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Abstract—We consider a cooperative X-channel with K trans-
mitters (TXs) and K receivers (Rxs) where Txs and Rxs are
gathered into groups of size r respectively. Txs belonging to the
same group cooperate to jointly transmit a message to each of the
K− r Rxs in all other groups, and each Rx individually decodes
all its intended messages. By introducing a new interference
alignment (IA) scheme, we prove that when K/r is an integer
the Sum Degrees of Freedom (Sum-DoF) of this channel is lower
bounded by 2r if K/r ∈ {2, 3} and by K(K−r)−r2

2K−3r
if K/r ≥ 4. We

also prove that the Sum-DoF is upper bounded by K(K−r)
2K−3r

. The
proposed IA scheme finds application in a wireless distributed
MapReduce framework, where it improves the normalized data
delivery time (NDT) compared to the state of the art.

Index Terms—wireless distributed computing, interference
alignment, cooperative MIMO

I. INTRODUCTION

Identifying the capacity region of a multi-user channel
with interference is generally a difficult task. One way to
provide insights on the capacity region is to resort to the
Sum Degrees of Freedom (Sum-DoF) of the channel, which
characterizes the pre-log approximation of the sum-capacity
in the asymptotic regime of infinite Signal-to-Noise Ratios
(SNR) [1], i.e., when the network operates in the interference-
limited regime. The study of the Sum-DoF of interference
channels (IC) and X-channels (where each Tx sends a message
to each Rx) with and without cooperation has a rich history,
see e.g., [2]–[12]. In particular, it has been shown that the
Sum-DoF of a fully-connected K-user IC without cooperation
is K/2 when the channel coefficients are independent and
identically distributed (i.i.d.) fading according to a continuous
distribution [6] and the Sum-DoF of the corresponding X-
channel is K2/(2K − 1). Both these Sum-DoFs are achieved
with interference alignment (IA) [9].

In this paper, we study the Sum-DoF of the partially-
connected X-channel in Fig. 1. Txs/Rxs are gathered into
groups of r > 0 consecutive Txs/Rxs, and each Rx observes a
linear combination of all Tx-signals in Gaussian noise, except
for the signals sent by its corresponding Tx-group. Txs in the
same group cooperate to jointly transmit a message to each Rx
in all other groups, while Rxs decode their intended messages
independently of each other.

We adapt the IA schemes in [7], [8] to this network model,
where we exploit the partial connectivity of the network to
reduce the number of precoding matrices and thus the number

Fig. 1. The cooperative X-channel model for K = 6, r = 2

of interference spaces. Our proposed scheme achieves Sum-
DoF (K(K − r) − r2)/(2K − 3r) whenever the ratio of K
by r is an integer larger than 3. A naive application of the
schemes in [7], [8] (without reduction of the number of
precoding matrices) would have resulted in the smaller Sum-
DoF (K(K−r))/(2K−2r). Our new lower bound also improves
over the K/2 lower bound in [9, Theorem 2] which was
reported for the special case r = 1. In this paper we further
show a Sum-DoF upper bound of K(K− r)/(2K− 3r).

The motivation for studying our particular X-channel stems
from an application in MapReduce distributed computing
(DC). MapReduce is a popular framework to carry out heavy
computation tasks and runs in three phases [13], [14]. In the
first map phase, nodes calculate intermediate values (IVA)
from their associated input files. In the subsequent shuffle
phase, nodes exchange these IVAs to obtain all IVAs required
to run the final reduce phase where they compute the desired
output function. The largest part of the execution time in
MapReduce systems stems from the IVA delivery time during
the shuffle phase. Several works proposed to reduce this
delivery time through smart coding. More specifically, in wired
networks, delivery time is decreased by sending appropriate
linear combinations of the IVAs [15]–[17], over wireless
cellular networks [18], [19] a similar effect is achieved through
simple interference cancellation at the receiving nodes, and
over wireless interference networks a gain was achieved by
zero-forcing [20]. In this paper, we show further improvement
in wireless interference networks using a novel IA scheme.

Notations: We use sans serif font for constants, bold for
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vectors and matrices, and calligraphic font for most sets. The
sets of complex numbers and positive integers are denoted
C and Z+. For a finite set A, let |A| denote its cardinality.
For any n ∈ Z+, define [n] ≜ {1, 2, . . . , n} and let Idn be
the n × n identity matrix. Let further 0 denote the all-zero
matrix and 1 the all-one vector, where the dimensions will be
clear from the context. For any vector v, let diag(v) be the
diagonal matrix with diagonal entries given by the elements
of the vector v. When writing [vi : i ∈ S] or [vi]i∈S we mean
the matrix consisting of the set of columns {vi}i∈S . For two
matrices A and B, we use A⊗B to denote their Kronecker
product.

II. CHANNEL MODEL

Consider an interference network with K Txs and K Rxs
labeled from 1 to K. For a given group-size r ≥ 1, where K
is assumed divisible by r, we define the group of Txs/Rxs

Tk ≜ {(k − 1)r + 1, . . . , kr}, k ∈ [K̃], (1)

where K̃ ≜ K/r.
In our network model, each Rx p in Rx-group Tj observes

a linear combination of the signals sent by all Txs outside Tx-
group Tj , corrupted by Gaussian noise. Denoting Tx q’s slot-t
input by Xq(t) ∈ C and Rx p’s slot-t output by Yp(t) ∈ C,
the input-output relation of the network is:

Yp(t) =
∑

q∈[K]\Tj

Hp,q(t)Xq(t) + Zp(t), p ∈ Tj , (2)

where the sequences of complex-valued channel coefficients
{Hp,q(t)} and standard circularly symmetric Gaussian noises
{Zp(t)} are both i.i.d. and independent of each other and
of all other channel coefficients and noises. The real and
imaginary parts of a coefficient Hp,q(t) are i.i.d. according
to a given continuous distribution on some bounded interval
[−Hmax,Hmax] and are known by all terminals even before
communication starts.

We consider a scenario where all Txs in Tx-group Tk
cooperatively transmit an individual message ap,k to each
Rx p ∈ [K]\Tk outside Rx-group k. When communication
is of blocklength T, this message is uniformly distributed
over

[
2TRp,k

]
, where Rp,k ≥ 0 denotes the rate of transmis-

sion, and it is independent of all other messages and of all
channel coefficients and noise sequences. As a consequence,
Tx q ∈ [K] produces its block of channel inputs X

(T)
q ≜

(Xq(1), . . . , Xq(T)) as

X(T)
q = f (T)q

({
ap,k : k =

⌈q
r

⌉
, p ∈ [K]\Tk

})
(3)

by means of an encoding function f (T)q on appropriate domains
and so that the inputs satisfy the block-power constraint

1

T

T∑
t=1

E
[
|Xq(t)|2

]
≤ P, q ∈ [K]. (4)

Given a power P > 0, the capacity region C(P) is defined
as the set of all rate tuples (Rp,k : k ∈ [K̃], p ∈ [K]\Tk)
so that for each blocklength T there exist encoding functions

{f (T)q }q∈[K] as described above and decoding functions {g(T)p,k}
on appropriate domains producing the estimates

âp,k = g
(T)
p,k (Yp(1), . . . , Yp(T)), k ∈ [K̃], p ∈ [K]\Tk, (5)

in a way that the sequence of error probabilities

p(T)(error) ≜ Pr
[ ⋃
k∈[K̃]

⋃
p∈[K]\Tk

âp,k ̸= ap,k

]
(6)

tends to 0 as the blocklength T → ∞.
Our main interest is in the Sum-DoF:

Sum-DoF ≜ lim
P→∞

sup
R∈C(P)

∑
k∈[K̃]

∑
p∈[K]\Tk

Rp,k

logP
. (7)

III. MAIN RESULTS

The main results of this paper are new upper and lower
bounds on the Sum-DoF of the network described in the pre-
vious Section II. We restrict attention to K/r > 1, because for
r = K the Rxs only observe noise and trivially Sum-DoF = 0.

Theorem 1. When K/r is an integer strictly larger than 1, the
Sum-DoF of the network in Section II is lower bounded as:

Sum-DoF ≥ Sum-DoFLb ≜

{
2r if K/r ∈ {2, 3},
K(K−r)−r2

2K−3r if K/r ≥ 4,
(8)

and upper bounded as:

Sum-DoF ≤ K(K− r)

2K− 3r
. (9)

Proof: See Section V for the proof of the lower bound
and [21, Appendix A] for the proof of the upper bound.

For K/r ∈ {2, 3} the bounds (8) and (9) match and yield:

Corollary 1. For K/r ∈ {2, 3}, we have Sum-DoF = 2r.

For r = 1, our lower bound (8) improves over the lower
bound Sum-DoF ≥ K/2 reported in [9] for all values of K.

Remark 1. By the symmetry of the setup and standard time-
sharing arguments, the bound in (8) implies the following
bound on the Per-Message DoF (PMDoF)

PMDoF ≜ lim
P→∞

sup
R∈C(P)

min
k∈[K̃]

p∈[K]\Tk

Rp,k

logP
≥ Sum-DoFLb

K(K/r − 1)
. (10)

IV. APPLICATION TO WIRELESS DISTRIBUTED COMPUTING

A. The MapReduce System

Consider a distributed computing (DC) system with K
nodes labelled 1, . . . ,K; N input files W1, . . . ,WN; and Q
output functions h1, . . . , hQ mapping the input files to the
desired computations. A Map-Reduce System decomposes the
functions h1, . . . , hQ as

hq(W1, . . . ,WN) = ϕq(aq,1, . . . , aq,N), q ∈ [Q], (11)

where ϕq is an appropriate reduce function and aq,i is an
intermediate value (IVA) calculated from input file Wi through
an appropriate map function:

aq,i = ψq,i(Wi), i ∈ [N]. (12)
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For simplicity, all IVAs are assumed independent and consist-
ing of A i.i.d. bits.

Computations are performed in 3 phases:
Map phase: A subset of all input files Mp ⊆ [N] is assigned

to each node p ∈ [K]. Node p computes all IVAs {aq,i : i ∈
Mp, q ∈ [Q]} associated with these input files.

Shuffle phase: Computations of the Q output functions is
assigned to the K nodes, where we denote by Qp ⊆ [Q] the
output functions assigned to node p.

The K nodes in the system communicate over T uses of a
wireless network in a full-duplex mode, where T is a design
parameter. During this communication, nodes communicate
IVAs that they calculated in the Map phase to nodes that
are missing these IVAs for the computations of their assigned
output functions. So, node p ∈ [K] produces complex channel
inputs of the form

X(T)
p ≜ (Xp(1), . . . , Xp(T)) = f (T)p

(
{a1,i, . . . , aQ,i}i∈Mp

)
,

(13)
by means of appropriate encoding function f

(T)
p satisfying

the power constraint (4). Given the full-duplex nature of the
network, Node p also observes the complex channel outputs

Yp(t) =
∑
ℓ∈[K]

Hp,ℓ(t)Xℓ(t) + Zp(t), t ∈ [T], (14)

where noises {Zp(t)} and channel coefficients {Hp,ℓ(t)} are
as defined in Section II.

Based on its outputs Y (T)
p ≜ (Yp(1), . . . , Yp(T)) and the

IVAs {aq,i : i ∈ Mp, q ∈ [Q]} it computed during the
Map phase, Node p decodes the missing IVAs {aq,i : i /∈
Mp, q ∈ Qp} required to compute its assigned output func-
tions {hq}q∈Qp

as:

âq,i = g
(T)
q,i

(
{a1,i, . . . , aQ,i}i∈Mp

, Y (T)
p

)
, i /∈ Mp, q ∈ Qp.

(15)
Reduce phase: Each node applies the reduce functions

to the appropriate IVAs calculated during the Map phase or
decoded in the Shuffle phase.

The performance of the distributed computing system is
measured in terms of its computation load

r ≜
∑
p∈[K]

|Mp|
N

, (16)

and the normalized delivery time (NDT)

∆ = lim
P→∞

lim
A→∞

T

A · Q · N
· logP. (17)

We focus on the fundamental NDT-computation tradeoff
∆∗(r), which is defined as the infimum over all values of
∆ satisfying (17) for some choice of file assignments {Mp},
transmission time T, and encoding and decoding functions
{f (T)p } and {g(T)q,i } in (13) and (15), all depending on A so
that the probability IVA decoding error

Pr
[ ⋃
p∈[K]

⋃
q∈Qp

⋃
i/∈Mp

âq,i ̸= aq,i

]
→ 0 as A → ∞. (18)

B. Results on Normalized Delivery Time

Theorem 2. Assume N and Q are both multiples of K. If N is
large enough, the fundamental NDT-computation tradeoff of
the full-duplex wireless DC system is upper bounded as

∆∗(r) ≤

lowc
(
(K, 0) ∪

{(
r,

1− r/K

Sum-DoFLb

)
: 1 ≤ r < K and r|K

})
, (19)

where lowc(·) denotes the lower-convex envelope, Sum-DoFLb
is defined in Eq. (8), and r|K indicates that r divides K.

Proof: We prove the result for integer values of r ∈ [K]
that divide K. The final result follows by time- and memory-
sharing arguments when N is sufficiently large.

We reuse the group definition in Tk in (1).
Map phase: Choose the same file assignment for all nodes

in group Tk:

Mp = M̃k ≜

{
(k − 1)

rN

K
+ 1, . . . , k

rN

K

}
,

p ∈ Tk, k ∈ [K̃], (20)

This file assignment satisfies the communication load r in (16).
Shuffle phase: We assume the output function assignment

is given as:

Qp ≜ {(p− 1)Q/K+ 1, . . . , pQ/K}, p ∈ [K]. (21)

The shuffle phase is split into rounds, where in each round,
each group of nodes Tk communicates a different IVA aν,i to
each node ℓ ∈ [K]\Tk, for chosen ν ∈ Qℓ and i ∈ M̃k. To
send all missing IVAs, Φ ≜ |Q1| · |M̃1| = (Q/K) · (Nr/K)
rounds are necessary.

Choose a blocklength T′ and each node chooses an en-
coding function {f (T

′)
p }T ′ achieving symmetric rates (Rp,k =

R(P), k ∈ [K̃], p ∈ [K]\Tk) according to the setup of Section II
to encode the IVAs transmitted in a round. The rate R(P)
satisfies limP→∞

R(P)
log P = Sum-DoFLb

K(K/r−1) and T′ is chosen such that

A

T′ < R(P). (22)

Since all nodes in a group Tk compute the same IVAs in the
Map phase, they can compute each others’ inputs. With its
channel outputs in a round, each Node p ∈ Tk thus forms:

Ỹp(t) ≜ Yp(t)−
∑
ℓ∈Tk

Hp,ℓ(t)Xℓ(t), p ∈ Tk, t ∈ [T′], (23)

and it applies the decoding functions {g(T
′)

p,k : k ∈ [K̃]\⌈p/r⌉}
corresponding to {f (T

′)
p } to the sequence Ỹp(1), . . . , Ỹp(T

′)
to reconstruct the IVAs sent to it in this round.

Analysis: By our choice of the coding scheme and (22), the
probability of error in (18) tends to 0 as T′ → ∞. By (10),
(22) and since the total length of the shuffle phase is T ≜ ΦT′,
the NDT of our scheme is:

lim
P→∞

lim
A→∞

T logP

A · Q · N
= lim

P→∞
lim

A→∞

ΦT′ logP

A · Q · N
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≥ lim
P→∞

r

K2

logP

R(P)
=

1− r
K

Sum-DoFLb
.(24)

This proves the desired achievability result.
The one-shot scheme in [20], which applies zero-forcing

and side information cancellation, achieves the upper bound

∆∗(r) ≤ lowc
({(

r,
1− r/K

min(K, 2r)

)
: 1 ≤ r ≤ K

})
. (25)

For fixed K and for r a value that divides K but neither equals
K/2 nor K/3, our new upper bound in (19) is strictly better
(lower) than the upper bound in (25). If K is even, the two
bounds coincide on the interval r ∈ [K/2,K], where they are
given by the straight line (1 − r/K)/K. If K is a multiple of
3, the two bounds also coincide for r = K/3, where they are
given by (1− r/K)/r. For other values of r, the bound in (25)
can be smaller. An improved upper bound on ∆∗(r) is thus
obtained by combining the two upper bounds, which results
in the lower-convex envelope of the union of the sets in (19)
and (25).

In Fig. 2, we numerically compare the bounds in (19) and
(25) for K = 12. We observe that on the interval r ∈ [0, 4] the
bound in (19) performs better and on the interval r ∈ [4, 6]
the bound (25) performs better because (19) is simply given
by a straight line as r = 5 does not divide 12. On the interval
r ∈ [6, 12] both bounds perform equally-well as explained in
the previous paragraph.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Computation Load (r)

N
D

T
∆

∗ (
r)

One-shot scheme of *
IA scheme (Theorem)

Fig. 2. Upper bounds on ∆∗(r) for the one-shot scheme in * and our IA
scheme when K = 12.

V. PROOF OF THE Sum-DoF LOWER BOUND IN THEOREM 1

For K̃ ∈ {2, 3} the proof follows easily by ignoring all Txs,
Rxs, and messages outside groups T1 and T2. For details see
[21, Section V.A]. We thus focus on the case K̃ = 4.

1) Coding Scheme: We fix a parameter η ∈ Z+, define

Γ ≜ K · (K− 2) · r2, (26)

and choose T = ηΓ(K̃−2)+(η+1)Γ(K̃−1). Each message
{ap,k} for k ∈ [K̃], p ∈ [K]\Tk—but not messages {ap,K̃}p∈T1

which are not transmitted in our coding scheme—is encoded
using a circularly symmetric Gaussian codebook of average

power P/(K − r) and codeword length ηΓ. Each codeword
is sent over a block of T consecutive channel uses. More
precisely, let {bp,k} be the ηΓ-length codeword for message
ap,k. For j ∈ [K̃], k ∈ [K̃]\{j} and (j, k) ̸= (1, K̃) define
b̃j,k ≜

(
bT
(j−1)r+1,k,b

T
(j−1)r+2,k, · · · ,b

T
j·r,k

)T
where the su-

perscript T stands for the transpose operator. Form also the T-
length vector of channel inputs Xq ≜ (Xq(1), . . . , Xq(T))

T

for each Tx q, and X̃(k) ≜
(
XT

(k−1)r+1, · · · ,X
T
kr

)T
for each

Tx-group k. Tx-groups form their inputs as:

X̃(1) =

K̃∑
i=2

Ṽ(i,1)Ũib̃i,1, (27)

X̃(k) =
∑

i∈[K̃]\{1,k}

Ṽ(i,k)Ũib̃i,k + Ṽ(1,k)Ũkb̃1,k,

k ∈ [K̃− 1]\{1}, (28)

X̃(K̃) =
∑

i={2,...,K̃−1}

Ṽ(i,K̃)Ũib̃i,K̃, (29)

where
Ũi ≜ Idr ⊗Ui, i ∈ {2, 3, · · · , K̃}, (30)

and matrices {Ui} and {V(i,k)} are described shortly.
Notice that for i ∈ {2, 3, · · · , K̃}, messages {ãi,k}k∈[K̃]\{i}

and ã1,i are multiplied by the same precoding matrix Ũi.
2) Zero-forcing Matrices {Ṽ(i,k)}: For each i, k ∈ [K̃] with

i ̸= k, construct the T×T diagonal matrices S(i,k)
1 , · · · ,S(i,k)

r

by picking the real and imaginary parts of all non-zero
entries i.i.d. according to a continuous distribution over
[−Hmax,Hmax] and form the diagonal matrix

S(i,k) ≜ diag
(
S
(i,k)
1 , . . . ,S

(i,k)

r

)
. (31)

Define the rT × rT channel matrix from Tx-group k to Rx-
group j:

H̃(j,k) ≜

H(j−1)·r+1,(k−1)·r+1 · · · H(j−1)·r+1,k·r
...

...
Hj·r,(k−1)·r+1 · · · Hj·r,k·r


(32)

where Hp,q ≜ diag([Hp,q(1), Hp,q(2), . . . ,Hp,q(T)]).
Choose the precoding matrices as:1

Ṽ(i,k) =
(
H̃(i,k)

)−1

S(i,k), i, k ∈ [K̃], i ̸= k, (33)

so that all information sent to any Rx in group Tj is zero-
forced at all other Rxs in the same group Tj . Defining for
each triple (i, j, k) ∈ [K̃]3 with i ̸= j, j ̸= k, k ̸= i the
“generalized” channel matrix

G̃
(i,k)
j =


G

((i−1)·r+1,k)
(j−1)·r+1 · · · G

(i·r,k)
(j−1)·r+1

...
...

G
((i−1)·r+1,k)
j·r · · · G(j·r)

i·r,k

 (34)

≜ H̃(j,k) · Ṽ(i,k) = H̃(j,k)
(
H̃(i,k)

)−1

S(i,k), (35)

1We assume that all matrices {H̃(i,k)} are invertible, which happens with
probability 1. Otherwise, Txs and Rxs immediately declare an error in the
communication.
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allows to write the signals at the various Rx-groups as:

Ỹ(1) =

K̃−1∑
k=2

S(1,k)Ũkb̃1,k︸ ︷︷ ︸
desired signal

+

K̃∑
i=2

∑
k/∈{1,i}

G̃
(i,k)
1 Ũib̃i,k + Z̃(1),

(36)

Ỹ(j) =
∑
k ̸=j

S(j,k)Ũjb̃j,k︸ ︷︷ ︸
desired signal

+
∑

i/∈{1,j}

∑
k/∈{i,j}

G̃
(i,k)
j Ũib̃i,k

+
∑

k/∈{1,j,K̃}

G̃
(1,k)
j Ũkb̃1,k + Z̃(j), j ∈ [K̃]\{1}.

(37)

Here Z̃(j) are the corresponding Gaussian noise vectors ob-
served at Rx-group j, for j ∈ [K̃].

3) IA Matrices {Ui}: Inspired by the IA scheme in [6], we
choose each T× ηΓ precoding matrix Ui so that its column-
span includes all power products (with powers from 1 to η)
of the “generalized” channel matrices G

(p,k)
p′ that premultiply

Ui in (36) and (37). That means for i ∈ [K̃]\{1}:

Ui =

[ ∏
G∈Gi

Gαi,G ·Ξi : ∀αi ∈ [η]Γ

]
, (38)

where {Ξi}Ki=2 are i.i.d. random vectors independent of all
channel matrices, noises, and messages, and

Gi ≜
{
G

(p,k)
p′ : p ∈ Ti, k ∈ [K̃]\Ti, p′ ∈ [K]\(Ti ∪ Tk)

}
∪
{
G

(p,i)
p′ : p ∈ T1, p′ ∈ [K]\{Ti ∪ T1}

}
, (39)

and αi ≜ (αi,G : G ∈ Gi).
4) Analysis of Signal-and-Interference Subspaces: Since

the column-span of Ui contains all power products of powers 1
to η of the modified channel matrices G ∈ Gi that premultiply
Ui in (36) and (37), the product of any of these matrices with
Ui is included in the column-space of the T× ηΓ-matrix

Wi =

[ ∏
G∈Gi

Gαi,G ·Ξi : ∀αi ∈ [η + 1]Γ

]
,

for i ∈ [K̃]\{1}, (40)

where notice that |Gi| = Γ. Formally, for each i ∈
{2, 3, · · · , K̃} and G ∈ Gi, we have span(G·Ui) ⊆ span(Wi).
As a consequence, the signal and interference space at a
Rx p ∈ Tj , for j ∈ {2, . . . , K̃}, is represented by the matrix:

Λp ≜
[

Dp,︸︷︷︸
signal space

W2, · · · , Wj−1, Wj+1, · · · , WK̃︸ ︷︷ ︸
interference space

]
. (41)

with the signal subspaces given by the T×(K̃−1)ηΓ-matrices

Dp ≜
[
S
(j,k)
p mod r ·Uj

]
k∈[K̃]\{j}

, p ∈ Tj . (42)

For a Rx p in the first group T1, the signal and interference
spaces are represented by the T× T-matrix:

Λp =
[
Dp,2, · · · , Dp,K̃−1,︸ ︷︷ ︸

signal space

W2, W3, · · · , WK̃︸ ︷︷ ︸
interference space

]
, (43)

where the signal subspace is given by the T× ηΓ-matrices

Dp,k ≜ S(1,k)
p ·Uk, k ∈ {2, ..., K̃− 1}, p ∈ T1.

We shall prove that all matrices {Λp} are of full column
rank. This proves that the desired signals intended for Rx p
can be separated from each other and from the interference
space at this Rx. In the limits η → ∞ (and thus T → ∞) and
P → ∞, this establishes an DoF of limη→∞

(K̃−1)ηΓ

T = K̃−1
2K̃−3

at Rxs p ∈ [K]\T1 and an DoF of K̃−2
2K̃−3

for Rxs p ∈ T1. The
Sum-DoF of the entire system is thus given by Sum-DoFLb,
which establishes the desired achievability result.

Notice that each matrix Λp, for p ∈ [K], is of the form of
the matrix Λ in Lemma 1 at the end of this section. Defining
the matrices {Ûi}, {Ŵi}, {D̂p} and {D̂p,k} in the same way
as {Ui}, {Wi}, {Dp}, and {Dp,k} but with Ξi replaced by
the all-one vector 1, it suffices to show that with probability 1
all square submatrices of the following matrices (which play
the roles of {Bi} when applying Lemma 1) are full rank:

{D̂p}p∈[K̃]\T1
, {Ŵj}K̃j=2,

{[
D̂p,j , Ŵj

]}
p∈T1

j∈{2,...,K̃}
. (44)

For matrix D̂p, p ∈ T2, this proof is provided in [21,
Appendix B]. For the other matrices the proof is similar.

Lemma 1. Consider positive integers n1, n2, · · · , nK̃ sum-
ming to C ≜

∑K̃
i=1 ni ≤ T, and for each i ∈ [K̃] and k ∈ [ni]

a diagonal T × T matrix Bi,k ∈ C so that all square sub-
matrices of the following matrices are full rank:

Bi ≜ [Bi,1 · 1,Bi,2 · 1, · · · ,Bi,ni · 1] , i ∈ [K̃]. (45)

Let {Ξi} be independent T-length vectors with i.i.d. entries
from continuous distributions and define the T× ni-matrices

Ai ≜ [Bi,1 ·Ξi,Bi,2 ·Ξi, · · · ,Bi,ni
·Ξi] , i ∈ [K̃]. (46)

Then, the T × C-matrix Λ ≜
[
A1,A2, · · · ,AK̃

]
has full

column rank with probability 1.

Proof: See [21].

VI. CONCLUSION

We provided new lower and upper bounds on the Sum-DoF
of a particular partially-connected K-user X-channel where
each group of r consecutive Txs cooperates and sends a
message to each Rx outside its group. When K/r ∈ {2, 3}
the bounds coincide and establish the exact Sum-DoF of the
system. The proposed lower bound is used to provide an
improved NDT for wireless distributed Map-Reduce systems.
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