72
QMLD =212 · [3CΛ24

MLD + 3CΛ24
MLD] = 212 · 6 · CΛ24

MLD. (62)

The curve of quasi-optimal performance of N72 on the
Gaussian channel is depicted in Figure 6. The figure also
shows the performance of L3·24 (discussed in Section V-C).
The performance of N72 is at a distance of 2.6 dB only from
Poltyrev limit at around 10−5 of error per point.
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Fig. 6: Performance of N72 and L3·24 on the Gaussian
channel. The union bound is computed from the two first
lattice shells of N72. The curves for Λ24 are also provided
for comparison.
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Fig. 7: Performance of different lattices for normalized error
probability Pe = 10−5.

VII. LATTICE DECODING BENCHMARK

We compare the performance of lattices and decoders shown
in the previous sections to existing schemes in the literature at
Pe = 10−5. For fair comparison at different dimensions, we
let Pe be either the symbol-error probability or the normalized
error probability, which is equal to the point-error probability
divided by the dimension (as done in e.g. [41]). This approach
enables to compare studies where the symbol-error probability
is reported with studies where the point-error probability is
reported.
First, several constructions have been proposed for block
lengths around n = 100 in the literature. In [30] a two-level
construction based on BCH codes with n = 128 achieves
this error probability at 2.4 dB. The decoding involves an
OSD of order 4 with 1505883 candidates. In [1] the multilevel

(non-lattice packing) S127 (n = 127) has similar performance
but with much lower decoding complexity via generalized
minimum distance decoding. In [38] a turbo lattice with
n = 102 and in [40] a LDLC with n = 100 achieve the error
probability with iterative methods at respectively 2.75 dB, and
3.7 dB (unsurprisingly, these two schemes are efficient for
larger block-lengths). All these schemes are outperformed by
BW64, the 3-parity-Leech lattices, and N72, where Pe = 10−5

is reached at respectively 2.3 dB, 2.02 dB and 1.85 dB.
Moreover, BW128 has Pe = 10−5 at 1.7 dB, which is similar
to many schemes with block length n = 1000 such as the
LDLC (1.5 dB) [40], the turbo lattice (1.2 dB) [38], the polar
lattice with n = 1024 (1.45 dB) [47], and the LDA lattice
(1.27 dB) [14]. This benchmark is summarized on Figure 7.

VIII. CONCLUSIONS

In this paper, we present a unified framework for building
lattices. It relies on a simple parity check, which can be applied
recursively and combined to repetition coding. Famous lattices
such as the Leech lattice in 24 dimensions, Nebe’s extremal
lattice in 72 dimensions, and Barnes-Wall lattices are obtained
in this framework. A new decoding paradigm is established
from this construction by taking into account the coset par-
ity constraint. The paradigm leads to new bounded-distance
decoders, list decoders, and quasi-optimal decoders on the
Gaussian channel in terms of probability of error per lattice
point. Quasi-optimal performance for BW64, N72, and BW128

are shown to be achievable at reasonable complexity. A new
parity lattice L3·24 is also considered. It offers an excellent
performance-complexity trade-off. The elegant single parity-
check construction and its associated decoders are promising
for the study of lattices in moderate and large dimensions.

IX. APPENDIX

A. Proof of Theorem 3

The following proof is not new, but it enables to make a
clear link between the k-ing construction and Λ24 using our
notations.

Proof. We let E8 be scaled such that d(E8) = 2 and
vol(E8) = 1. This version of the Gosset lattice is even. Then,
S = 1√

2
E8 has d(S) = 1, vol(S) = 2−4 and vol(T ) =

vol(T2θ) = 1, d(T ) = d(T2θ) = 2. Also, |α| = |β| = 24

from (7).
Let x = (a, b, c) ∈ Γ(2S, T2ω, T, 3). Firstly, using Theorem 2,
we have d(Γ(2S, T2ω, T, 3)) ≥ 3. Then, assume that a = m+
t1 and b = m+ t2 (with the notations of (13)) have both odd
squared norms. This is equivalent to having the scalar products
〈m, t1〉 = ν

2 and 〈m, t2〉 = ν′

2 , where ν and ν′ are integers.
Therefore, 〈m, t1 + t2〉 is integer and c = m + t1 + t2 has
an even squared norm. We just proved that Γ(2S, T2ω, T, 3) is
even. This implies that d(Γ(2S, T2ω, T, 3)) = 4.
The last step aims at proving that Γ(2S, T2ω, T, 3) has a
unit volume. Γ(2S, T2ω, T, 3) is obtained as the union of
|α||β|2 = 212 cosets of (2S)3. Hence, vol(Γ(2S, T2ω, T, 3)) =
vol((2S)3)/212 = 1.
Finally, Λ24 is the unique lattice in dimension 24 with funda-
mental coding gain equal to 4.
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B. Proof of Theorem 6
Equation (39) can be generalized as

P (x /∈ T ) ≤

(
k

2

)
P (xj /∈ Tj)2+

kP (xi − (−
∑
j 6=i

xj) /∈ Vi)(1− P (xj /∈ Tj))k−1.

(63)

This idea can be recursively applied if we remove Step 14
at each recursion. Let Un(r, σ2) denote an upper-bound of
P (x /∈ T ). We have a recursion of the form

Un(r, σ2) =

(
k

2

)
Un
k

(
r

2
, σ2)2 + k · Un

k
(r, σ2)(1− Un

k
(
r

2
, σ2))k−1,

(64)

where we set Un(r, σ2) = 1 if the right-hand term is greater
than 1.

Note that vol(Ln
k

)
2
n/k = vol(Ln)

2
n /2

1
k , indeed:

vol(Lkn)
2
kn =

(
vol(θLn)k

|β|k−1

) 2
kn

=

(
(vol(Ln) · 2

n
2 )k

2(n
2

)(k−1)

) 2
kn

,

= vol(Ln)
2
n · 2

1
k .

(65)

Moreover, we also have d(Γ(V, β, k)P) = d(V ) = 2d(T ).
Hence, if we express the recursion as a function of the VNR

∆ =
vol(Ln

k
)

2
n/k

2πeσ2 and the relative radius δ, we get:

Un(δ,∆) =

(
k

2

)
Un
k

(δ,
∆

2
1
k

)2+

kUn
k

(δ, 2
k−1
k ∆)(1− Un

k
(δ,

∆

2
1
k

))k−1.

(66)

With the first splitting strategy (but not the second splitting
strategy) the error probability is bounded from above as

P (n, σ2, x /∈ T ) ≤

(
k

2

)
P (xi /∈ T δ)2+

k
[
P (xj /∈ T

2
3
δ, xj ∈ T δ)k−1P (xi − (−

∑
j 6=i

xj) /∈ V2/3δ
i )

+ P (xi − (−
∑
j 6=i

xj) /∈ Vδi ))P (xj ∈ T
2
3
δ)k−1

]
,

(67)

where

P (xj /∈ T
2
3
δ, xj ∈ T δ) =(1− P (xj ∈ T

2
3
δ)

P (xj ∈ T δ)
)P (xj ∈ T δ),

=P (xj ∈ T δ)− P (xj ∈ T
2
3
δ).

(68)

C. Proof of Lemma 5

Proof. The proof is similar to that of Theorem 3.3 in [35].
The vectors of squared norm 8 in Γ(V, T, 3)P have only the
following possible forms.

1) (a, 0, 0), a ∈ V and ||a||2 = 8. The number of such
vectors (counting the combinations) is 196560·3 vectors,
i.e. the minimal vectors in V 3.

2) (n1, n2, 0), n1, n2 ∈ T, n1 + n2 ∈ V and ||n1||2 =
||n2||2 = 4. The number of such vectors (counting

the combinations) is 196560 · 48 · 3. There are 196560
possibilities for n1. Given n1 how many choices are
they for n2? This is equivalent to asking the number
of squared norm 8 vectors in the coset m + V , which
are therefore congruent mod V . It is well-known (see
Theorem 2 in [10, Chap.12]) that this number is 48,
24 mutually orthogonal pairs of vectors (one can check
that |T/V | = 212 ·48 = 196560, the number of minimal
vectors of Λ24). Hence, there are 48 choices for n2.
Finally, the factor 3 comes from the combinations.

D. Proof of Theorem 7

To lighten the notations, we write l(δ) for l(n/2, δ) and
C(δ) for C(n/2, δ).
• If δ < 3

8 , the decoder of [22], whose complexity is given
by (48), yields O(n2).
• If 3

8 ≤ δ < 1
2 , the decoder of [22], whose complexity is

given by (48), yields O(n2).
• If δ = 3

4 − ε, 0 < ε ≤ 1/4: Then, 2
3δ <

1
2 , δ

2 <
3
8 , δ

3 <
1
4 .

We have l( 2
3δ) = l( δ2 ) = O(1), l( δ3 ) = 1. We get

C(n, δ) =[2l(
2

3
δ) + 2]C(δ) + l(δ)O(n2),

=l(δ)O(n2) ·
log2 n∑
i=0

(
2l( 2

3
δ) + 2

4

)i
,

=l(δ)O(n2+log2[
l( 2

3
δ)+1

2
]) = l(δ)O(n1+log2[b 3

4ε
c+1]).

Consequently, if δ = 1
2 , l(δ) ≤ 2n and ε = 1

4 . Then
C(n, δ) = O(n4). If δ > 1

2 , we have l(δ) = O(nlog2 4b 3
4ε c).

Then, C(n, δ) = O(n1+log2 4b 3
4ε c

2

), where we assumed that
3
4ε >> 1.
• If δ = 3

4 : See Appendix F in [11] (long version on arXiv).
• If δ = 1 − ε, 0 < ε < 1

4 : See Appendix F in [11] (long
version on arXiv).

E. Proof of Theorem 8

The result on the complexity is obtained by adapting (49),
(50), and the complexity formulas in Theorem 7.

For 3/8 < δ ≤ 9/16, we use the fact Ey[l′(n2 ,
3
8 , y)] ≥

Ey[l′(n4 ,
3
8 , y)] ≥ ....

Ey[l′(n, δ, y)] ≤2
[
Ey[l′(

3

8
, y)]l(δ) + l(δ)Ey[l(

3

8
, y)]],

≤4Ey[l′(
3

8
, y)]l(δ) = O(nlog2(4Ey [l′( 3

8
,y)])),

=O(n2+log2 Ey [l′( 3
8
,y)]).

(69)

F. A proof that R(N72) >
√

2ρ(N72)

Lemma 7. R(N72) >
√

2ρ(N72).

The proof of this lemma is due to Gabriele Nebe (private
communication).

Proof. Let N72 be scaled such that ρ(N72) =
√

2.
The proof is done by contradiction. Assume that
R(N72) =

√
2ρ(N72) = 2. Then, for any point

1/2v ∈ 1/2N72, there is a point x ∈ N72 with



17

||x − 1/2v|| ≤ 2. Squaring leads to ||2x − v||2 ≤ 16.
So each of the 272 cosets of 2N72 in N72 has to contain a
point w = 2x− v of squared norm smaller or equal to 16.

Now N72 has exactly 107502190683149087281 pairs ±w
of squared norm ≤ 16 (obtained from the theta series of N72).
This number is smaller than |N72/2N72|. Hence the covering
radius of N72 is strictly larger than 2.
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