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Abstract
System and job monitoring are two established way
of measuring the utilization of HPC systems. Due
to the scale and complexity of modern HPC sys-
tems, users also require to profile their application
using the actual system. However, the usage of
many tools usually requires more effort in support
and can also lead to significant under-performance.
We introduce Colmet, an existing system modified
to combine monitoring and profiling operations.
Users can dynamically reconfigure Colmet at run-
time and set a different sampling period for each
metric. We present the results of the performance
analysis conducted.

1 Introduction
Modern HPC systems are composed of hundred of thou-

sands if not millions of cores linked to nodes dedicated to
storage with a very efficient network. They require large
amounts of money and effort for their design, their building
and for their operation. At this scale, their efficient usage is
an essential goal.

The scale of those system makes tedious any manual mon-
itoring and motivates dedicated monitoring systems. Some
systems focus on presenting to system administrators an
overview of the status of components in the system (Nagios
[13]). In this paper, we define monitoring as the process of
collecting, gathering and storing data about the execution of
one or several applications. Some systems also include some
way of displaying and presenting the collected data to the
user. This data can be drawn from various sources and will
be called metrics. Metric sources include hardware coun-
ters (e.g., using perf in Linux systems), operating system
performance data (virtual memory or kernel related metrics)
or network performance data. In the recent years, the issue
of energy consumption has become a crucial matter as the
biggest systems now require tremendous amounts of energy
to operate, for their nodes and their cooling [1]. Metrics are
collected periodically. We call sampling period the interval
between two moments in time where the system collects data.

Designing monitoring systems for HPC platforms has the
following challenges. First and foremost, the monitoring sys-
tem will interfere with user applications running on the nodes.
To avoid tampering as much as possible the data, the overhead
of the system needs to be as small as possible. Another issue
is the complexity of the hardware and software architecture
in the system. Monitoring systems designers must choose
between two directions. Either supporting and optimizing a
specific architecture, which often results in a custom monitor-
ing tool for each system. Or building a portable system which
might not suit perfectly the monitored platform but in return
will not require much effort to use in many places. Once the
data is collected, another issue is to present it in a usable and
meaningful way.

In a cluster, users are allocated only a subset of the nodes
in what is called a job. In the development process, users of
the HPC systems might find the need to perform a profiling
of their job. This set of techniques, that aims at optimizing
the performance of an application, is crucial in the context of
HPC. Due to the complexity of the HPC system, executing the
application on another system will only yield limited results.
To answer this specific need, distributed application profiling
tools have been developed like the ones we present in Section
2. Designers of such tools face the same challenges that we
described for monitoring systems. Moreover, a system where
every user would be running its own profiling tool next to the
global monitoring system would most likely suffer significant
under-performance.

In this article, we propose to use the same tool for the sys-
tem administrators and their monitoring needs as well as for
the users and their profiling needs. We implemented this in
Colmet [2], an existing monitoring system previously devel-
oped in the Datamove team. We modified the tool so that it
could collect data at different sampling period for each met-
ric. Our system limit the performance overhead both on the
compute nodes and on the network with simple string sub-
stitution. It is also rather portable with ZeroMQ sockets for
communication which is very common but also cgroups v1
which requires a specific set of Linux kernels to be running
on the compute nodes. We believe our system will simplify
the usage for both system administrators and users. Users
will be provided a integrated and optimized way of profiling
their application and system administrators will only have this
unique tool to maintain and to fit to the system.

Stamp



The paper is structured as follows. Section 2 gives an
overview of multiple distributed monitoring and profiling sys-
tems. Section 3 details the design and the architecture of our
system. The performance analysis that we conducted is pre-
sented in section 4 before the discussion about limitations and
future work in section 5.

2 Related work
Monitoring tools are often customized to the system they are
supporting for performance reasons if not built for it. How-
ever, modern systems have some usual properties that we de-
scribe in this section. We also present some profiling software
designed for distributed systems.

To begin with, we note the existence of a recent review of
different monitoring systems for HPC systems [20]. This re-
view identifies one of the problems of monitoring large scale
HPC system as requiring multiple tools with ”custom scripts
to get comprehensive monitoring of the HPC system” (section
3.1). It also mention that ”there is no single tool to achieve
all aspects of monitoring, analysis and alerting” (also section
3.1). On this part, the work presented here addresses part of
those aspects while adding a profiling use-case.

The type of metrics that a system can collect is one the most
important properties. Some systems will collect CPU perfor-
mance counters values, virtual memory statistics and kernel
related metrics (LIKWID [17], DCDB [16], Colmet [3]), I/O
or filesystem related metrics (Beacon [21], Colmet, DCDB),
temperature (ExaMon [7], Colmet, DCDB) or Network per-
formance (Colmet, DCDB). Some metrics are collected in-
band (i.e. on the compute nodes) and some must be accessed
out-of-band (ie. on service nodes or on the routers).

A desirable property for a monitoring system is the abil-
ity to store data as a time series. As their name suggest, time
series are collection of measures performed at successive mo-
ments in time. They are particularly important to give infor-
mations on the changes of a metric over time. Most modern
systems (e.g., NWPerf [15], LIKWID, Colmet) are capable of
storing metrics as time series often using dedicated databases.

These time series can contain the collected data at different
scopes.

• The node-scope gives insights on the performance of the
compute nodes. This level is particularly interesting for
the system administrators to keep track of the perfor-
mance of the nodes over a period of time or to correctly
scale the system to the needs of the users. Systems like
Ganglia[14] or DCDB are examples with this scope.

• Consequently, job-level scope combines data collected
on the compute nodes and job data given by the Re-
source and Job Management System (RJMS) to store
the data corresponding to each job. This enables HPC
system users to obtain insights on the performance of
their application over time. NWPerf and Colmet are ex-
amples of system at this scope. Data gathered with this
scope is sometimes used to perform analysis on the job
performance and help the non-expert user to understand
the data. LIKWID is an example of such tool providing
simple analysis to the users. For this scope, a link be-
tween the data collected on a compute node and the job

assignation data must be made. Collection agent on the
compute nodes can be given this responsibility like in
Colmet. Other systems like LIKWID rely on the routers
to tag the information as it passes by them.

Even though such analysis can be helpful, HPC users are
most of the time more knowledgeable about their applica-
tion than the monitoring system designers. With an API to
dynamically change the metrics collected and the sampling
frequency at runtime, such users could tune the monitoring
along their needs all along the execution of the application.
To our knowledge, no system implements this feature.

Due to the volume of metrics, especially when the number
of nodes in the cluster or the sampling frequency increases,
some systems like Beacon or Colmet compress the data on the
compute node before sending it on the network. This com-
pression is a trade-off between overhead on the network and
overhead on the compute node. Even if it does not compress
the data, NWPerf designers included a network contention
analysis in [15].

The criteria presented here are summarized in Table 1.

Profiling tools usually instrument the code or the exe-
cutable of an application to trigger data collection at specific
points of the execution or rather attach to the process and col-
lect both the metric values as well as the instruction that the
process is executing. Parallel profiling tools like TAU [19]
follow the former principle while other tools like STAT [6]
use the latter. They share with monitoring systems some of
their properties like the way metrics are collected (in-band or
out-of-band), the time series storing, the per-job profiling.

3 Colmet : Design and Architecture
In this section, we present the design of Colmet with our
modifications. Colmet was first designed after the publica-
tion of [11] in 2013. After a first version in Perl, a version
has been written in Python [3] that is available in produc-
tion on Grid5000 clusters. To improve the performance, a
Rust re-writing had been started but was left unfinished. To
mix operations of monitoring and of profiling, the tool needs
to collect metrics at a small sampling period. It motivated
the refactoring and improvement of the code to leverage the
speed of Rust.

In terms of design, our version is close to the Python one
on a lot of points. First and foremost, the tool uses some
of the same backends (i.e., an abstraction of the protocol or
algorithm needed to actually perform the data capture). Back-
ends related to cgroups ([12]) metrics and to perf events are
implemented but we intend to add the others like tempera-
ture, energy consumption (with the Running Average Power
Limit - RAPL [9] metrics), or Infiniband related metrics. We
note here that the Python version was using the taskstats in-
terface, which is a kernel interface to access data about a pro-
cess and we changed it to leverage cgroups created by the
RJMS. It also reuses Elasticsearch as a time series database.
The scope of the monitoring is at the job-level. It relies here
on the RJMS to creates a cgroup for the job on the allocated
compute nodes.



Ganglia NWPerf ExaMon Beacon LIKWID DCDB Colmet Colmet
(Rust
version)

Metrics VMstats,
OS and
custom

HC/perf
and VM-
stats

HC/perf
and En-
ergy

IO HC/perf,
VMstats,
network
and IO

VMstats,
OS, IO,
and energy

HC/perf,
VMstats,
network,
energy and
IO

HC/perf
and VM-
stats

Scope node job node node job node job job
Dynamic
reconfigu-
ration

yes

Features
for the
users

Integrated
analysis
and visu-
alization

Integrated
online and
offline
analysis

Visualiza-
tion GUI

profiling
use-case

Performance
considera-
tions

Hierarchical
collection

performance
analysis

Compress-
ion

performance
analysis

ID substi-
tution

ID substi-
tution

Table 1: Summary of the state of the art

Blank means that there is no information on the related paper.
Metrics :
HC : Hardware Counters, OS : proc and sys virtual filesystem related, VMstats : virtual memory related, IO : filesystem related,
network : high-performance network related

Colmet is composed of two components : a node agent
and a collector. Figure 1 presents the architecture that we de-
scribe in the following.The node agent runs on every node
in the system. It stores the list of metrics to gather on this
node as a tuple containing the metric, the job id and the sam-
pling period. This relation allows to collect data at different
sampling frequency for each metric and to link the data with
the jobs. This means that some metrics can be set by system
administrators on all the jobs for monitoring with a low sam-
pling frequency. Typical values are at the order of the second.
While other metrics can be set by the users for their job with
possibly a higher sampling frequency, especially under the
second. To this end, users can interact with a script to update
the metrics to collect or the default sampling frequency on
the compute nodes. Each time some metrics should be col-
lected, the node agent queries the corresponding collection
backends. The cgroup backend read the data respectively in
the files cpu.stat and memory.stat created in the vir-
tual directory of the cgroup. For perf event data, they are also
read from a file created by a call to perf event open().
Data is then processed and sent to the collector. To avoid us-
ing too much the CPU, the processing simply substitutes an
id in place of the metric name, sending shorter messages over
the network. Unlike the node agent, the node collector is writ-
ten in Python as we believe that the overhead on the collector
node is not a significant performance issue. The collector lis-
ten on a port, receives the data and place it in the Elasticsearch
database. This means that it requires a server to run. Com-
munication between the node agents and the collector is done
with ZeroMQ (ØMQ) sockets.

4 Performance analysis
An important part of this work was dedicated to the measure-
ment of the overhead caused by the monitoring and profiling
system. We focused on the execution time overhead. We
studied the effects of the following parameters : the number
of metrics, the sampling period and the version of Colmet
(including a special value without Colmet launched) using
2 benchmarks from the NASA Parallel Benchmarks (NPB)
suite as applications. In this section, we describe our experi-
mental set-up, present the results we obtained and the analysis
that guided our exploration.

4.1 Experiment setup
The first benchmark is the Embarrassingly Parallel (EP)
benchmark. This benchmark accumulates statistics from
pseudo-randomly generated numbers. It is compute-intensive
with almost no communication and thus provides an estimate
of the upper achievable limits for floating-point performance.
The second one is the LU Simulated Computational Fluids
Dynamic (CFD) application (LU) benchmark. It is intended
to accurately represent the principal computational and data
movement requirements of a real CFD application and thus
is closer to a real application than the previous one (cf. the
specification of the NPB [18], in Sections 3.1.1 and 3.2.1).
We used the MPI version of both benchmark. The size of
the benchmark is quantified by the class. For each number of
node, we chose a class that would be long enough to lower
the influence of noise in the result.

All our experiments were carried out in Grid5000 [8], more
precisely in the dahu cluster of the Grenoble site. Each node



Figure 1: Architecture of Colmet

in this cluster is provisioned with 2 Intel Xeon Gold 6130
CPUs with 16 cores each, 192GiB of memory and a 240GiB
of SSD (Samsung MZ7KM240HMHQ0D3). All the nodes
are also connected using a simple TCP network as well as
a 100 Gbps Omni-Path network. Nodes are running Debian
11 with OpenMPI 4.1.0. Experiments were run using all the
cores of the compute nodes but not all the hyperthreads be-
cause it would not improve the performance as HPC appli-
cation computations mainly involve floating point operations
and there is usually one Floating Point Unit (FPU) per core.

One technical point worth noting is the usage of the Nix
package manager during the experiments to install the re-
quired software [10]. This package manager provides strong
guarantees on reproducibility. A package is specified by a
definition containing the name and the version of all its de-
pendencies. Nix then installs each package in its own envi-
ronment ensuring that it can run properly as it was designed
and tested. A system of linking helps installing each package
only once to prevent from using more space than required on
the disk.

Usual monitoring systems collect metrics with sampling
periods in the order of second. For our use-case of profil-
ing, the monitoring tool should be able to collect metris with
a sampling period under the second while keeping the over-
head as low as possible. We chose values for the sampling
period between usual values like 5 seconds up to the millisec-
ond because we believe that smaller values would not be of

interest to the users.
We call configuration a set of values for the parameters.

The experimental script [4] requests a job, install the required
softwares and executes a set of configuration specified in a
YAML file. Because a single experiment can require multiple
version of Colmet, an experiment requires multiple run of the
script, one for each version. To obtain results as accurate as
possible, each configuration is replicated 10 times. We also
randomize the order in which the configurations are executed
to minimize the observational error. With the 10 values for
each configuration, we compute the mean and the confidence
intervals with a coefficient of 95%.

4.2 Experimental results and analysis
We present the result of 2 experiment that we performed to
measure the impact of Colmet on the performance of the sys-
tem.

The first one quantifies the impact of the number of metrics
collected by the node agent. We ran the LU (class D) and
the EP (class E) benchmark with a sampling period of 0.001,
0.01, 0.1, 1 and 5 seconds on 8 nodes (+1 for the collector).
We then compared three version of Colmet : the Rust version
with only 1 metric, the Rust version with 67 metrics (i.e.,
the greatest amount the system can gather) and the reference
without Colmet. An ideal system would not be impacted by
the number of metrics. Results are presented in Fig 2a on the
upper row.



The second experiment compares the Rust version with
the Python version. To do so, we used the same values
as the first experiment and ran them with the Rust version
with 67 metrics, the Python version and without Colmet as
a reference. Here, our hypothesis is that the Rust version
should be better than the Python version but worse than the
reference. Results are presented in Fig 2a on the lower row.

The results for the first experiment clearly show that the
number of metrics do not have a significant impact on the ex-
ecution time of the application. The only configuration where
the confidence interval are not intersecting is with the LU
benchmark at 0.001 second in sampling period.

For the second experiment we do not have, at the moment,
enough results to conclude on the hypothesis. Similarly to
the first experiment, the execution time with the EP bench-
mark are spread on a large interval which leads to larger con-
fidence intervals. An hypothesis for this behavior could be
that the benchmark is compute-intensive and that Colmet then
could be affected to a different core each time leading to non-
uniform disruption of the execution which causes such differ-
ence between time of the same configuration. On the other
hand, the results collected from the experiment with the LU
benchmark correspond to the hypothesis. We also observe
that, at 1 and 5 seconds, the Python version becomes signif-
icantly better than the Rust version. For the moment, we are
not able to explain this part.

5 Future work
5.1 Limitations
Considering the problem, namely mixing monitoring and pro-
filing in the same tool, the biggest limitation that this tool ex-
hibits is the impossibility to instrument the code of the appli-
cation. While this tool is perfectly capable of collecting met-
rics at a very high sampling frequency, correlating the gath-
ered data with the instructions of the application will be hard
if not impossible.

Even if we implemented the mechanism of dynamically
changing the configuration of the node agent, it is not pro-
duction ready especially in terms of permissions. The lack of
proper permission system allows users to change the config-
uration of the node completely.

Another limitation on the design is the scalability. All our
experiments were using a relatively small number of nodes
with regard to the usual size of small to middle size clusters.
At a larger scale, our choice of simple compression might not
be enough to prevent an important overhead on the network
because all the node agents are sending to the same collector.

5.2 Directions
First and foremost, future work should include a thorough
and precise performance analysis especially on the improve-
ment compared to the Python version. We believe that such
analysis will require to carefully choose other application and
to study their behavior. This analysis should also investigate
the scalability consideration. To continue on the compression
part, we believe that a design close to what has been done in

Rezolus ([5], section Background) could improve the scala-
bility of our design. The idea is to locally collect metrics at
a high frequency and then accumulate the data over a mov-
ing window. The resulting data is then transmitted at a lower
frequency to the collector. In our case, we could gather mon-
itoring with this principle while keeping the current sending
of all the data for the profiling.

In terms of permissions, we could have multiple group of
metrics. Each group could be accessed by users with a certain
permission. This could forbid users from modifying the met-
rics defined by the system administrators but also other users
jobs. Building on the topic of security, we also note that it
would be rather simple to add encryption of the data before
sending on the network. But it would increase the overhead
on the CPU of the compute nodes.

Another point that could be the object of future works is
the integration with other monitoring or profiling tools. As
detailed in Section 2, the subject of monitoring has been al-
ready extensively studied and many tools already implement
many efficient way of collecting data. Future works could
include finding a abstraction to include other tools as back-
ends for Colmet. This would be a challenge in that other
tools were not designed to support a different sampling pe-
riod for each metric but it could allow Colmet users to benefit
from works on other backends (not already implemented) or
on data visualization and analysis (which could be useful for
both monitoring and profiling).

6 Conclusion
In this paper, we presented the design and our implementa-
tion of Colmet, a tool capable of collecting metrics at dif-
ferent sampling period and to tag them with information on
the job, allowing for job-scope monitoring and profiling with
the same system. After giving design and implementation
details, we presented the results of the performance analysis
experiments performed. Experiments were carried out using
multiple benchmarks from the NPB suite and studying the
effect of the sampling period, of the number of metrics and
of the version of Colmet on the execution time. The results
show that the number of metrics does not cause a significant
overhead on the execution of application. We also discussed
some directions for future work.
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Figure 2: Results of the experiments
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