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Abstract

The agglomeration dynamics within colloidal boehmite suspensions is crucial to understand the formation
of a porous boehmite network during the manufacturing of γ-alumina catalyst carriers. Such carriers are
frequently used in petroleum hydrotreating processes and must have specific textural characteristics. The
method described in this work enables to model the three-dimensional morphology of colloidal agglomerates
of boehmite for different conditions of pH in the colloidal mixture. These agglomerates are then used
to generate a boehmite grain, whose textural properties can be numerically estimated. The coagulation
kinetics has been studied with experimental Dynamic Light Scattering and Lagrangian model including
Brownian dynamics and DLVO interaction potential. The adjustment of the Brownian aggregation kernel
of a population-balance model enables to estimate the agglomerates size distribution and fractal dimension.

Keywords: Colloidal agglomeration, Fractal dimension, Catalyst carrier.

1. Introduction

Tuning the porosity of catalytic supports is at-
tracting significant interest for the control of reac-
tion kinetics in many industrial processes. Most
of the used catalytic supports are in γ-alumina,5

prepared from boehmite powder which undergoes
several processing steps where its water content
varies. Boehmite (the γ-alumina precursor) passes
from the powder, to the paste and finally to the
porous solid state. During these processes, struc-10

tural changes occur at the meso- and macro-scale,
which have an impact on the final porosity of the
solid and its performance as a catalytic support.
The structure of γ-alumina catalyst carrier is due
to the organisation of primary boehmite crystal-15

lites, of a few nm [1], formed during a precipitation
phase. The primary crystallites assemble to form
aggregates and agglomerates. The shape of crystal-
lites, aggregates and agglomerates determines the
type of porosity at micro-, meso- and macro-scale20

[2].

1Present address: Politecnico di Milano, Dipartimento di
Energia, Via La Masa 34, 20156, Milano; Italy
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In order to perform a tailored synthesis of γ-
alumina supports in the coming years, it is nec-
essary to develop an experimental and numerical
method to study the effect that the operating con-25

ditions of the manufacturing process have on the
structure of a porous solid. In this study we fo-
cus on the effect that the chemical composition of a
colloidal suspension of boehmite has on the fractal
dimension and on the size distribution of boehmite30

agglomerates. Our strategy (see Fig.1) enables to
describe the morphology of the solid structure ac-
cording to synthesis parameters. To this purpose,
ideal and low concentration boehmite suspension
have been studied under Brownian conditions. In35

these conditions, we are in an ideal case where the
physical interactions are fully theorized. Therefore,
no unknown parameters are used to fit the experi-
mental data set. These systems have been described
using theoretical models of colloidal agglomeration40

(like DLVO theory [3, 4] and Smoluchowski equa-
tion [5]).

The experimental characterisation of coagulating
colloidal suspension via DLS (dynamic light scat-
tering) provides data for the adjustment of the ag-45

gregation kernels of a population-balance model.
A discrete-element model, relying on DLVO and
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DLS and SAXS analyses
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3.1 Lagrangian Brownian
dynamics

3.2 Gyration radius and 
fractal dimension

3.3 Population balance model 3.4 Morphological model

4.1 Experimental results
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Figure 1: Strategy to estimate textural properties of a boehmite porous solid according to the physical-chemical parameters of
Brownian agglomeration.

Langevin [6] theories, enables to fill the experimen-
tal gaps and to estimate the evolution of average
radius and fractal dimension along the agglomera-
tion process. The fractal dimension df is here con-
sidered as a structural parameter to characterise
individual agglomerates. The Lagrangian approach
and the population balance can represent agglom-
eration under Brownian motion and a validation is
possible between these two modeling approaches.
These models both depend on the Fuchs stability
coefficient, which is a function of the pH and ionic
strength of the colloidal suspension. The Fuchs sta-
bility ratio reaches a value close to unity for strongly
unstable suspensions which have a high tendency to
agglomerate [7], its theoretical value can be com-
puted from the DLVO interaction potential U tot

W ≈ 1

2κa
exp

(
U tot,max

kBT

)
(1)

assuming spherical particles of radius a, homoge-
neous surface charge distribution and negligible sol-
vation force. r is the distance between the centers
of the two particles, kB is the Boltzmann constant
and T is the temperature.

κ =

(
εkBT

2e2Av

)−0.5√
I (2)

is the inverse of the Debye length, the length of the

layer of ions that are strongly bond to the particles
and screen the electrical field of the particle.

The Lagrangian model input parameters are the50

size of the primary particles, the boehmite con-
centration and W . The model results is a depen-
dence of the fractal dimension on the gyration ra-
dius. This dependence justifies the consideration of
a size-dependent fractal dimension and is an input55

of the population balance, where the Smoluchowski
kernel is considered. The population balance also
depends on the size distribution of the primary dis-
persed boehmite particles (in our case a Dirac func-
tion), on W and on the boehmite concentration.60

The result of the population balance is the size dis-
tribution of the boehmite agglomerates at the end
of the agglomeration process.

The relationship between the fractal dimension
and the agglomerate gyration radius, and the ag-65

glomerate size distribution are th input parameters
of a morphological agglomeration model [8], whose
result is the final morphology an agglomerates as-
sembly. This last model is based on a random
sequential addition algorithm and on morphologi-70

cal operators. It does not describe the coagulation
physics, but simulates a stochastic assembly of par-
ticles. It is suitable for the simulation of a realis-
tically large morphology, which makes possible the
estimation of textural properties.75
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2. Experimental methods

Boehmite suspensions were prepared using a
highly dispersible powder (Pural SB3, from Sasol
GmbH) with a loss on ignition of 26%. The suspen-
sion was prepared with a concentration of boehmite80

powder of 0.04 g/L. The boehmite concentration
was chosen according to the measurement tech-
niques. Indeed, the coagulation time scale must
be of the same order of magnitude of the acqui-
sition time. The nitric acid (1M Fisher Scientific85

J/5550/PB15) concentration has been chosen in or-
der to peptize the boehmite powder at a pH around
3, 0.0015 M. In order to control the pH, ammonia
has been injected (1M Chem-Lab CL05.0101.1000).

The pH was measured using a pH-meter90

(Seven2Go Mettler Toledo). The zeta potential
measurement have been performed with Malvern
Zetasizer Nano ZS with 1 mL sample using capil-
lary cells with electrodes. A study of the titration
curve and the corresponding zeta potential vs pH95

curves was realized to tune the zeta potential via
NH3 injection in the initial peptized boehmite sus-
pension.

DLS measurement were performed with Malvern
Zetasizer Nano ZS, using square polysyrene cell. 1100

mL of initial peptized suspension was taken, fil-
tered with a syringe filter at 5 µm. This procedure
was necessary to remove any dust that could falsify
the measurement and to eliminate the few grains
of un-peptized powder that would not be visible105

with DLS. The initial suspension is characterized.
Then, 0.2 ml of ammonia (and/or NaCl) solution
was injected in the measurement cell and the in-
situ analysis was started. The average diameter
was computed with the cumulant method [9].110

SAXS analyses were performed at the SWING
beamline of SOLEIL synchrotron in Saint Aubin,
France. The incident energy of the X-ray beam
was 10 keV. 200 mL of the initial suspension were
placed in a stirred reactor, the sample was pumped115

continuously through a quartz capillary of 1.5 mm.
The injection of 40 ml of the ammonia was achieved
via remote control of two syringes. The average gy-
ration radius and fractal dimension was computed
using the Beaucage model [10].120

3. Numerical methods

Three numerical approaches were used to model
the colloidal agglomeration process and the mor-
phology of the agglomerates. Concerning the ag-

glomeration process, the two methods were Brown-125

ian dynamics and the population balance equation.
The first enabled to simulate fast agglomeration ki-
netics, which cannot be observed experimentally,
giving insight into the evolution of the size and frac-
tal dimension of agglomerates in a system under130

Brownian conditions and according to the DLVO
interaction potential. The drawback was, however,
the computation time, which became very high for
the simulation of large systems. The second, the
population balance, enabled to simulate the evo-135

lution of a system consisting of a large number of
particles. The third approach allowed to build the
morphology of colloidal agglomerates using stochas-
tic packings of elementary objects.

3.1. Lagrangian Brownian dynamics140

The Lagrangian model was described in a previ-
ous work [8]. The initial system was composed by
2048 identical spherical particles of radius a =40
nm, with homogeneous surface charge within a cube
of length 3800 nm. A random sequential addition
algorithm was used to generate the initial positions
of the spheres using particle a concentration of 1%.
The dynamics of each sphere i was computed via
the momentum balance

mi · ~ai =
∑
i6=j

~Fij + ~FRi + ~FDi , (3)

where mi and ai are the mass and the accelera-
tion of the particle. ~Fij is the DLVO interaction
force deriving from DLVO potential [3], the model
accounts for the interaction between the particle i
and all the other particles j contained within an145

interaction sphere of radius 6a. Indeed, the inter-
action forces between particles at a larger distance
are negligible. This leads to a significant reduction
in calculation time.

~FRi is the random Langevin force (accounting for
Brownian motion)

~FRi =
√

2 · kB · T · ~W (4)

where ~W is a random vector whose components are150

independent Gaussian random numbers with zero
mean and unit variance.

~FDi is the viscous drag force (Stoke’s law)

~FDi = −6 · π · µ · a · ~vi (5)

which depends on the viscosity of the medium µ,
on the velocity of the particle ~vi and on the particle
radius a.155
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A semi-implicit finite differences method was
used for numerical integration [11]. In order to en-
sure robustness when the particles are close to each
other (the DLVO potential tends to - infinity when
the particles are in contact), a contact force was160

added when two particles were at a distance lower
than 2a which was modeled as a Hertz contact force
[12]. In order to approach the behaviour of an in-
finite medium, periodic boundary conditions were
implemented [13]. Identical spheres of 40 nm radius165

were considered within a cubic volume of 3800 nm
side. The volume fraction occupied by the spheres
is 1 %, leading to 2048 spheres. At time 0, a mini-
mum interparticle distance of 1 nm is imposed. An
ionic strength of 0.005 M and a surface potential of170

1 mV, which is characteristic of conditions close to
the point of zero charge, are considered.

3.2. Gyration radius and fractal dimension

When the positions of all the spheres at a given
time instant are known, it is possible to compute
the gyration radius Rgyr and the fractal dimension
df of the agglomerates [14]

df =
log
(
ξ
kf

)
log
(
Rgyr

R

) , (6)

where ξ is the number of primary particles (spheres
of 40 nm radius) that constitute the aggregate and175

kf is the fractal pre-factor [15] fixed at 1.2 [8].
Rgyr is given by the geometrical average distance

between the spheres’centers and the agglomerate
center of mass. The formula used by Filippov et
al.[16] contains also the radius of the primary par-
ticle a, so that for ξ → 1, Rgyr → a:

R2
gyr =

1

ξ

ξ∑
i=1

[
(xi − xg)2+(yi − yg)2+

+(zi − zg)2 + a2
]

(7)

where the coordinates of the centers of the spheres
are xi, yi and zi and the coordinates of the agglom-
erate center of mass are xg, yg and zg:

xg =

∑ξ
i xi
ξ

; (8)

yg =

∑ξ
i yi
ξ

; (9)

zg =

∑ξ
i zi
ξ

. (10)

3.3. The population balance model

The population balance equation was used to de-
scribe the evolution of large colloidal boehmite sys-
tems in terms of size distribution and number of
primary particles 1021. The governing equation was
solved in its discrete form

dNk
dt

=
1

2

k−1∑
i=1

βaggi,k−iNiNk−i −Nk
∞∑
i=1

βaggik Ni (11)

where

• Nk is the concentration number of clusters of180

mass ξk, where the mass means the number of
primary particles constituing the aggregate k;

• the first term represents all possible collisions
leading to the formation of an aggregate of
mass ξk;185

• the second term represents the rate of disap-
pearance of the aggregates of mass ξk due to
aggregation with aggregates of any mass;

• the β terms are Brownian agglomeration ker-
nels

βi,j =
2

3

kBT

ηW
(ξ

1/df
i +ξ

1/df
j )

(
ξ
−1/df
i − ξ−1/dfj

)
;

(12)

The number of primary particles in each agglomer-
ate was related to the agglomerate fractal dimen-190

sion via the relationship in Eq.(6).
The population balance parameters that were ad-

justed with DLS data are the Fuchs coefficient W
and the parameters of the curve df = f(Rgyr). For
this latter, an arctangent function was used to re-195

produce the shape obtained from the Lagrangian
simulation. However, the parameters of this func-
tion were adjusted with experimental data, because
Lagrangian simulation is impacted by the low num-
ber of particles and by the assumption of periodic200

conditions involving agglomerates breakage.
Before adjusting the model kernels with DLS

data, it was necessary to consider the maximum
radius that could be measured with DLS as well as
the type of weighting to compute the average ag-
glomerate radius. Indeed it was necessary to ”cut“
the population distribution to a maximum agglom-
erate radius Rlimgyr of 1.5 µm. This entailed a limit
mass number of

ξlim = kf ·

(
Rlimgyr
a

)df
(13)
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where kf is the fractal pre-factor (assumed equal
to 1.2 [17]) and a is the radius of the primary par-
ticle. The cut population is composed by all the
agglomerates that have

ξ ≤ ξlim. (14)

Afterwards it was necessary to estimate a
weighted average radius considering that DLS mea-
sures an effective diffusion coefficient based on how
quickly the intensity of the scattered light changes.
The diffusion coefficient is then related to the aver-
age radius R via the Stokes-Einstein law

D =
kB · T

6π · µ ·R
. (15)

Considering the effective scattering coefficient de-
scribed by [18]

Deff '
∫∞
0
R6
i ·Di ·Gi · dR∫∞

0
R6
i ·Gi · dR

, (16)

where Deff is the effective diffusion coefficient, Ri,
Di and Gi are the radius, the diffusion coefficient
and the number distribution of particles within the
class i. By substituting Di with the Stokes-Einstein
law. Eq.(16) in a discretized form becomes

Deff '
∑nclass

i=1 R6
i ·Di ·Np,i∑

R6
i ·Np,i

. (17)

According to the Stokes-Einstein law the average
radius R̄ is related to the effective diffusion coeffi-
cient

R̄ '
6π·µ
kB ·T
Deff

. (18)

Substituting Eq.(17) in Eq.(18) leads to

R̄ '
∑nclass

i=1 R6
i ·Np,i∑nclass

i=1 R5
i ·Np,i

(19)

which is the average weighted radius consistent with
the DLS principle. The algorithm of Levenberg-
Marquardt was used to adjust W and the parame-
ters of the df = f(Rgyr) relationship.205

3.4. Morphological model

The morphological aggregation model [8] relies
on a sequential aggregation of primary objects. It
enables to tune the compactness of the final assem-
blies according to the probability of sticking the pri-210

mary objects ether in the concave points or in con-
cave points close to the center of mass of the assem-
bly. In the case of identical spherical primary ob-
jects, a specific numerical scheme enables to build

assemblies of several millions of primary objects.215

In order to build the agglomerates within the size
range predicted by the population balance, a resolu-
tion of 35 nm2/voxel was considered. A discretized
agglomerates mass distribution was built from the
solution of the population balance equation. The220

agglomerates belonging to such distribution were
used as primary agglomerates to build an agglom-
erate of agglomerates, respecting the distribution
[19].

4. Results225

4.1. Experimental results

The evolution of the average gyration radius mea-
sured with DLS i reported, for different pH, in
Fig.2(a). These results are qualitatively in agree-
ment with DLVO theory [3] since the closer the pH230

is to the PZC, the more unstable the suspension,
and therefore the more favoured is the agglomera-
tion.

In Fig.2(b) we find the value of FuchsW using the
theoretical formula in Eq.(1) and the experimental235

values computed according to Holthoff at al. [20]
(details on the computation are in Appendix A).

The DLS results for pH within the range 8.8 -
9.7 are similar, leading to a quite fast growth of the
average hydrodynamic radius. Indeed these condi-240

tions are close to the point of zero change (PZC)
of the boehmite which is at pH 9 [21]. At pH 10.5
and at pH 11 the agglomeration is slower but still
visible within 20 minutes.

For a pH within 8.8 and 10.5, all the experimen-245

tal points show an initial rapid growth, followed
by a slower one. The high variability of the mean
radius can be due to several factors. First, the
low boehmite concentration, necessary to observe
slow kinetics, decreases the signal-to-noise ratio.250

In addition, the necessity of maintaining Brown-
ian conditions imposed that the suspensions were
not mixed after the ammonia injection, leading to
polydisperse systems. The experiments at pH 11
show different linear behaviour on Fig.2(a), this can255

be attributed to the fact that local pH variations
have a strong influence on the agglomeration in the
first few seconds and then, as the suspension evolves
slowly, there is less noise.

Additional information can be extracted from the260

results of the SAXS analysis, where the scattering
curves were interpreted with the Beaucage model
using the method adopted by Speyer et al. [22].
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Figure 2: (a)Evolution of average hydrodynamic intensity
radius, measured with DLS on a Pural SB3 suspension of
0.04 g/L and different pH. Comparison between experimen-
tal results (dots) and the adjusted population balance model
(lines). (b)Fuchs stability ratio: comparison between the-
oretical [3], experimental[20] and the population balance
value.

These analyses offer insight about the fractal di-
mension of the agglomerates, and how it changes265

with gyration radius, as can be seen in Fig.3.

These results are related to the size limits of the
analysis and the approach used for the interpreta-
tion of the SAXS curves. In this regard, it is to be
noted that our results refer to agglomerates whose270

gyration radius is between 50 and 150 nm.

A quasi-linear trend can be observed in the phase
diagram. This result enables us to assume that the
fractal dimension changes as a function of agglom-
eration size. In the bottom right plot, it can be275

observed that for pH 8 and 9.5 (near the point of
Zero Charge) the fractal size has a fairly rapid ini-

50 100 150 200
2
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2.4

2.6

2.8
pH 8
pH 9.5
pH 10
pH 11

0 500 1000 1500
2

2.2

2.4

2.6

2.8

Figure 3: Experimental SAXS data acquired following the
agglomeration process of a boehmite powder at 5 g/L which
was brought to a pH 10 stanting from and initial pH of 3.

tial growth, followed by stabilisation. In contrast,
the results at pH 10 and 11 show slower growth.

A similar behaviour to that of the DLS gyration280

radius is thus observed for the SAXS fractal dimen-
sion. This may be due to a different agglomeration
mechanism in the initial instants of the process,
since for all pH values, after an initial growth phase
(fast or slow) the size and fractal dimension tend to285

stabilize.

4.2. Comparison between population balance and
Brownian dynamics model

During the first instants of the agglomeration
process, particles tend to form linear agglomerates,290

before undergoing a rearrangement that increases
their fractal dimension. This is illustrated by the
Brownian-DLVO simulations (Fig.4), showing the
evolution of the agglomerates arrangement with
time. The fractal dimension evolution with respect295

to the average agglomerate diameter is reported in
the phase diagram obtained from the Brownian-
DLVO simulations in Fig.5, in the corner it is also
reported the evolution of the average fractal dimen-
sion, which increases linearly with time in the first300

instants and stabilizes afterwards.
It can be assumed that the fractal dimension and

the gyration radius respect a relationship of the
type

df = df,1 + (df,2 − df,1) ·
atg
(
aa · Rgyr−Rcut

Rcut

)
+ π

2

π
(20)

which can represent the two plateaus of Fig.5 by
means of the following parameters

• aa enables to vary the slope of the df rise

6



time = 0 ms time = 28 ms time = 280 ms

Figure 4: Configuration of the agglomerates system at different time instants, simulated with Brownian dynamics model.

• Rcut corresponding to the abscissa of the in-305

flection point, is the cutoff gyration radius.

• df,1 and df,2 are two parameters that, together
with aa determine the value at the two plateaus
dmin and dmax. If aa ≥ 20 then df,1 ' df,min
and df,2 ' df,max.310

50 100 150 200
1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.1 0.2 0.3

1.5

2

2.5

df,min

df,max

Figure 5: Illustration of the phase diagram and of the pa-
rameters of the Eq.(20). The evolution of the average fractal
dimension over 0.3 s is reported in the right corner.

The fact that the fractal dimension evolves with
the size of the agglomerate during agglomeration
has also been observed with SAXS analysis as it
is reported in Fig.3. The experimental curve can-
not represent the two plateaus since the initial pri-315

mary particle and the finale agglomerate are out
of the measurement size limits. In addition, the
non-spherical geometry of the primary particle may
have an impact on the agglomerate fractal dimen-
sion, which can explain the difference between the320

df simulated by the Brownian Dynamic model and

the one measured with SAXS analysis.

By fitting the phase diagram obtained from
Brownian-DLVO simulations with Eq.(20) the re-
sults obtained for df,1 and df,2 are 1.53 and 2.48325

respectively, aa is 25.69 and Rcut is 115 nm.

These parameters has been used to model the
df vs Rgyr relationship of the population-balance
model. The particle size and concentration have
been taken equal to the Brownian Dynamics model.330

In order to simulate a physical time of 0.27 s the
population-balance and the Lagrangian model re-
quire respectively 10 s and 3 weeks of computational
time.

Fig.6(a) shows the comparison between the evo-335

lution of the average diameter as a function of time
between the Lagrangian Brownian-DLVO model
and the population-balance. Fig.6(b) shows the re-
sults in terms of cluster mass distribution at the
time 0.278 ms.340

The two models are in fair agreement for W =
1.7. This value is close to 1 when the pH of the sus-
pension is close to the Point of Zero Charge (PZC),
and it is highly sensitive to small varitions of pH.
Therefore the Fuchs coefficient is still in the order345

of magnitude estimated for these conditions. It is
experimentally challenging to measure a Fuchs sta-
bility ratio and small variations are tolerable if W
remains within the right order of magnitude. The
population balance respects the time scale of the350

coagulation simulated via Brownian dynamics. The
error between 0 and 0.05 s can be explained by the
fact that the Lagrangian simulation accounts only
for 2048 particles. Consequently the Brownian dy-
namics is less statistically representative of a real355

colloidal system.
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Figure 6: Comparison between the Lagrangian simulation
and the population balance in terms of average diameter
evolution (a) and final mass distribution (b) after 0.278 s.

4.3. Adjusting population balance parameters with
DLS results

The population balance result is reported in
Fig.2(a). The Tab.1 reports the parameters ob-360

tained for the different DLS experiments. All the
data were compared with the population balance
model using a df,1 of 1.5. df,2 and Rcut vary within
a narrow range. The parameter that has the highest
impact is the Fuchs stability ratio WPBE . Indeed365

for the data set at pH 11, for which WPBE = 31.14,
the population balance result is independent of the
values of all the other parameters. WPBE appears
to be between the theoretical and the experimental
Fuchs stabiity ratio as shown in Fig.2(b).370

The comparison between the population balance
and the DLS data obtained at low boehmite concen-
tration enables to set ranges for the parameters of

Table 1: Adjusted parameters of the population balance
model.

pH 8.8 9.3 9.7 10.5 11
df,2 2.75 2.75 2.75 2.85 /
Rcut 600 596 607 600 /
aa 3.96 3.97 2.69 1.8 /

WPBE 1.32 1.31 1.17 2.50 31.14

the model, which make it capable to represent evo-
lution of suspensions at higher concentration. In375

order to approach the boehmite concentration of
the manufacturing process the population balance
was extrapolated at a concentration of 1 g/L and at
PZC. Fig.7(a) shows the mass cumulative distribu-
tion after an agglomeration process of 1 hour, when380

it is assumed that the colloidal systems has reached
the equilibrium size distribution.

This result has been used to adjust a morpho-
logical model of a powder obtained by drying the
suspension.385

In order to build the morphological model of
a boehmite grain formed after Brownian agglom-
eration, the primary aggregates are considered as
spheres with radius 35 nm in agreement with DLS
measurement. Keeping the aim of reducing the390

computation time, we considered a discretized cu-
mulative distribution (Fig.7(a)). Seven agglomer-
ates have been built with a number of primary par-
ticles ranging from 25 to 81·105 in order to cover
the entire distribution. The fractal dimension of395

these agglomerates is computed with the adjusted
df (xi) relationship, and it takes a value of 1.70 for
the smaller agglomerates and of 2.82 for the larger
ones.

In Fig.7(a) the red points represent the discrete400

cumulative distribution obtained assembling 100
agglomerates. The coagulation of these agglom-
erates has been simulated via the morphological
model [8] where the maximum compactness param-
eters have been set. An illustration of the morphol-405

ogy of the final dry powder is shown in Fig.7(b).

5. Conclusion

Boehmite agglomeration phenomenon is ex-
tremely chaotic and involves assembly at multiple
size scales, from a few tens of nanometers to sev-410

eral microns. The use of multi-technique character-
izations highlights structural properties at different
scales. A strategy has been developed for gener-
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Figure 7: (a)Cumulate probability density function obtained
from a population-balance simulation. The operating condi-
tions are pH = 9.6 and 1g/L, the time simulated is of one
hour. The seven agglomerates of the discrete distribution are
also represented. (b)Simulated morphology of a boehmite
dried powder after agglomeration within a colloidal suspen-
sion at 1 g/L ad PZC.

ating the 3D morphology of a boehmite grain af-
ter agglomeration in a colloidal suspension. Our415

contribution consists in describing a system that
evolves according to physical-chemical parameters
as a function of structural parameters like size dis-
tribution, fractal dimension and order of assem-
bly. The final microstructure is generated with420

an aggregation morphological model where differ-
ent sticking probabilities are assigned on concave

and non-concave points of a cluster. In order to
rely these probabilities to physical-chemical param-
eters, two physical models have been used: a La-425

grangian Brownian dynamics model and a popula-
tion balance model. The first one provided infor-
mation about the relationship between fractal di-
mension and agglomerate mass ξ. The second one
enables to simulate a realistically large colloidal sys-430

tem. Since the relationship found with the first
model can also be confirmed by SAXS analysis re-
sults, the function ξ(df ) has been implemented in
the Smoluchowski kernel of the population balance
model. DLS experimental results have been used to435

adjust the kernel parameters. The size distribution
and the fractal dimension obtained from the popu-
lation balance was finally used to parameterize the
morphological model and to build an agglomerate
of agglomerates.440

The experimental DLS results are qualitatively in
agreement with the DLVO theory, indeed the closer
the pH to the point of zero charge, the faster the
agglomeration process is. The resistance to agglom-
eration has been quantified via the Fuchs stability445

coefficient. A good agreement has been found be-
tween the experimental, the theoretical and the ad-
justed Fuchs coefficient of the Smoluchoswki kernel.

In order to relate the morphology of an agglomer-
ate to the conditions of agglomeration, experimen-450

tal methods and models of agglomeration dynamics
are often compared and inter-combined [23, 24] or
a stochastic agglomeration model is parameterised
using experimental data [25]. In this paper, it is
proposed to use all these approaches, and in par-455

ticular to use the population balance as a bridge
between the experimental results and the morpho-
logical model of agglomeration.

This work has made it possible to highlight many
prospects for improvement, like implementing a460

Brownian model with non-spherical particles, this
may have an impact on the parameters of the ξ(df )
function. In addition, the natural perspective of
this work is to consider boehmite crystallites as pri-
mary particles rather than aggregates. This would465

enable the simulation of the textural properties like
pores distribution and tortuosity [26]. Then, taking
into account the inclusion of shear-induced agglom-
eration and breakage to higher concentrations, will
approach the industrial operating conditions of the470

manufacturing process of the support. In order to
innovate catalytic materials, it would be useful to
simulate the impregnation process on the modelled
morphology, with the possibility of relating the ag-

9



glomeration pH to the dispersion of active sites on475

the final solid [27], and use the morphological model
to feed a pore network model [28] to relate manu-
facturing process and textural and transport prop-
erties within a catalytic support.
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Appendix A. Computation of experimental600

Fuchs coefficient

According to [20], the Fuchs stability coefficient
can be computed at a time t close to 0 assuming
that only dimers have formed at that instant. For
dynamic light scattering the dimerisation kinetic605

constant can be approximated

k11 '
1

ξ0
· R2

R2 −R1
·

(
dR(t)
dt |t→0

R(0)

)
−

(
dI(q,t)
dt

I(q, 0)

)
(A.1)

where

• R1 and R2 are the hydrodynamic radius of the
monomer and dimer repsectively;

• I(q, t) is the scattered intensity at scattering610

vector q and at time t;

• a is the radius of the primary particles;

• ξ0 is the initial particle number concentration.

The stability ratio can be estimated by dividing
the fast coagulation rate constant kf by a slow co-
agulation rate constant ks [29]

W =
k11,fast
k11,slow

(A.2)

From the experimental data the average fitting
curves shown have been calculated using the fol-615

lowing functions

• from pH 8.8 to pH 10.5

R(t) = A · log(t)2 +B · log(t) + C (A.3)

• for pH 11

R(t) = D · exp(E · t) (A.4)

k11 has been estimated with the following hy-
potheses:

• Since the concentration is low we assume that
the contriubution of the scattered intensity is
negligible with respect to the hydrodynamic
radius one(

dI(q,t)
dt

I(q, 0)

)
<<

1

ξ0
· R2

R2 −R1
·

(
dR(t)
dt |t→0

R(0)

)
.

(A.5)
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Table A.2: Results of the estimation of the initial dimeriza-
tion constant nd of the Fuchs stability ratio.

pH 8.8 9.3 9.7 10.5 11
k11 · ξ0 139 135 161 47 6
Wexp 1.16 1.19 1.00 3.45 26.75

• The lowest acquisition time with DLS device
is 20 s, we assume that at this time only620

monomers are present. Therefore we call R2 =
R(20s).

Tab.A.2 reports the results for the experiments at
0.04 g/L of Pural SB3
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