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Abstract—Disorders with a transient signature (e.g., obstruc-
tive sleep apnea, drowsy driving, sudden infant death syndrome,
or atrial fibrillation) are difficult to predict. The Pulse system,
including a matrix of unobtrusive strain sensors, was designed
to extract four different vital parameters: actigraphy, Breath
Frequency (BF), Heart Rate (HR), and Heart Rate Variability
(HRV). Thanks to the high sensitivity of the innovative Nanomade
strain sensors, it shows good performances (accuracy around
98.5% for HR/HRV and up to 96% for BF) in regard with the
state of the art. Moreover, these sensors can easily be integrated
into different equipment, are adaptive and low-cost.

Index Terms—Ballistocardiography, Heart Rate, Heart Rate
Variability, Breath Frequency, Actigraphy, low-cost, strain sensor

I. INTRODUCTION

The last decades have seen a significant evolution in medical
diagnosis. Yet, some disorders remain difficult to predict
due to their transient nature. Among the most critical ones,
there are Obstructive Sleep Apnea (OSA) [1], drowsy driving
[2], sudden infant death syndrome [3] and atrial fibrillation
(the leading cause of embolic stroke worldwide) [4]. These
disorders are highly difficult to detect because affected persons
show very few symptoms.

Yet, monitoring the following four vital parameters can
substantially help diagnose these aforementioned conditions
[5]–[8] :

• the actigraphy that quantifies the subject movements;
• the respiratory rate or Breath Frequency (BF) that repre-

sents the number of breaths per minute;
• the Heart Rate (HR) that is the average of time intervals

between two heartbeats;
• the Heart Rate Variability (HRV) that represents the

variation of these intervals.
HR and HRV can be contactless measured via BallistoCar-

dioGraphy (BCG), a technique which evaluates the strains
generated by the ejection of blood from the heart into the
descending aorta [9]. This technique also helps retrieving
respiratory and body movement information. Since the early
2000’s, several BCG sensor technologies (e.g. accelerometers,
piezoelectric sensors, strain gauges) and signal processing
techniques (e.g. peak detection, machine learning, autocorre-
lation) have been implemented. Among the sensor solutions
found in the literature, some of these use low-cost but bulky
and/or heterogeneous technologies that remain difficult to be

incorporated into devices [10]–[13]. On the opposite, others
are based on easy to use yet costly sensors [14]–[16].

This paper introduces an innovative, generic and unobtrusive
vitals monitoring system, called Pulse. It relies on an adaptive,
low-cost and high sensitivity strain gauges matrix that can
easily be integrated into various types of equipment (e.g. bed,
vehicle seat, wheel chair,...). An Analog Front-End (AFE)
circuit and an embedded digital processing were developed
according to the sensors physical characteristics, to determine
HRV, actigraphy, BF and HR despite body motion artifact.
The proposed system and the sensor technology are described
in Section II. Then, the experimental setup is detailed in
Section III. Next, the results are presented in Section IV while
conclusion and perspectives are drawn in Section V.

II. SYSTEM SUMMARY

The system includes a strain sensors matrix and a dedicated
circuit, as illustrated in Fig. 1. The strain sensors and the
electronic front-end ensuring the signals conditioning until the
analog-to-digital conversion, are detailed below. The digital
signal processing, ensuring the vitals parameters extraction,
were embedded in a dual-core micro-processor.

A. The Pulse sensor

The Pulse sensor used in the present study consists in
12 Nanomade strain sensors spread over an ultrathin flexible
14 cm x 19 cm surface, glued on a polycarbonate sheet, used
as a strain-propagating medium (Fig. 2a).

Nanomade strain sensors were chosen for their sensitivity,
flexibility, thinness and low cost:

• Nanomade-based strain sensors are usually far more
sensitive than commercial strain gauges [17]–[19], thus

Fig. 1: Architecture of the Pulse system.



Fig. 2: PULSE sensor stack-up and working principle. (a)
Sensor stack-up. (b) Strain sensor working principle.

allowing the detection of very faint signals. In the present
case, they present a gauge factor of 30, while commercial
strain gauges typically present a strain factor of 2.

• The thinness and flexibility of Nanomade strain sensors
(250 µm thick) provide seamless integration capability
into beds and seats for BCG applications.

• Nanomade strain sensors are low cost: for comparable
dimensions, Nanomade strain sensors cost approximately
10 times less than commercial strain gauges.

Nanomade strain sensors rely on the tunnel effect in Conduc-
tive Nanoparticle Assemblies (CNAs) [17]–[19]. A Nanomade
strain sensor consists of proprietary CNAs containing ink de-
posited between interdigitated conductive (copper) electrodes
on an insulating (polyimide) flexible substrate.

The strain sensors are squares of 5x5 mm2 and are po-
sitioned to efficiently capture respiratory and cardiac signals
via BCG: the sensor design consists in a 3x4 matrix with 5.5
cm spacing. This geometry allows to cover a broad spectrum
of morphologies and offers versatility regarding integration
(seamless and unobtrusive integration in beds, seats, etc).

The static sensor resistance R varies from 3 kΩ to 30 kΩ
due to process variations. Upon compressive (resp. tensile)
strain, the CNAs move closer to (resp. away from) each other,
resulting in a decreased (resp. increased) sensor resistance
(Fig. 2b). The resistance variations ∆R of all the strain sensors
are monitored as they translate the deformations induced by
respiratory and cardiac movements. The variation range for
each parameter is detailled in Table I.

B. Analog Front-end circuit

The output sensors’ signals are processed in the Analog
Front End (AFE) circuit presented in Fig. 3. The 12 sensors are
biased independently by a variable current source, to overcome
the static resistance dispersion. Then, the signals are filtered
by a first-order high-pass filter with a cut-off frequency of

Vital signals ∆R/R Frequency range
Actigraphy ≥ 1000 ppm ≤ 0.5 Hz
Respiratory 700 ± 490 ppm [0.08 ; 0.7] Hz
Cardiac 75 ± 34 ppm [2 ; 14] Hz

TABLE I: Resistance variation and frequency range for each
vital parameter extracted.

Fig. 3: AFE circuit duplicated for each sensor and then
combined through the multiplexer.

0.16 Hz. The 12 signals are then routed to an instrumental
amplifier (IA) through a multiplexer. The gain is defined by
the application. Indeed, depending on how deep the sensor is
positioned in the equipment’s foam, it will be more or less
sensitive. Finally, the signals are converted with a 16 bits
Analog-to-Digital Converter (ADC).

III. EXPERIMENTAL SETUP

The Pulse system was seamlessly integrated in two different
types of equipment.

First, the sensor is put in a economic plane seat between the
stuffed tissue and the seat foam. the Pulse sensor is positioned
in the seating area. It is the optimal sensor position in a seat,
for two reasons:

• the BCG craniocaudal momentum (head-to-foot axis) is
larger than the other translations [20],

• body motions are less important in the seating area.
Then, the sensor is inserted in a standard medical bed

between the memory foam and the elastic one. This position is
the most straightforward technique to integrate the sensor even
though signals are significantly attenuated due to the memory
foam thickness (7cm). In a bed, contrary to a seat, the cran-
iocaudal translation is more difficult to capture. Instead, the
best bed-based BCG signal is a combination of dorsoventral
(back-to-chest) and transversal (side-to-side) components. To
maximize the BCG amplitude, the Pulse sensor is therefore
positioned around the chest area [21].

Eight healthy subjects were involved in this study, installed
and asked to remain still for 10 min in three different condi-
tions for HRV/HR results: sitting on a plane seat, lying on their
back and on their side on a standard medical bed. A POLAR
H10 ECG belt, attached to the subject by a chest strap, is used
as reference.

To validate the BF measurement, the subjects had to breath
following several rhythms given by a metronome: from very
low rate (5 bpm) to hyperventilation (40 bpm). Thanks to the
sensors sensitivity, the recorded signals’ amplitude was high
enough and reliable results were obtained.

IV. RESULTS AND DISCUSSION

The embedded software was developed to dynamically
select, among the 12 sensors of the matrix, the one delivering
the signal with the most useful information. Thanks to this
feature, combined with the high sensitivity of the CNA-based
sensors, the Pulse system is able to extract signals such as the



Fig. 4: Cardiac (a) and Respiratory (b) amplitude versus time.

Paper Correct cardiac peak
detection accuracy

Cathelain et al. [12] 95.6 %
Albukhari et al. [13] 83.9 %
Lee et al. [22] 73.8 %
Bruser et al. [23] 95.9 %
Pulse: medical Bed 97.8 %
Pulse: plane seat 99.9 %

TABLE II: Pulse system cardiac accuracy, in regard with state
of the art solutions.

ones presented in Fig. 4, from which vital parameters can be
determined with accuracy.

The Pulse system cardiac accuracy is given in Table II
regarding with the state of the art. It outperforms the others
solutions found in the literature, with an accuracy up to 99.9%.
The performances obtained on the airplane seat are slightly
better than those achieved on the medical bed because the thick
memory foam of the bed significantly attenuates the signals.

The Pulse system breathing average accuracy is 96.3%
and can even reaches 99% for BF around 20 bpm. This is
suitable for the targeted applications and similar to [11]; others
references do not quantify their accuracy.

V. CONCLUSION

The Pulse system, including a matrix of unobtrusive strain
sensors, was designed to determine vitals. Thanks to the
high sensitivity of the innovative Nanomade strain sensors,
it shows good performances in regard with the state of the art.
Moreover, these sensors can easily be integrated into different
equipment (medical bed, plane seat), are adaptive and low-
cost.

Yet, signals remain difficult to process in highly noisy
environment (e.g. in a car). Furthermore, the relative pressure
exerted by the person on each sensor could be computed to
provide new features (e.g., person’s position, fainting, pressure
ulcer risk). As a perspective, a new AFE enhancing the SNR,
allowing to combine information from separate sensor’ matri-
ces, a 32bits ADC improving the resolution and a dedicated
algorithm, involving machine learning techniques should be
considered to broaden application fields.
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