

Towards quantitative multispectral excitation fluorescence spectroscopy for intraoperative assistance in glioma resection in neurosurgery

Arthur Gautheron, Mathieu Hébert, Michaël Sdika, Vincent Duveiller, Lionel Simonot, Raphaël Clerc, Bruno Montcel

▶ To cite this version:

Arthur Gautheron, Mathieu Hébert, Michaël Sdika, Vincent Duveiller, Lionel Simonot, et al.. Towards quantitative multispectral excitation fluorescence spectroscopy for intraoperative assistance in glioma resection in neurosurgery. Journée partenariat du LabEx PRIMES, Jun 2022, Lyon, France. hal-03700745

HAL Id: hal-03700745

https://hal.science/hal-03700745

Submitted on 21 Jun 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Medical Imaging Research Laboratory

www.creatis.insa-lyon.fr

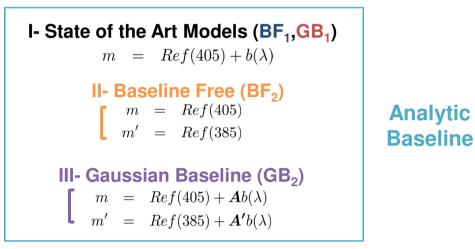
Towards quantitative multispectral excitation fluorescence spectroscopy for intraoperative assistance in glioma resection in neurosurgery

Arthur Gautheron¹, Mathieu Hébert², Michaël Sdika¹, Vincent Duveiller², Lionel Simonot³, Raphaël Clerc², and Bruno Montcel¹

¹Univ Lyon, INSA-Lyon, Univ Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F69100, Lyon, France ²Univ Lyon, Univ Jean Monnet de Saint-Etienne, Institut d'Optique Graduate School, CNRS UMR5516 Laboratoire Hubert Curien, F42000, Saint-Etienne, France ³Univ de Poitiers, CNRS UPR 3346 Institut Pprime, F86962, Futuroscope Chasseneuil Cedex, France

Introduction

Glioma is a serious tumor in terms of malignancy and progression. It is the most common and aggressive primary brain tumor. The main therapy is surgery to completely remove the tumor. The healthy tissue and the tumor margin may look the same during surgery which is responsible for problems for delineating the boundaries of the lesion. The 5-ALA-induced protoporphyrin IX (PpIX) fluorescence microscopy technique is now the most effective clinical standard but still suffers from a lack of sensitivity [1].


Previously, we have demonstrated [2], [3] that the **spectral complexity of** the intraoperative **fluorescence emission of PpIX** is relevant to **identify** the tumor tissue and in particular **the infiltrative component**. We also performed a first clinical trial on 10 patients using a prototype intraoperative fluorescence spectroscopy validated by the ANSM. This study demonstrated the relevance of the two PpIX states as proposed new biomarkers to identify the tumor margin and its border with healthy tissue [3]. **However**, this work faces **several obstacles related to** the understanding and **quantification** of biomarkers.

In this work, we propose a **novel approach to estimate the interest biomarkers contributions**. In addition, we investigate the **effect of internal reflectance** on the **estimation/prediction accuracy** of optical properties. Finally we build a **new experimental setup** to get clinical data which can processed using the combination of previous results.

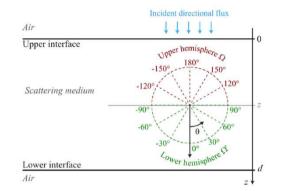
Methods

Multiple Wavelength Excitation Fluorescence Spectroscopy

 $Ref(\lambda_e) = \boldsymbol{\alpha_{620}} \cdot \eta_{620}(\lambda_e) \cdot S_{620}(\lambda) + \boldsymbol{\alpha_{634}} \cdot \eta_{634}(\lambda_e) \cdot S_{634}(\lambda)$

Analytic models suffer from lack of specificity when endogenous fluorophores emit near PpIX's fluorescence emission range

Non Linear Least-Square Regression with


a closed form solution of EB model [4]

Our Method IV- Estimated Baseline (EB) $\begin{bmatrix} m &= Ref(405) + \mathbf{b} \\ m' &= Ref(385) + \gamma \mathbf{b} \end{bmatrix}$

 $m' = Ref(405) + \mathbf{b}$ $m' = Ref(385) + \gamma \mathbf{b}$ Baseline

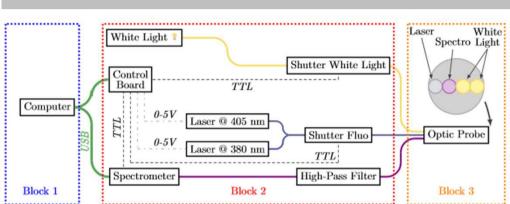
Estimated

Radiative Transfer Solving to improve light scattering corrections

$$\mu \frac{dL}{d\tau}(\tau, \mu) = -L(\tau, \mu) + \frac{1}{2} \int_{-1}^{1} p_0(\mu, \mu') L(\tau, \mu') d\mu'$$

- Radiance (Wm⁻²sr⁻¹)

 Absorption coefficient (cm⁻¹)


 Reduced scattering coefficient (cm⁻¹)
- Reduced scattering coefficient (cm $^{\circ}$) cosine of the interest angle θ

Solved using **Discrete Ordinates Method** [5]

$$r_{id} = \frac{\int_0^{\pi/2} L_0(\pi - \theta) R_{21}(\theta) \sin(2\theta) d\theta}{\int_0^{\pi/2} L_0(\pi - \theta) \sin(2\theta) d\theta}$$

 R_0 Radiance at z=0 (Wm⁻²sr⁻¹) R_{21} Fresnel Reflectance at the medium interface interest angle as defined above

Experimental Setup

Measurement of fluorescence at two wavelengths to determine sample's PpIX contributions

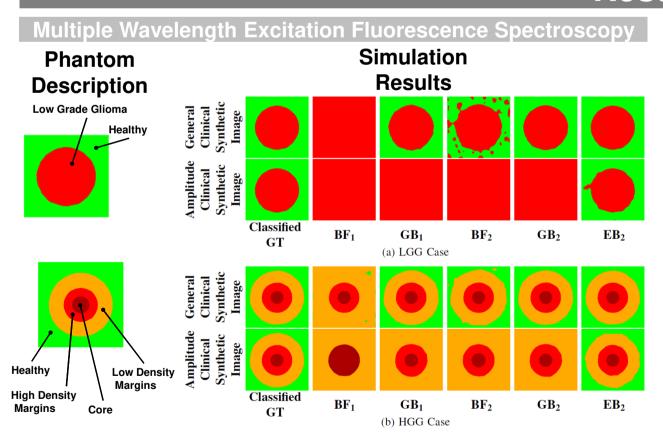
Measurement of **Diffused Reflectance** under white light illumination to extract sample's optical properties

properties

Acquisition is done by a custom build software

TIL Spectro Flue

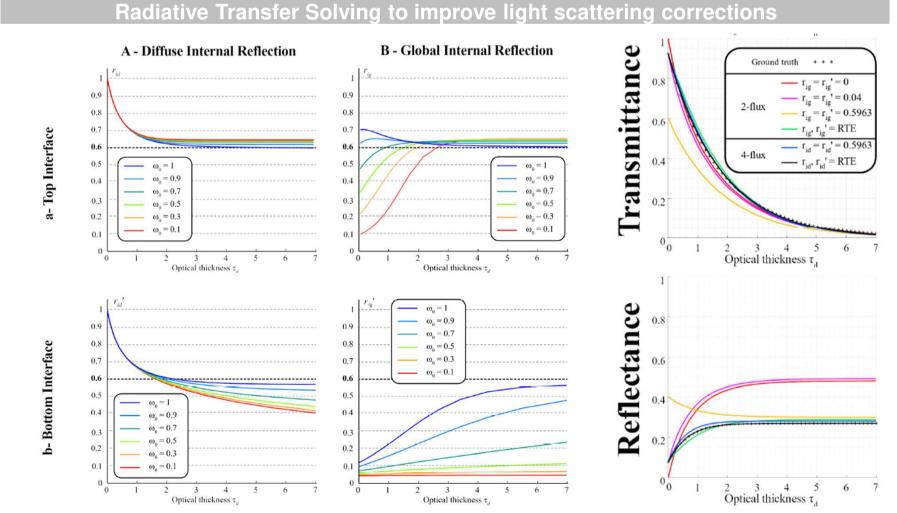
TIL Spectro SFD1


TIL Shutter SFD1

TIL Shutter SFD1

TIL Shutter SFD1

TIL Shutter SFD1


Results and Discussion

This **new model** keeps a **specificity** almost **equal to** that of the **ground truth while** the one of **existing models drops to 0**.

In addition, it is as accurate as existing models elsewhere.

This new model reveals the potential of **multiple excitation** wavelengths to increase the classification sensitivity of fluorescence measurements.

Internal reflection equal to its **Lambertian value** can **lead to significant errors** (up to 100%) for 2-flux models when dealing with translucent materials.

Moreover, **parameter extraction** with the 2- and 4-flux models can be **significantly improved** using the internal coefficient calculated using the radiative transfer equation.

Acknowledgments

PRIMES UNIVERSITE DE LYON

This work has been funded by LABEX PRIMES (ANR-11-LABX-0063) of Université de Lyon, within the program "Investissements d'Avenir" (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR) and carried out within the framework of France Life Imaging (ANR-11-INBS-0006).

Perspectives

- Application of estimation model on clinical data acquired with the experimental setup
- Improve the measurement correction due to biological tissues with RTE Solving in Fluorescent cases

Stummer W. et al. Neurosurgery, vol. 42, no 3, p. 518-526 (1998).
 Montcel B. et al. Biomed. Opt. Express, vol. 4, no 4, p. 548-558 (2013)
 Alston L. et al. Biomed. Opt. Express, vol. 10, no 5, p. 2478-2492 (2019)
 Gautheron A. et al. Proc. SPIE 11919, Translational Biophotonics (2021)

