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Recently, there has been a growing interest for mixed categorical meta-models based on
Gaussian process (GP) surrogates. In this setting, several existing approaches use different
strategies. Among the recently developed methods, we could cite: GP models built using
continuous relaxation of the variables, Gower distance based models or GP models derived
from direct estimation of the correlation matrix.

In this paper, we present a kernel-based approach that extends continuous Gaussian kernels
to handle mixed-categorical variables. The proposed kernel leads to a GP surrogate that
generalizes continuous relaxation and Gower distance based GP models. The good potential
of the proposed framework is shown on analytical mixed-categorical variables test cases. On
different settings, our proposed GP models is as accurate as the state-of-the-art GP models.

I. Nomenclature

𝑛 = number of continuous variables
𝑚 = number of integer variables
𝑙 = number of categorical variables
Ω ∈ R𝑛 = continuous space
𝑆 ∈ Z𝑚 = integer space
F𝑙 = categorical space
𝐿𝑖 , 𝑖 ∈ {1, . . . , 𝑙} = number of levels for the 𝑖𝑡ℎ categorical variable
𝜃𝑐𝑜𝑛𝑡 = vector of hyperparameters for the continuous part of the Gaussian process model
𝑘 = correlation kernel
𝜃𝑐𝑜𝑛𝑡
𝑗

, 𝑗 ∈ {1, . . . , 𝑛 + 𝑚} = hyperparameter for the 𝑗 𝑡ℎ continuous or integer variable
𝑅𝑐𝑜𝑛𝑡 = correlation matrix for continuous and integer inputs
Θ𝑐𝑎𝑡 = hyperparameters for the categorical part of the Gaussian process model
𝐾𝑖 = categorical kernel for the 𝑖𝑡ℎ categorical variable
Θ𝑖 = matrix of hyperparameters for the 𝑖𝑡ℎ categorical variable
𝑅𝑐𝑎𝑡 = correlation matrix for categorical inputs
Θ = [Θ𝑐𝑎𝑡 , 𝜃𝑐𝑜𝑛𝑡 ] = hyperparameters for the Gaussian process model
𝑅 = 𝑅𝑐𝑜𝑛𝑡𝑅𝑐𝑎𝑡 = correlation matrix for mixed integer inputs
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II. Introduction

New aircraft configurations with a lower footprint on the environment (also known as Eco-aircraft design) have
seen a resurgence of interest [1–3]. In this context, one targets to minimize the footprint on the environment of the

aircraft using aMultidisciplinary Design Analysis (MDA) [4–6]. This is an example of an expensive-to-evaluate without
derivative problem that could be encountered on industry. Therefore, it could be useful to use a surrogate model that
simplifies by a lot an expensive model and gives a good approximation from a small data set of known configurations.
An example of an industrial application of surrogate model in the context of aircraft design is given in Fig. 1.

Fig. 1 Drag polar and aerodynamic properties for an efficient supersonic air vehicle obtained from a surrogate
model for different Mach speed and sweep angles [7, Figure 3].

Nevertheless, in this context, the process generally involves mixed continuous-categorical design variables. For
instance, the size of aircraft structural parts can be described using continuous variables; in case of thin-sheet stiffened
sizing, they represent panel thicknesses and stiffening cross-sectional areas. The set of discrete variables can encompass
design variables such as the number of panels, the list of cross sectional areas or the material choices.
In this work, we target to construct an inexpensive surrogate model 𝑓 for a black-box simulation function of the form

𝑓 : Ω × 𝑆 × F𝑙 → R. (1)

The function 𝑓 is typically expensive-to-evaluate simulations with no exploitable derivative information. Ω ⊂ R𝑛
represents the bounded continuous design set for the 𝑛 continuous variables. 𝑆 ⊂ Z𝑚 represents the bounded integer set
where 𝐿1, . . . , 𝐿𝑚 are the numbers of levels of the 𝑚 quantitative integer variables on which we can define an order
relation and F𝑙 = {1, . . . , 𝐿1} × {1, . . . , 𝐿2} × . . . × {1, . . . , 𝐿𝑙} is the design space for 𝑙 categorical qualitative variables
with their respective 𝐿1, . . . , 𝐿𝑙 levels.
In this context, Gaussian processes (GP) [8–12], also called Kriging models, are known to be a good modelling

strategy to define response surface models. Namely, we will consider that our unknown black-box function 𝑓 is a
realization of an underlying GP of mean 𝜇 𝑓 and of standard deviation 𝑠 𝑓 , i.e.,

𝑓 ∼ 𝑓 = GP
(
𝜇 𝑓 , [𝑠 𝑓 ]2

)
. (2)

For a general problem involving categorical or integer variables, several modeling strategies to build a mixed-
categorical GP have been proposed [13–18]. Compared to a continuous GP, the major changes are in the estimation
of the correlation matrix: the latter is essential for building estimates of 𝜇 𝑓 and 𝑠 𝑓 . Similarly to the process of
constructing a GP with continuous inputs, relaxation techniques [15] and Gower distance based models [16] use a
kernel-based approach to estimate the correlation matrix. Other recent approaches try to estimate the correlation matrix
directly independently of a kernel choice [13, 14, 18] which shows good results as these methods model completely
the correlations. However, the direct estimation of the correlation matrix as proposed in [13, 14] is not adapted for
high-dimensional problems as it is very expensive to compute all the required hyperparameters. In fact, dimension
reduction methods such as principal components analysis (known as KPLS [19, 20], Kriging model with Partial Least
Squares) require the construction of the correlation matrix via a kernel function. KPLS models are used to reduce to
number of hyperparameters and to handle a large number of mixed inputs [21].
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In this work, we target to extend the classical paradigm used for continuous inputs to cover the mixed categorical case.
We will present a kernel-based approach that will lead to a unified approach for existing approximation methods [13–16].
A similar process for the estimation of the hyperparameters could be applied to both continuous and categorical inputs.
The good potential of the proposed approach is shown over a set of analytical test cases. In this paper, a particular
attention will be given to the Gaussian kernel, but our proposed approach can be straightforwardly extended to other
existing kernels.
The reminder of this paper is as follows. In Section III, a detailed review of the GP model for continuous and for

categorical inputs is given. The extended kernel-based approach for constructing the correlation matrix is presented in
Section IV. Section V presents academical tests as well as the obtained results. Conclusions and perspectives are finally
drawn in Section VI.

III. Gaussian process meta-models for mixed categorical inputs
In general, a GP model is used to fit a response surface model from an initial set of points, known as the Design of

Experiments (DoE) [10, 11, 22]. The GP provides a mean response hypersurface as well as a pointwise estimation of its
variance. In what comes next, let 𝑛𝑡 be the size of DoE data set (𝑥, 𝑦 𝑓 ).

A. GP meta-models for continuous inputs
In this subsection, we will only consider that all the design variables are continuous in problem (1): namely, the

design space will be restricted to Ω ⊂ R𝑛. In this case, we assume that 𝑓 : R𝑛 → R is defined only over the continuous
design space: 𝑛𝑡 is the number of already evaluated points in R𝑛 of the deterministic function 𝑓 and ∀𝑟 ∈ {1, .., 𝑛𝑡 }. Let
𝑥𝑟 = (𝑥𝑟1 , ..., 𝑥

𝑟
𝑛) ∈ R𝑛 be the 𝑟 𝑡ℎ point with its respective 𝑛 continuous variable values and 𝑦 𝑓 𝑟 ∈ R be the associated

values of 𝑓 (𝑥𝑟 ) and denote the DoE as (𝑥, 𝑦 𝑓 ). The stochastic model [23] writes as: 𝑓 (𝑥) = 𝜇(𝑥) + 𝜖 (𝑥) ∈ R with
𝜖 the error term between 𝑓 and the model approximation 𝜇(𝑥). The error terms are considered as independent and
identically distributed random variables of variance 𝜎2. Let 𝑅𝑐𝑜𝑛𝑡 be the correlation matrix between the input points
whose elements are defined by

[𝑅𝑐𝑜𝑛𝑡 ]𝑟 ,𝑠 = 𝐶𝑜𝑟𝑟 (𝜖 (𝑥𝑟 ), 𝜖 (𝑥𝑠))
The correlation function 𝐶𝑜𝑟𝑟 is computed using a kernel function 𝑘 that relies on 𝑛 hyperparameters 𝜃𝑐𝑜𝑛𝑡 estimated
typically using maximum likelihood estimator (MLE) [24]:

𝐶𝑜𝑟𝑟 (., .) = 𝑘 (., ., 𝜃𝑐𝑜𝑛𝑡 )

Let 𝑟𝑐𝑜𝑛𝑡 (𝑥∗) = (𝐶𝑜𝑟𝑟 (𝜖 (𝑥∗), 𝜖 (𝑥1)), . . . , 𝐶𝑜𝑟𝑟 (𝜖 (𝑥∗), 𝜖 (𝑥𝑛𝑡 ))) for a given 𝑥∗ and 1 be the 𝑛𝑡 vector of ones, then, we
have:

𝜇 𝑓 (𝑥∗) = �̂� 𝑓 + 𝑟𝑐𝑜𝑛𝑡 (𝑥∗)𝑇 [𝑅𝑐𝑜𝑛𝑡 ]−1 (y 𝑓 − 1�̂� 𝑓 ), (3)

and

[𝑠 𝑓 ]2 (𝑥∗) = [�̂� 𝑓 ]2
[
1 − 𝑟𝑐𝑜𝑛𝑡 (𝑥∗)𝑇 [𝑅𝑐𝑜𝑛𝑡 ]−1𝑟𝑐𝑜𝑛𝑡 (𝑥∗) + (1 − 1𝑇 [𝑅𝑐𝑜𝑛𝑡 ]−1𝑟𝑐𝑜𝑛𝑡 (𝑥∗))2

1𝑇 [𝑅𝑐𝑜𝑛𝑡 ]−11

]
, (4)

where �̂� 𝑓 and �̂� 𝑓 , respectively, are the MLE of 𝜇 and 𝜎 with respect to 𝜃𝑐𝑜𝑛𝑡 given the DoE data set (𝑥, 𝑦 𝑓 ). In these
formulae, 𝑓 and [𝑠 𝑓 ]2 both depend on 𝑅 and 𝑟 which are characterized by the correlation kernel 𝑘 (., ., 𝜃𝑐𝑜𝑛𝑡 ). For two
continuous inputs 𝑥𝑟 and 𝑥𝑠 , the Gaussian kernel is defined as:

𝑘 (𝑥𝑟 , 𝑥𝑠 , 𝜃𝑐𝑜𝑛𝑡 ) =
𝑛∏
𝑗=1
exp

(
−𝜃𝑐𝑜𝑛𝑡𝑗

(
𝑥𝑟𝑗 − 𝑥𝑠𝑗

)2)
=

𝑛∏
𝑗=1
exp

(
−|𝑥𝑟𝑗 − 𝑥𝑠𝑗 |𝜃𝑐𝑜𝑛𝑡𝑗 |𝑥𝑟𝑗 − 𝑥𝑠𝑗 |

)
(5)

Other kernels can be used like the Matérn 3/2 kernel [25]:

𝑘 (𝑥𝑟 , 𝑥𝑠 , 𝜃𝑐𝑜𝑛𝑡 ) =
𝑛∏
𝑗=1

(
1 +

√
3𝜃𝑐𝑜𝑛𝑡𝑗

���𝑥𝑟𝑗 − 𝑥𝑠𝑗 ���) exp (
−
√
3𝜃𝑐𝑜𝑛𝑡𝑗

���𝑥𝑟𝑗 − 𝑥𝑠𝑗 ���) (6)

As the hyperparameters are always multiplied by the distance between two points, they can be interpreted as being
the inverse correlation length. A GP whose kernel is stationary and based on a distance between two points is well
adapted to a continuous context and its extension to categorical or integer variables is not straightforward. In the next
part, for the general mixed-categorical case, we will consider both continous and categorical hyperparameters Θ.
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B. GP meta-models for mixed-categorical inputs
In this subsection, we are considering the case where the design variables could be categorical or integer. Namely,

we assume that 𝑓 : R𝑛 × Z𝑚 × F𝑙 ↦→ R. The set F𝑙 = {1, . . . , 𝐿1} × {1, . . . , 𝐿2} × . . . × {1, . . . , 𝐿𝑙} is the design space
for 𝑙 categorical qualitative variables with their respective 𝐿1, ..., 𝐿𝑙 levels. Our goal is to build a GP surrogate model
for 𝑓 . In this case, the GP model will be constructed following the same methodology used for continuous design space
(see Eq. (3) and Eq. (4)). The only changes are related to the construction of the correlation matrix 𝑅. In fact, for a given
couple (𝑟, 𝑠) ∈ ({1, . . . , 𝑛𝑡 })2, let 𝑤𝑟 = (𝑥𝑟 , 𝑧𝑟 , 𝑐𝑟 ) ∈ R𝑛 × Z𝑚 × F𝑙 and 𝑤𝑠 = (𝑥𝑠 , 𝑧𝑠 , 𝑐𝑠) ∈ R𝑛 × Z𝑚 × F𝑙 two points
from the design space. In this case, the correlation kernel [14] is given by the product of continuous and categorical
kernels as:

𝑘 (𝑤𝑟 , 𝑤𝑠 ,Θ) = 𝑘𝑐𝑎𝑡
(
𝑐𝑟 , 𝑐𝑠 ,Θ𝑐𝑎𝑡

)
𝑘𝑐𝑜𝑛𝑡

(
(𝑥𝑟 , 𝑧𝑟 ), (𝑥𝑠 , 𝑧𝑠), 𝜃𝑐𝑜𝑛𝑡

)
, (7)

where Θ = [Θ𝑐𝑎𝑡 , 𝜃𝑐𝑜𝑛𝑡 ], the kernel 𝑘𝑐𝑜𝑛𝑡 ((., .), (., .), 𝜃𝑐𝑜𝑛𝑡 ) is constructed efficiently as before (with the continuous
relaxation of the integer inputs 𝑧) and the term 𝑘𝑐𝑎𝑡 (., .,Θ𝑐𝑎𝑡 ) is a categorical kernel [26] that depends on a matrix of
hyperparameters Θ𝑐𝑎𝑡 . Using Eq. (7), we have

[𝑅]𝑟 ,𝑠 (Θ) = 𝐶𝑜𝑟𝑟 (𝑤𝑟 , 𝑤𝑠) = [𝑅]𝑐𝑎𝑡𝑟 ,𝑠 (Θ𝑐𝑎𝑡 ) [𝑅]𝑐𝑜𝑛𝑡𝑟 ,𝑠 (𝜃𝑐𝑜𝑛𝑡 ), (8)

where 𝑅𝑐𝑜𝑛𝑡
𝑟 ,𝑠 (𝜃𝑐𝑜𝑛𝑡 ) = 𝑘𝑐𝑜𝑛𝑡 ((𝑥𝑟 , 𝑧𝑟 ), (𝑥𝑠 , 𝑧𝑠), 𝜃𝑐𝑜𝑛𝑡 ) and 𝑅𝑐𝑎𝑡

𝑟 ,𝑠 (Θ𝑐𝑎𝑡 ) = 𝑘𝑐𝑎𝑡 (𝑐𝑟 , 𝑐𝑠 ,Θ𝑐𝑎𝑡 ). In the general setting,
the categorical kernel 𝑘𝑐𝑎𝑡 needs to be chosen such that the correlation matrix 𝑅𝑐𝑎𝑡 is symmetric positive definite
(SPD) [13, 14]. For the categorical inputs, the kernel 𝑘𝑐𝑎𝑡 (𝑐𝑟 , 𝑐𝑠 ,Θ𝑐𝑎𝑡 ) is constructed on the following way.
∀𝑖 ∈ {1, . . . , 𝑙}, 𝑐𝑟

𝑖
is the level taken by the 𝑖𝑡ℎ component of the input 𝑐𝑟 . As in Pelamatti et al. [27], let 𝑘𝑐𝑎𝑡 be

formulated level-wise as:

𝑘𝑐𝑎𝑡 (𝑐𝑟 , 𝑐𝑠 ,Θ𝑐𝑎𝑡 ) =
𝑙∏

𝑖=1
𝐾𝑖

(
𝑐𝑟𝑖 , 𝑐

𝑠
𝑖 ,Θ𝑖

)
where every sub-kernel 𝐾𝑖 is associated with a correlation matrix 𝑅𝑖 that contains the correlations between the various
levels of the categorical variable 𝑖. Namely, we have

𝑅𝑐𝑎𝑡
𝑟 ,𝑠 (Θ𝑐𝑎𝑡 ) =

𝑙∏
𝑖=1

[𝑅𝑖]𝑟 ,𝑠 (Θ𝑖).

Thus, the hyperparameters Θ𝑐𝑎𝑡 can be seen as a concatenation of the set of matrices Θ1, . . . ,Θ𝑙 , i.e., Θ𝑐𝑎𝑡 =

[Θ1, . . . ,Θ𝑙]. The full set of hyperparameters Θ will be estimated using the DoE data set (𝑥, 𝑦 𝑓 ) via an MLE approach
on the following way

Θ∗ = argmax
Θ

(
−1
2
𝑦 𝑓

𝑇 [𝑅(Θ)]−1𝑦 𝑓 − 1
2
log | [𝑅(Θ)] | − 𝑛𝑡

2
log 2𝜋

)
, (9)

where 𝑅(Θ) is computed using Eq. (8).

IV. Towards a general correlation matrix representation for a Gaussian kernel
We propose a novel approach that tackles the problem of extending correlation kernels to categorical variables by

replacing the distance between input points with the kernel that depends only on the hyperparameters. In this section, we
will present first the mathematical framework for the Gaussian kernel which fits well with classical dimension reduction
techniques such as KPLS [19]. The Gaussian kernel has a natural extension to the use of hyperparameters in a matrix
form that is an usual form when handling categorical design variables. The proposed extended model will lead to a
generalization of both continuous relaxation and Gower distance based methods.
For our purposes, the treatment of continuous inputs will not bring any additional difficulty. Thus, without loss of

generality, we will consider only categorical inputs. Hence, in the following, we assume Θ = Θ𝑐𝑎𝑡 and 𝑅 = 𝑅𝑐𝑎𝑡 .

A. An extended correlation matrix approach for Gaussian kernel
In the case of Gaussian kernel, a natural extension of hyperparameters to the matrix form can be as follows. Starting

from (5) and replacing the vector 𝜃𝑐𝑜𝑛𝑡 by a given symmetric matrix Θ, we obtain the following kernel:

𝑘 (𝑥𝑟 , 𝑥𝑠 ,Θ) =
𝑛∏
𝑗=1

𝑛∏
𝑗′=1
exp

(
−|𝑥𝑟𝑗 − 𝑥𝑠𝑗 | [Θ] 𝑗 , 𝑗′ |𝑥𝑟𝑗′ − 𝑥𝑠𝑗′ |

)
(10)
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If Θ is a diagonal matrix with only positive values, then the resulting kernel would be the exact Gaussian kernel
for continuous inputs with the hyperparameters being the inverse correlation length. This kernel, given by Eq. (10)
generalizes the continuous Gaussian kernel for a 2D correlation matrix.
Now, for a given 𝑖 ∈ {1, . . . , 𝑙}, let 𝑐𝑖 be a categorical variable characterized by 𝐿𝑖 levels. The mapping to a

𝐿𝑖-dimensional Hilbert space defined in such a way that the only non-zero coordinate of the image is 1 in the dimension
associated to the mapped level is the so-called one-hot encoding [28]. Let 𝑒𝑐𝑖 be the one-hot encoding of 𝑐𝑖 that takes
value 0 everywhere and value 1 on the dimension corresponding to the level taken by the category 𝑐 on the variable 𝑖,
𝑒𝑐𝑖 ∈ {0, 1}𝐿𝑖 . For example, if 𝑐 takes the 𝑗 𝑡ℎ level on the variable 𝑖,

(
𝑒𝑐𝑖

)
𝑗
= 1 and 𝑒𝑐𝑖 = [0, . . . , 0, 1, 0, . . . , 0] ∈ R𝐿𝑖 .

Inspired by Eq. (10), it is now possible to define a 𝐿𝑖 × 𝐿𝑖 symmetric matrix Θ𝑖 using positive correlation values. This
leads to the following general formulation which is the natural extension of Gaussian kernel when dealing with a matrix
of hyperparameters:

𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) =
𝐿𝑖∏
𝑗=1

𝐿𝑖∏
𝑗′=1
exp

(
−

���(𝑒𝑐𝑟
𝑖
) 𝑗 − (𝑒𝑐𝑠

𝑖
) 𝑗

��� [Θ𝑖] 𝑗 , 𝑗′
���(𝑒𝑐𝑟

𝑖
) 𝑗′ − (𝑒𝑐𝑠

𝑖
) 𝑗′

���) (11)

Hence by the definition of 𝑒𝑐𝑟
𝑖
and 𝑒𝑐𝑠

𝑖
, if 𝑐𝑟

𝑖
= 𝑐𝑠

𝑖
, one deduces that 𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑟𝑖 ,Θ𝑖) = exp(0) = 1. Otherwise, if 𝑐𝑟𝑖 ≠ 𝑐𝑠𝑖 ,

one gets

𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) = exp
©«−

𝐿𝑖∑︁
𝑗=1

𝐿𝑖∑︁
𝑗′=1

���(𝑒𝑐𝑟
𝑖
) 𝑗 − (𝑒𝑐𝑠

𝑖
) 𝑗

��� [Θ𝑖] 𝑗 , 𝑗′
���(𝑒𝑐𝑟

𝑖
) 𝑗′ − (𝑒𝑐𝑠

𝑖
) 𝑗′

���ª®¬
= exp

(
−

(
[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑟

𝑖
+ [Θ𝑖]𝑐𝑠

𝑖
,𝑐𝑠

𝑖
+ [Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖
+ [Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

))
= exp

(
−

(
[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑟

𝑖
+ [Θ𝑖]𝑐𝑠

𝑖
,𝑐𝑠

𝑖

))
exp

(
−2[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

)
.

(12)

where [Θ𝑖]𝑐𝑟
𝑖
,𝑐𝑠

𝑖
is the coefficient characterizing the correlation between the two discrete categorical levels taken by 𝑐𝑟

and 𝑐𝑠 in the 𝑖𝑡ℎ categorical component.
In the following, as far as the matrices Θ𝑖 respect a specific parameterization, we will show that our approach will

guarantee to the correlation matrix 𝑅 to be SPD with unit diagonal and off-diagonal term values in [0, 1] [29]. The
latter properties are needed to avoid numerical issues during the computations, see Eq. (3) and Eq. (4).
In fact, for all 𝑖 ∈ {1, . . . , 𝑙}, we propose to use the following parameterization for the hyperparameter matrix Θ𝑖:

[Θ𝑖] 𝑗 , 𝑗 ≥ 0

[Θ𝑖] 𝑗 , 𝑗′ =
log 𝜖
2

( [𝐶𝑖𝐶
𝑇
𝑖 ] 𝑗 , 𝑗′ − 1) if 𝑗 ≠ 𝑗 ′

(13)

where for every categorical variable 𝑖, 𝐶𝑖 is a Cholesky lower triangular matrix that relies on 𝐿𝑖 (𝐿𝑖 − 1)/2 elements
in [0, 𝜋

2 ] that represent the coordinates of a point on the surface of a sphere with a unit radius as in [13, 26] (see
Appendix VII.A for a proof in this context). The parameter 𝜖 is a small tolerance (1 > 𝜖 > 0). Equation (13) is chosen
such that the elements of 𝑅𝑖 will be in [0, 1], thanks to the hypersphere decomposition [30, 31]. In the following, we will
show how this model generalizes all the previous works and proposes a new framework and new matrix configurations.

B. Equivalence with other categorical kernels
The proposed parameterization of the matrix 𝑅𝑖 using Eq. (12) can be seen as the product of the continuous

relaxation kernel [15] and the Gaussian homoscedastic hypersphere kernel, for a total of 𝐿𝑖 (𝐿𝑖+1)
2 hyperparameters per

categorical variable. Our proposed approach guarantees that the correlation matrix is SPD and that all its elements are
in [0, 1] as in the continuous case. It follows that our proposed kernel is also equivalent to the Gaussian homoscedastic
hypersphere model alone.
Note that the hypersphere decomposition, as proposed by Pelamatti et al. [13], allows negative correlation. Indeed,

for categorical variables, values between -1 and 0 are considered because two levels can correspond to opposite effects
whereas for continuous GP, the furthest the points, the smaller the correlation. In this case, it follows that our proposed
Gaussian homoscedastic hypersphere model 𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) = exp

(
−2[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

)
is not completely equivalent to the

model proposed in [13] that does not use a positive kernel (like the Gaussian one). A negative correlation would be
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close to 0 through Gaussian kernel. Indeed, it is equivalent if and only if the correlations are strictly positive, i.e on
[0, 𝜋

2 ](Appendix VII.A).
In what comes next, this GP model using our kernel-based approach will be called the homogeneous full model

(defined in Eq. (12)). It allows to generalize existing approaches in the following way:
• If ∀𝑖 ∈ {1, . . . , 𝑙} the matrices Θ𝑖 are set to be diagonal with only positive values, then the obtained kernel will
correspond to the continuous relaxation method one [15] with 𝐿𝑖 hyperparameters per categorical variable, i.e.,

𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) =
𝐿𝑖∏
𝑗=1
exp

(
−[Θ𝑖] 𝑗 , 𝑗

(
(𝑒𝑐𝑟

𝑖
) 𝑗 − (𝑒𝑐𝑠

𝑖
) 𝑗

)2)
,∀𝑐𝑟𝑖 ≠ 𝑐𝑠𝑖 .

• If ∀𝑖 ∈ {1, . . . , 𝑙} the matrices Θ𝑖 have all the diagonal terms equal to zero, then, the obtained kernel will be
reduced to the Gaussian homoscedastic hypersphere one [27] with 𝐿𝑖 (𝐿𝑖−1)

2 hyperparameters per categorical
variable, i.e.,

𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) = exp
(
−2[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

)
(14)

• If ∀𝑖 ∈ {1, . . . , 𝑙} the matrices Θ𝑖 have all the off-diagonal terms equal to [Θ𝑖]𝑐𝑜𝑣 < 0 and zero on the diagonal.
In this case, the obtained kernel will be reduced to Gower distance based model [16] with only 1 hyperparameter,
i.e.,

𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) = exp (−2[Θ𝑖]𝑐𝑜𝑣) ,∀𝑐𝑟𝑖 ≠ 𝑐𝑠𝑖 . (15)

As one can see, our proposed framework generalizes different approaches by considering different matrix structures of
the same model. In what follows, the full parameterization is called 𝑚𝑎𝑡_𝐹𝑈𝐿𝐿, the diagonal representation (which is
equivalent to continuous relaxation) will be called 𝑚𝑎𝑡_𝐶𝑅, the off-diagonal representation will be is called 𝑚𝑎𝑡_𝐺𝐻𝐻,
as it is the Gaussian homoscedastic hypersphere model. Last, when we will consider only one covariance, as in Gower
distance, we will denote the model 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅. Table 1 summarizes how to obtain the several existing approaches
using our proposed framework.

Table 1 A summary of how our proposed kernel-based approach generalizes existing categorical models.

Models Θ𝑖 𝐾𝑖 (𝑐𝑟𝑖 , 𝑐𝑠𝑖 ,Θ𝑖) # of Hyperparam.

Our full model
(i.e., Θ𝑖 = 𝑚𝑎𝑡_𝐹𝑈𝐿𝐿)


[Θ𝑖]1,1 9 Sym.9
[Θ𝑖]1,2 [Θ𝑖]2,2 9
...

. . .
. . . 9

[Θ𝑖]1,𝐿𝑖
. . . [Θ𝑖]𝐿𝑖−1,𝐿𝑖

[Θ𝑖]𝐿𝑖 ,𝐿𝑖


exp

(
−

(
[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑟

𝑖
+ [Θ𝑖]𝑐𝑠

𝑖
,𝑐𝑠

𝑖

))
exp

(
−2[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

) 1
2𝐿𝑖 (𝐿𝑖 + 1)

Continuous relaxation [15]
(i.e., Θ𝑖 = 𝑚𝑎𝑡_𝐶𝑅)


[Θ𝑖]1,1 9 9 Sym.
0 [Θ𝑖]2,2 9
...

. . .
. . . 9

0 . . . 0 [Θ𝑖]𝐿𝑖 ,𝐿𝑖


exp

(
−

(
[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑟

𝑖
+ [Θ𝑖]𝑐𝑠

𝑖
,𝑐𝑠

𝑖

))
𝐿𝑖

Gaussian homoscedastic hypersphere [13]
(i.e., Θ𝑖 = 𝑚𝑎𝑡_𝐺𝐻𝐻)


0 9 Sym.9

[Θ𝑖]1,2 0 9
...

. . .
. . . 9

[Θ𝑖]1,𝐿𝑖
. . . [Θ𝑖]𝐿𝑖−1,𝐿𝑖

0


exp

(
−2[Θ𝑖]𝑐𝑟

𝑖
,𝑐𝑠

𝑖

)
1
2𝐿𝑖 (𝐿𝑖 − 1)

Gower distance [16]
(i.e., Θ𝑖 = 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅)

[Θ𝑖]𝑐𝑜𝑣


0 9 Sym.9
1 0 9
...

. . .
. . . 9

1 . . . 1 0


exp (−2[Θ𝑖]𝑐𝑜𝑣) 1

Finally, we note that, although our methodology is detailed only for Gaussian kernels, it is possible to extend our
proposed approach to other kernels. In the next section, we will see how these models behave on different test cases.
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V. Results
In this section, we propose several illustrations and comparisons on three different test cases (with 1 or 2 continuous

variables, 1 categorical variable up to 13 levels) to show the interest of our method and the equivalence with other
models from the literature. The optimization of the likelihood as a function of the hyperparameters needs a performing
algorithm, in this work, we are using COBYLA [32] to maximize this quantity. We note that the implementation of our
proposed method has been released in the toolbox SMT v1.2∗ [33] and further developments are to appear in the next
release.

A. Hyperparameters equivalence
We start with a 2D test case with one continuous variable in [0, 4] and one categorical variable with two levels

(blue or red). We consider a DoE of 3 blue points and 4 red points (see Appendix VII.B for a detailed description
of the test case). The mixed integer GP model is shown in Fig. 2 with the two associated levels (blue and red) and
is obtained from continuous relaxation. As any other method leads to the same GP model of Fig. 2, we only report
the optimal values of the hyperparameters in Tab. 2 to illustrate this equivalence. In this case, with only two levels, it
is easy to prove that the Gower distance kernel and the homoscedastic hypersphere one are equivalent: there is only
one categorical hyperparameter and we can check in Tab. 2 that exp (−0.23015) = 0.7944. On this particular test
case, all the correlations are positive and so, the Gaussian homoscedastic hypersphere and the original homoscedastic
hypersphere models are equivalent as they can be restricted to angles in [0, 𝜋

2 ] (see Appendix VII.A for a proof). A
negative correlation would have been model by a close to 0 correlation through Gaussian kernel.

(a) GP model for blue level (b) GP model for red level

Fig. 2 2D test case Gaussian process models for blue and red levels.

Table 2 Hyperparameter estimation of our proposed models versus existing approaches for the 2D test case.

Tested methods 𝜃𝑟𝑒𝑑,𝑏𝑙𝑢𝑒 𝜃𝑟𝑒𝑑,𝑟𝑒𝑑 𝜃𝑏𝑙𝑢𝑒,𝑏𝑙𝑢𝑒 𝜃𝑐𝑜𝑛𝑡

Continuous relaxation [15] - 0.2300 1.2168e-06 16.576
Our model (with Θ𝑖 = 𝑚𝑎𝑡_𝐶𝑅) - 0.2301 8.0294e-06 16.575

Gower distance [16] 0.2300 - - 16.573
Our model (with Θ𝑖 = 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅) 0.2301 - - 16.573
Homoscedastic hypersphere [13] 0.7944 - - 16.573
Our model (with Θ𝑖 = 𝑚𝑎𝑡_𝐺𝐻𝐻) 0.7944 - - 16.573

B. Comparison of the different models to approximate some analytic functions

1. Categorical cosine problem
Let consider the cosine with two group example proposed by Roustant et al. in the paper that introduced the matrix

parameterization of categorical correlation kernel [26]. The objective function 𝑓 depends on a continuous variable

∗https://smt.readthedocs.io/en/latest/
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in [0, 1] and on a categorical variable with 13 levels. Let 𝑤 = (𝑥, 𝑐) be a given point with 𝑥 being the continuous
variable and 𝑐 being the categorical variable, 𝑐 ∈ {1, . . . , 13}. There are two groups of curves corresponding to levels 1
to 9 and levels 10 to 13 with strong within-group correlations, and strong negative between-group correlations (see
Appendix VII.D for a detailed description of the function).
The number of relaxed dimensions for continuous relaxation is 14. We draw a 14 × 7=98 points DoE by Latin

Hypercube Sampling (LHS) [34] and plot the mean Gaussian process models on Fig. 3 for Gower distance, continuous
relaxation and Gaussian homoscedastic hypersphere. The number of hyperparameters to optimize is therefore 2 for
Gower, 14 for continuous relaxation and 79 for Gaussian homoscedastic hypersphere. Then, from these models, we

compute the root mean square error (RMSE) as RMSE =

√︂
𝑛∑
𝑖=1

1
𝑛

(
𝑓 (𝑤𝑖) − 𝑓 (𝑤𝑖)

)
where 𝑛 is the size of the validation

set, 𝑓 (𝑤𝑖) is the prediction of our model at 𝑤𝑖 and 𝑓 (𝑤𝑖) is the true value.
As expected, the more the hyperparameters, the better the model, as it can be seen on the decreasing RMSE. However,

Gower distance takes 1.4 seconds to compute, continuous relaxation takes 24.5 seconds and Gaussian homoscedastic
hypersphere takes 514.5 seconds to compute which motivates the use of a reduced order model. We can also consider
the full homogeneous model with 92 hyperparameters; this model takes 642 seconds to compute and is worse than the
Gaussian homoscedastic hypersphere. This model is not to consider for practical use cases.

(a) Our model (with Θ1 = 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅): 2 hyperpa-
rameters, CPU time =1.4s, RMSE=30.079.

(b) Our model (with Θ1 = 𝑚𝑎𝑡_𝐶𝑅): 14 hyperparameters,
CPU time =24.5s, RMSE=22.347.

(c) Our model (with Θ1 = 𝑚𝑎𝑡_𝐺𝐻𝐻): 79 hyperpa-
rameters, CPU time =514.5s, RMSE=2.941.

(d) Our model (with Θ1 = 𝑚𝑎𝑡_𝐹𝑈𝐿𝐿): 92 hyperparameters,
CPU time =642s, RMSE=22.61.

Fig. 3 Mean predictions for the cosine problem with a 98 points DoE for our 4 proposed models.

The estimated correlation matrix 𝑅𝑖 = 𝑅1 is shown in Fig. 4. For two given levels {𝑟, 𝑠}, the correlation [𝑅1]𝑟 ,𝑠
is in blue if the correlation is close to 1 and in red if the correlation is close to 0. We can see on the figure that the
correlation between a level and itself is always 1. For Gower distance, there is only one estimated "mean correlation" as
in Fig. 4a. For continuous relaxation (see Fig. 4b), we have [𝑅1]𝑟 ,𝑠 = exp(−

(
[Θ1]𝑟 ,𝑟 + [Θ1]𝑠,𝑠

)
), therefore for the most

important levels (1 to 9) are strongly correlated (in blue) with one another and the other levels (10 to 13) that should
also have been also correlated are badly estimated because of the model limitation that neglected them. In contrast, the
Gaussian parametrization (see Fig. 4c) of the Gaussian homoscedastic hypersphere decomposition model gives a good
approximation of the real correlation and we see that there are two groups of highly correlated levels. The levels 1 to 9
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are strongly similar, the levels 10 to 13 are strongly similar and the two groups are less similar. The latter correlations
should have been different but we do not allow negative values through the Gaussian kernel.
As previously mentioned, the full homogeneous model (see Fig. 4d) that combines both continuous relaxation

and Gaussian homoscedastic hypersphere adds irrelevant parameters making it more hard to optimize numerically
while being equivalent to the Gaussian homoscedastic hypersphere model. For this reason, this model should not be
considered for real applications.

(a) The matrix 𝑅𝑐𝑎𝑡 with Θ1 = 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅. (b) The matrix 𝑅𝑐𝑎𝑡 with Θ1 = 𝑚𝑎𝑡_𝐶𝑅.

(c) The matrix 𝑅𝑐𝑎𝑡 with Θ1 = 𝑚𝑎𝑡_𝐺𝐻𝐻. (d) The matrix 𝑅𝑐𝑎𝑡 with Θ1 = 𝑚𝑎𝑡_𝐹𝑈𝐿𝐿.

Fig. 4 Obtained correlation matrices for the cosine problem using a DoE of 98 points.

We compare in Fig. 5 our Gaussian hypersphere decompositon model (see Fig. 5a) with the homoscedastic
hypersphere model [27] that allows negative values (see Fig. 5b). By imposing the correlation to be the matrix
correlation of Fig. 5b in the case of Homoscedastic hypersphere, we obtain a likelihood of around 210 against 138 for
the Gaussian homoscedastic hypersphere model with only positive values. Nevertheless, even if the Homoscedastic
hyperphere model is more general than our model, the two RMSE are of the same order of magnitude, indicating similar
performances on that particular test case.
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(a) Our model (with Θ1 = 𝑚𝑎𝑡_𝐺𝐻𝐻): 79 hyperparameters, RMSE=2.941

(b) Homoscedastic hypersphere model [27]: 79 hyperparameters, RMSE=5.280

Fig. 5 Comparison results between our model and Homoscedastic hypersphere [27] on the cosine problem using
a DoE of 98 points.

2. Categorical Branin function
Let the function 𝑓 to model be the modified categorical Branin function [16]. This problem has 3 variables: two

continuous variables in [0, 1] and one categorical variable with three levels and the two first levels are totally correlated.
We draw a DoE of 60 points by LHS to compare the given GP models and compute the error terms. To begin with, we
start by plotting the models built with the different methods in Fig. 6 and compute their respective RMSE to compare
them with the original formulation of the methods. The obtained values are given in Fig. 6 from a validation base of
size 30603 that corresponds to 101 points from 0 to 1 in every continuous direction for every level (see Appendix VII.C
for a detailed description of the function).
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(a) Our model (with Θ1 = 𝑚𝑎𝑡_𝐶𝑅): RMSE = 60.707

(b) Our model (with Θ1 = 𝑚𝑎𝑡_𝐺𝑂𝑊𝐸𝑅): RMSE = 77.793

(c) Our model (with Θ1 = 𝑚𝑎𝑡_𝐺𝐻𝐻): RMSE = 60.721

(d) Our model (with Θ1 = 𝑚𝑎𝑡_𝐹𝑈𝐿𝐿): RMSE = 60.707

Fig. 6 Mean predictions (over the three levels) for the categorical Branin problem using a DoE of 60 points (in
red in the curve plots).

In this test case, we clearly show that the full model, the continuous relaxation model and the Gaussian homoscedastic
one are the same. However, we still have numerical instabilities but using the Gaussian homoscedastic kernel as proposed
in this paper instead of using the raw matrix leads to a better estimation of the hyperparameters. For homoscedastic
hypersphere, the RMSE that we found is 63.021. The Gower distance model is the only one that differs visually
and that differs consequently in error from the others (77.8 instead of 60.7). As mentioned in Section V.A, with 3
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levels, Gaussian homoscedastic hypersphere and continuous relaxation are equivalent methods, so these results were
theoretically expected. However, when comparing with the original homoscedastic hypersphere, the Gaussian model
differs as the third level is negatively correlated from the two others and because the Gaussian kernel returns only
positive value. In this case, the estimated correlation is 0.03 with the Gaussian kernel against -0.15 with the original one.

VI. Conclusion and perspectives
In this work, we have proposed a kernel-based class of models that extends continuous Gaussian kernels to handle

mixed-categorical variables. We have observed on test cases that our proposed models generalizes Gower distance and
continuous relaxation based models. Numerical illustrations on analytical problems showed the good potential of the
proposed models. Further works will consider to include dimension reduction techniques (such as KPLS) to improve
the computational efficiency of our model and be able to tackle higher dimensional problems. A rigorous classification
between the proposed models as well as a proof of the SPD nature of the correlation matrices within our proposed
model shall be investigated.
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VII. Appendix

A. Positive homoscedastic hypersphere
Theorem 1. We have equivalence between homoscedastic hypersphere [35] and Gaussian homoscedastic hypersphere
if and only if the correlations are positive (> 𝜖) or by restricting the angles to be on [0, 𝜋

2 ] that is the first quadrant.

Proof. Let 𝐹 be the polyspherical change of coordinates [36], such that 𝐹 (𝜃1, . . . , 𝜃𝑛−1) = 𝜉1, . . . , 𝜉𝑛 with 𝜉 =

(𝜉1, . . . , 𝜉𝑛) ∈ S𝑛−1 and 𝜃 = (𝜃1, . . . , 𝜃𝑛−1) ∈ [0, 2𝜋]𝑛−1, for a given integer 𝑛.

𝐹 : [0, 2𝜋]𝑛−1 −→ S𝑛−1

𝜉 = 𝐹 (𝜃)
(16)

The formula for the so-called "polyspherical change of coordinates" given by Vilenkin et al. [36], restricted to real
values, is:

𝜉1 = sin 𝜃𝑛−1 . . . sin 𝜃2 sin 𝜃1
𝜉2 = sin 𝜃𝑛−1 . . . sin 𝜃2 cos 𝜃1
. . . . . . . . . . . . . . . . . . . . . . . . .

𝜉𝑛−1 = sin 𝜃𝑛−1 cos 𝜃𝑛−2
𝜉𝑛 = cos 𝜃𝑛−1

(17)

The function 𝐹 is bijective as a change of coordinates [36]. Correlations are values in [−1, 1] so we consider
that we have "unit radius" [31] (𝑟 = 1). 𝜉 are the so-called "cartesian coordinates" and 𝜃 are the so-called "spherical
coordinates".
This leads to the formulation of Rebonato [31] for a 𝑚 × 𝑚 matrix. Let 𝑏𝑖 𝑗 be the elements of a triangular superior

matrix 𝐵 of size 𝑚 × 𝑚. The 𝑚 × (𝑚 − 1) corresponding 𝑏𝑖 𝑗 elements are determined from the 𝑚 × (𝑚 − 1) 𝜃𝑖 𝑗 as:

𝑏𝑖 𝑗 = cos 𝜃𝑖 𝑗
𝑗−1∏
𝑘=1
sin 𝜃𝑖𝑘 , if 𝑗 ∈ {1, . . . , 𝑚 − 1}

𝑏𝑖 𝑗 =

𝑗−1∏
𝑘=1
sin 𝜃𝑖𝑘 , if 𝑗 = 𝑚

(18)
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Then, we take 𝐶 = 𝐵𝐵𝑇 as a Cholesky decomposition and this is the so-called "hypersphere decomposition" [30].
By restricting our coordinates 𝜃 to be in [0, 𝜋

2 ], we still have a bijection, by construction. This bijection takes values
between 𝜃 = [0, 𝜋

2 ] and 𝜉 = 𝐹 ( [0,
𝜋
2 ]) = [0, 1]. This is the so-called first quadrant as in Fig. 7.

Fig. 7 First quadrant on the sphere S1.

Therefore, we know that
∀𝜉 ∈ [0, 1]𝑛, ∃! 𝜃 ∈

[
0,
𝜋

2

]𝑛
: 𝐹 (𝜃) = 𝜉.

The function g defined as 𝑔(𝜉) = 𝜉 ′ =
(
exp(− log(𝜖) (𝜉1 − 1)), . . . , exp(− log(𝜖) (𝜉 (𝑚(𝑚−1)) − 1))

)
is bijective if

restricted to [𝜖, 1] .
Therefore,

∀𝜉 ′ ∈ [𝜖, 1]𝑛, ∃! 𝜃 ∈
[
0,
𝜋

2

]𝑛
: 𝐹 (𝜃) = 𝜉 ′.

For a given 𝜉∗ > 𝜖 that corresponds to the optimal correlation according to the maximum of likelihood estimator, with
the homoscedastic hypersphere method, ∃! 𝜃∗ ∈ [0, 𝜋

2 ] : 𝐹 (𝜃
∗) = 𝜉∗.

For the same 𝜉∗ > 𝜖 that corresponds to the optimal correlation, with the Gaussian homoscedastic hypersphere method,
∃! 𝜃′∗ ∈ [0, 𝜋

2 ] : 𝐹 (𝑔(𝜃
′∗)) = 𝜉∗.

Therefore, the two methods are equivalent over [𝜖, 1]. By choosing 𝜖 sufficiently small, the two methods are
equivalent to model positive correlations. Note that we obtain the same optimal correlation and the same likelihood but
the values of 𝜃∗ and 𝜃′∗ may differ even if being uniquely defined on [0, 𝜋

2 ].

B. 2D blue/red test case
This test case has one categorical variable with two levels: blue or red and one continuous variable in [0, 4].
The blue DoE is the following: x= {0, 1, 4}, y={0, 9, 16}
The red DoE is the following: x= {0, 1, 2, 3}, y={0, 1, 8, 27}
Therefore, we have a DoE consisting of 7 points either blue or red, with continuous value ranging between 0 and 4

and taking value between 0 and 27.

C. Categorical Branin function case
This test case has one categorical variable with three levels and two continuous variables in [0, 1]. Let 𝑤 = (𝑥1, 𝑥2, 𝑐)

be a given point with 𝑥1 and 𝑥2 being the continuous variables and 𝑐 being the categorical variable, 𝑐 ∈ {0, 1, 2}.
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𝑓 (𝑤) = 1
51.9496

(((
15𝑥2 −

5
4𝜋2

(15𝑥1 − 5)2 +
5
𝜋
(15𝑥1 − 5) − 6

)2
+ 10

(
1 − 1
8𝜋

)
cos (15𝑥1 − 5) + 10

)
− 54.8104

)
, if c = 0

𝑓 (𝑤) = 95
5194.96

(((
15𝑥2 −

5
4𝜋2

(15𝑥1 − 5)2 +
5
𝜋
(15𝑥1 − 5) − 6

)2
+ 10

(
1 − 1
8𝜋

)
cos (15𝑥1 − 5) + 10

)
− 54.8104

)
, if c = 1

𝑓 (𝑤) = − log
{����� 1
51.9496

(((
15𝑥2 −

5
4𝜋2

(15𝑥1 − 5)2 +
5
𝜋
(15𝑥1 − 5) − 6

)2
+ 10

(
1 − 1
8𝜋

)
cos (15𝑥1 − 5) + 10

)
− 54.8104

)�����
} 1
2

+ 𝑥21 − 2𝑥
2
2 + 1.03, if c = 2

The DoE is given by a LHS of 60 points.
Our validation set is a evenly spaced grid of 101 points in 𝑥1 ranging from 0.01 to 0.99, 101 points in 𝑥2 ranging

from 0.01 to 0.99 for every of the three categorical levels (0, 1, 2) for a total of 30603 points.

D. Categorical cosine case
This test case has one categorical variable with 13 levels and one continuous variable in [0, 1]. Let 𝑤 = (𝑥, 𝑐) be a

given point with 𝑥 being the continuous variable and 𝑐 being the categorical variable, 𝑐 ∈ {1, . . . , 13}.

𝑓 (𝑤) = cos
(
7𝜋
2
𝑥 +

(
0.4𝜋 + 𝜋

15
𝑐

)
− 𝑐

20

)
, if c ∈ {10, . . . , 9}

𝑓 (𝑤) = cos
(
7𝜋
2
𝑥 − 𝑐

20

)
, if c ∈ {10, . . . , 13}

The reference landscapes of the objective function (with respect to the categorical choices) are drawn on Fig. 8.

Fig. 8 Landscape of the cosine test case from [26].

The DoE is given by a LHS of 98 points. Our validation set is a evenly spaced grid of 101 points in 𝑥1 ranging from
0.01 to 0.99, 101 points in 𝑥2 ranging from 0.01 to 0.99 for every of the three categorical levels (0, 1, 2) for a total of
30603 points.
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