Michael Schmid
email: michael3.schmid@oth-regensburg.de

Jürgen Mottok
email: juergen.mottok@oth-regensburg.de

Investigation of Scheduling Algorithms for DAG Tasks through Simulations

Keywords: time, scheduling, task models, simulation

In the real-time systems sector, various task models and corresponding tests exist to model and verify the schedulability of task sets on the system at hand. While those models and schedulability tests have intensively been studied from a theoretical point of view, it is hard to make use of them to compare the actual execution behavior of scheduling algorithms on a real system. In contrast to schedulability tests, simulators can help to investigate the performance of specific scheduling algorithms. One of the most generalized task models to describe parallel tasks is the Directed Acyclic Graph model that allows to represent tasks as a series of subtasks that depict the potentially parallel computations and precedence constraints that denote the order in which the subtasks are allowed to execute.

In this paper, we investigate various scheduling algorithms for the Directed Acyclic Graph model. For that, we first recapitulate the examined scheduling algorithms in detail and point out relevant differences. Subsequently, we present the evaluation of different global and federated scheduling algorithms using fine-grained parallel tasks. To this end, we generate random Directed Acyclic Graph tasks and simulate their execution on multiprocessor systems using scheduling algorithms such as global rate-monotonic and semi-federated scheduling as well as global scheduling policies using the thread pool model.

I. INTRODUCTION

As physical constraints have put an end to the ever increasing processor frequencies, hardware manufacturers have switched to parallel hardware architectures that allow to further increase the computation capabilities of the system. This trend has also reached the embedded real-time sector where multicore and multiprocessor architectures have found a lot of research attention in recent years. In order to make use of the parallel hardware architectures, sequential task models have cleared the way for parallel task models that allow to reduce the response times of time critical tasks. One of the first parallel task models analyzed in the real-time community is the fork-join model which is well-known from the Open Multi-Processing (OpenMP) standard. Tasks are hereby modeled as an alternating sequence of sequential and parallel segments. Only when all subtasks of one segment (either sequential or parallel) have completed their execution, the subsequent segment is allowed to execute. The parallel synchronous task model is a generalization of the fork-join model where each segment is allowed to have an arbitrary number of parallel subtasks but still, subtasks of one segment are only allowed to execute when all subtasks of the previous segment have finished. In this paper, we consider the Directed Acyclic Graph (DAG) task model. As the name suggests, the tasks are modeled as a DAG where each node represents a computation and the edges between the nodes depict the precedence constraints between the subtasks. In this model, nodes that are not either directly or transitively connected by edges can be executed in parallel.

Various scheduling algorithms exist that try to schedule the DAG tasks on the processors without deadline misses and the real-time community provides many schedulability tests to determine the feasibility of task sets beforehand. While the acceptance ratios provided by those tests can be compared to each other, they do not really assess the performance of the scheduling algorithms, but rather the performance of the tests. To this end, different performance metrics of scheduling algorithms have been introduced, such as utilization and resource or capacity augmentation bounds.

Another great tool to evaluate the actual runtime behavior of the scheduling algorithms are simulations. This paper focuses on the simulation of real-time scheduling algorithms. The algorithms evaluated later on include preemptive global fixedpriority (FP) and earliest deadline first (EDF) scheduling, both with and without using thread pools for the execution of the subtasks, as well as semi-federated (SFED) scheduling.

A. Motivation and Contribution

Modern embedded real-time systems have to process enormous amounts of data in in a timely manner. In order to allow modern applications 1 to finish their computations in time, parallel task models have been introduced to the embedded real-time sector. In order to determine the schedulability of the system beforehand, modern applications, where the computations are broken down into many small subtasks that are potentially executed in parallel, need to be modeled after the aforementioned task models.

In addition, the task models also provide the means to derive performance metrics, such as the capacity or resource augmentation bounds, that allow to asses the performance of different scheduling algorithms. While those bounds offer formal guarantees that cannot be obtained from simulations, other drawbacks arise from resorting to such performance metrics. On the one hand, the tests suffer from pessimistic mathematical assumptions which leads to unfair comparisons. On the other hand, the performance metrics have to be derived individually for each scheduling algorithm. In contrast to that, once the scheduling simulator framework has been established, only the new scheduling algorithms and task models have to be implemented. Furthermore, the examination through simulations allows not only to draw estimations on the scheduler performance, but also examine the actual runtime behavior of the system at hand and therefore, gain insight about various performance characteristics, e.g. the response time distributions of the individual jobs, the number of thread preemptions and the number of processor migrations. For this reason, this paper presents the results of the simulations conducted on various scheduling algorithms for the DAG task model. As the trend in the real-time community goes towards highly parallel hardware and software architectures, e.g. for object detection algorithms, the evaluations will be conducted by the use of highly parallel tasks in our evaluations. The given results shall give insight about the design and implementation of modern real-time systems that employ fine-grained parallel tasks, i.e. tasks where the computations are broken down into a large number of subtasks that are potentially executed in parallel.

To the best of our knowledge, we are the first to consider the comparison of the scheduling algorithms proposed in the later section of this paper, especially on the thread pool model. For this reason, we add the following contributions to the current state-of-the-art:

• We perform scheduling simulations on classic as well as modern real-time scheduling algorithms for the DAG task model. The investigated algorithms include global deadline monotonic (DM) and EDF for both, the classic and the thread pool DAG model, and semi-federated scheduling.

• We evaluate the performance of the scheduling algorithms by investigating the feasibility of task sets, the number of preemptions occurring during the simulation process and the response times of the individual tasks. • We discuss the use of the investigated scheduling algorithms and their results to gain insight about the use in actual real systems.

B. Structure

The remainder of this paper is structured as follows. Section II introduces related work considering schedulability tests for the DAG task model and its evaluation using simulations. Subsequently, the task model used throughout this paper is introduced in Section III. Section IV then explains the functionality of the scheduling algorithms. The simulation results are presented in Section V and are discussed in the following section. Finally, Section VII concludes our work.

II. RELATED WORK

In recent years, much research has been conducted in the scope of real-time schedulability tests for the various parallel task models. Response time analyses for the fork-join model, which is known from the OpenMP programming model, cover for instance partitioned FP [START_REF] Axer | Response-Time Analysis of Parallel Fork-Join Workloads with Real-Time Constraints[END_REF] or various task stretching approaches as in [START_REF] Lakshmanan | Scheduling Parallel Real-Time Tasks on Multi-core Processors[END_REF], [START_REF] Fauberteau | Partitioned scheduling of parallel real-time tasks on multiprocessor systems[END_REF] where the parallel segments are turned into sequential segments as much as possible. Schedulability tests regarding global scheduling are provided for the parallel synchronous task model which is a generalization of the forkjoin model and therefore, also provides the possibility of analyzing the fork-join task sets. Maia et al. [START_REF] Maia | Response-Time Analysis of Synchronous Parallel Tasks in Multiprocessor Systems[END_REF] as well as Chwa et al. [START_REF] Chwa | Global EDF Schedulability Analysis for Synchronous Parallel Tasks on Multicore Platforms[END_REF] provide response time analyses in terms of global FP and EDF scheduling, respectively. Regarding the DAG task model, response time analyses have been proposed for global scheduling amongst others by Melani et al. [START_REF] Melani | Response-Time Analysis of Conditional DAG Tasks in Multiprocessor Systems[END_REF], Fonseca et al. [START_REF] Fonseca | Improved Response Time Analysis of Sporadic DAG Tasks for Global FP Scheduling[END_REF] and Parri et al. [START_REF] Parri | Response time analysis for G-EDF and G-DM scheduling of sporadic DAG-tasks with arbitrary deadline[END_REF]. In addition, Bonifaci et al. [START_REF] Bonifaci | Feasibility analysis in the sporadic dag task model[END_REF] provides a schedulability test for global EDF which is later improved by Baruah [START_REF] Baruah | Improved multiprocessor global schedulability analysis of sporadic dag task systems[END_REF]. The thread pool model has also been recently brought to the real-time sector by Casini et al. [START_REF] Casini | Analyzing Parallel Real-Time Tasks Implemented with Thread Pools[END_REF]. They assign each task a number of threads equal to the number of processors in the system and realize the precedence constraints in the DAG with blocking mechanisms. In our previous paper [START_REF] Schmid | Response Time Analysis of Parallel Real-Time DAG Tasks Scheduled by Thread Pools[END_REF], we present a response time analysis for DAGs without a blocking subtask scheduler and the possibility of providing a limited number of threads for each task. This model will be used in the evaluations presented in this paper.

Another approach to scheduling DAG tasks is federated scheduling [START_REF] Li | Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks[END_REF]. In federated scheduling, high density tasks execute exclusively on dedicated processors whereas low density tasks are executed together on the remaining processors. Especially, semi-federated scheduling [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF] which we will present later in short show exceptional results in their schedulability analysis.

In terms of performance metrics, Li et al. [START_REF] Li | Analysis of global edf for parallel tasks[END_REF] prove a capacity augmentation bound of 4 -2 m for global EDF and improve their results for large m in their subsequent paper [START_REF] Li | Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks[END_REF]. In the latter paper, they provide an augmentation bound of ≈ 2.62 for global EDF, ≈ 3.73 for global rate monotonic (RM) and 2 for a federated scheduler using implicit deadline task sets. In terms of constrained deadlines, Sun et al. [START_REF] Sun | A capacity augmentation bound for real-time constrained-deadline parallel tasks under gedf[END_REF] prove a capacity augmentation bound of β + 2 √ β + 1 for global EDF where β is the largest ratio of task period to deadline in the task set. While the capacity augmentation bound can be used as a schedulability test, it yields fairly poor results as shown in [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF] where the authors evaluate the resource augmentation bound of Li et al. [START_REF] Li | Analysis of global edf for parallel tasks[END_REF] in their experiments. As for resource augmentation bounds, Saifullah derive a resource augmentation bound of 4 for their DAG task decomposition method for systems with global EDF scheduling. Bonifaci et al. [START_REF] Bonifaci | Feasibility analysis in the sporadic dag task model[END_REF] introduce a bound of 3 -1 m for global DM and both, Bonifaci et al. and Li et al. [START_REF] Li | Analysis of Federated and Global Scheduling for Parallel Real-Time Tasks[END_REF] prove a resource augmentation bound of 2 -1 m for global EDF for arbitrary deadline task sets.

We did not find much evaluations of the DAG task model using simulators in the current state-of-the-art. Qamhieh et al. [START_REF] Qamhieh | An experimental analysis of dag scheduling methods in hard real-time multiprocessor systems[END_REF], [START_REF]Simulation-based evaluations of dag scheduling in hard real-time multiprocessor systems[END_REF] present their scheduling simulator YARTISS to evaluate the performance of their task stretching algorithm in comparison with the classic scheduling of DAG tasks with the global scheduling approaches of DM and EDF. In their papers, they observe that their DAG stretching algorithm yields a better acceptance ratio than the classical approach under global DM but worse on global EDF. In contrast to the work presented in this paper, they perform their evaluations on tasks with low numbers of subtasks (at most 12 subtasks per task throughout both of their papers).

III. TASK MODEL

In this paper, we consider the scheduling of sporadic DAG tasks on a multiprocessor platform with m identical processors with uniform memory access. Without loss of generality, all time intervals are assumed to be multiples of the system clock and therefore, non-negative integers.

Each task τ i in the task set Γ is represented by a three tuple

τ i = (G i , T i , D i)
where T i denotes the minimum inter-arrival time, D i represents the relative deadline and G i is the DAG modeling the parallel computations of the task. The graph

G i = (V i , E i) contains n i subtasks V i = v i,1 , v i,2 , ..., v i,ni
which are interconnected by the edges in E i = V i × V i . At least every T i time units apart, task τ i will release a job, i.e. a sequence of subtasks that are to be executed on the processors in their respective order. The job released at the time instant r i has to complete its execution before its absolute deadline d i = r i + D i . In this paper, deadlines can be either implicit which means that deadline equals the task period, i.e. D i = T i or they can be constrained which denotes that the deadline is less than or equal to the period, i.e. D i ≤ T i .

Each subtask v i,j is characterized by a worst-case execution time (WCET) C i,j . The worst-case workload W i of the task is equal to the sum of all its subtasks, i.e. W i = ∀vi,j ∈Vi C i,j , and represents the time it takes to complete the execution of the task using a single processor. Throughout the course of this paper, we will omit the node's subscript i if it does not cause confusion. Each directed edge (v a , v b) ∈ E i represents a dependency between the predecessor v a and the successor v b . A subtask is said to be ready if and only if all its predecessors have completed their execution and is only then allowed to be executed. A subtask is called a source if it has no predecessors while a subtask with no successors is called the sink of the DAG. Without loss of generality, we assume that each DAG has only one source and one sink. This can be achieved by adding a dummy source and dummy sink, each with a WCET equal to zero, to the DAG. An example of a DAG task can be observed in Figure 1 where the nodes are represented by the circles and the edges are shown as arrows. The number above the subtasks denote their WCET.

As commonly defined for DAGs, we use the notation of a path λ = (v 1 , ..., v ni) to describe the sequence of nodes

v j ∈ V i such that v 1 is the source of G i , v ni is the sink of G i and ∀v j ∈ λ\{v ni }, (v j , v j+1) ∈ E i .
The length of a path λ is denoted as the sum of WCETs of all nodes v j in λ, i.e. len(λ) = ∀vj ∈λ C i,j . The critical path length L i is defined as the path with the biggest length, i.e. max ∀λ∈Gi {len(λ)}. In the example DAG of Figure 1, the critical path is the path λ = (v i,1 , v i,4 , v i,5 , v i,6 , v i,11) and the critical path length yields 13.

IV. INVESTIGATED SCHEDULING ALGORITHMS

This section shortly presents the scheduling algorithms evaluated in Section V so that subsequent deductions can be understood with greater ease.

A. Global Scheduling

Global scheduling is one of the most straightforward scheduling algorithms and is, especially in combination with a RM priority assignment, frequently implemented in actual embedded systems [START_REF] Bini | Measuring the performance of schedulability tests[END_REF] due to their simplicity. In the sequential task model, the scheduler must simply maintain a single global priority ordered queue of all ready jobs. 2 At each scheduling instant, the available processors then pop the m highest priority jobs and execute them. In the DAG model, all subtasks inherit the priority of their respective task. Whenever they become ready because all their predecessors have completed execution, they are pushed into the global queue and the processors pop the m highest priority subtasks to execute them. In our evaluations, we will consider preemptive scheduling that allows to suspend running subtasks in order to schedule subtasks of higher priority tasks. Various priority assignment strategies exist. A simple method is to assign priorities statically in advance. A prominent example for this method is RM, where the priorities are assigned by the inverse of the task period, respectively, meaning that tasks with smaller periods, have higher priorities. In our experiments, we will use the DM priority assignment algorithm, which works as RM except that the relative deadline is used instead of the period to assign priorities. 3 Another example which is often considered in real-time literature is EDF which computes the priorities during runtime and assigns the job with the closest absolute deadline the highest priority. In the evaluations, we consider EDF and DM priority assignments which will be denoted as GlobalEDF.Classic and GlobalDM.Classic, respectively.

B. Global Scheduling with Thread Pools

In the thread pool model [START_REF] Schmid | Response Time Analysis of Parallel Real-Time DAG Tasks Scheduled by Thread Pools[END_REF], each task τ i receives a distinct thread pool with m i threads that share the priority of the task. In contrast to classical global scheduling, the ready subtasks of a task are not pushed into the global queue. Instead, the threads, which inherit the priority of the tasks, are pushed into the global queue, while the subtasks are maintained in a private scheduling queue of each task. The system then follows the approach of a two-level scheduler: the m processors pop m threads from the global queue while the executed threads pop and execute subtasks from the task's private scheduling queue. It is possible that there are less than m i subtasks ready which implies that some threads of τ i will be without work. In practice, those threads are suspended and therefore not inserted in the global queue until new subtasks are pushed into the task queue. This functionality is important so that processors do not idle when they could instead process lower priority threads.

The system engineer assigns each task a certain number of threads. In this paper, we point out two similar methods. The first strategy follows the approach of federated scheduling and assigns each task the minimum number of threads that is necessary to meet its deadline:

m i = W i -L i D i -L i (1)
The aforementioned thread assignment strategy ensures that all tasks have enough threads to complete their execution before their deadline when executed in isolation while also keeping the thread count in the system as low as possible, thus, reducing preemptions and context switching overhead. However, this method does not take into account the interference of higher priority tasks which might lead to deadline misses for the low priority tasks.

The second method improves the schedulability for FP systems by assigning the lower priority tasks more threads so that they can make better use of the parallelism provided by the system. In that case, each low priority task is assigned m threads to increase the maximum parallelism they can exploit.

m i = Wi-Li Di-Li , if ∀k≤i m k ≤ m m, otherwise (2)
In this thread assignment strategy, we start with the highest priority task and assign it a minimum number of threads according to Equation 1. We continue to assign the minimum number of threads to each subsequent high priority task until the thread count in the system exceeds the number of processors m. At this point, all subsequent tasks will be assigned a number of threads equal to the number of processors in the system. This strategy leverages the same benefits as in the first strategy for the high priority tasks while also improving the schedulability of low priority tasks by allowing them to exploit the available parallelism capabilities.

In the evaluations, the respective plots will be denoted as GlobalEDF.TP and GlobalDM.TP when scheduling the threads according to global EDF and DM with the thread assignment strategy shown in Equation 1. The assignment strategy in Equation 2 will be referred to as GlobalDM.ITP.

C. Semi-Federated Scheduling

In semi-federated scheduling, tasks are divided into heavy (Wi Di > 1) and light (Wi Di ≤ 1) tasks. Each heavy task is assigned n i dedicated processors where n i is computed by

n i = W i -L i D i -L i . (3)
As n i is less than the number of required processors to finish before its deadline, each heavy task requires an additional container task. This container task executes workload of subtasks for a fractional part of at most Wi-Li Di-Li -n i . The container tasks are scheduled together with the light tasks on the remaining processors using any scheduling algorithm such as partitioned or global EDF. In this work, we use partitioned EDF which performed best in the original paper [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF] and denote the algorithm as SemiFederated.Partitioned in our evaluations. The interested reader is referred to the original paper [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF] for further information about the dispatching algorithm and how to compute the deadlines of the fractional parts computed on the container tasks.

V. SIMULATIONS

In our experiments, we evaluate the scheduling algorithms introduced in the previous section by generating random task sets and simulating the execution of a multiprocessor system by use of a discrete event simulator.

A. Experimental Setup

The task set generation in this work follows the same procedure used in various papers of real-time schedulability analysis, e.g. in [START_REF] Schmid | Response Time Analysis of Parallel Real-Time DAG Tasks Scheduled by Thread Pools[END_REF], [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF], [START_REF] Saifullah | Parallel real-time scheduling of dags[END_REF], in order to allow for a comparison between the results of the schedulability tests and the simulations. First, DAGs are created using the Erdös-Rényi model G(n, p) [START_REF] Erdös | On Random Graphs I[END_REF]: each DAG is assigned a random number of nodes chosen within the range [50, 250]. Each node receives a WCET randomly selected from the range [50, 100]. Then, for each pair of vertices an edge is created with a probability of p = 0.1. The value of p indicates the parallelism of the DAG where low values of p imply a low number of edges and therefore, a high intra-task parallelism. Given the structure of the DAG and the values of the WCET, the period of each task is computed following the approach presented by Jiang et al. [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF]:

T i = (L i + W i 0.4 × U tot) × (1 + 0.25 × Gamma(2, 1)) (4)
where U tot is the predefined total utilization of the system and Gamma represents the gamma distribution. Using the previous method of generating a single DAG task, we generate tasks until the predefined value of the total utilization is exceeded. The period T i of the last added task is then modified so that the desired system utilization U tot is satisfied. For each configured value of U tot , we generate and simulate 100 task sets.

We do not evaluate typical parallel real-time applications in this paper as many different task sets are needed for the evaluations of the schedulability and number of preemptions. However, by using this method of generating DAG tasks, we obtain task sets containing various tasks with distinct graph structures and a sufficient level of parallelism even for low system utilizations. As an example, a fast Fourier transform with a parallel spawn depth of seven yields 190 subtasks and a maximum parallelism of 64. While the probability is low, such a DAG structure could potentially be created by our task generation procedure. In addition, comparable DAGs are randomly produced so that typical parallel applications are represented and a variety of different tasks are evaluated in the experiments. Using Equation 4, valid periods are computed while also generating a reasonable number of tasks for each utilization step.

B. Experimental Results

The first set of experiments considers the feasibility of the generated task sets when the system utilization varies between 1 and 8 on a multiprocessor system with m = 8. Figure 2 shows the results for implicit and constrained deadline task sets. In Figure 2(a), we can see that the thread pool model with a thread assignment according to Equation 1 is not able to achieve good feasibility results compared to the other approaches. This is caused by the low number of threads of low priority tasks which prolongs the computation time of the task and, in conjunction with the interference by other tasks, leads to missed deadlines already with low utilizations. Another significant difference can be observed when comparing global DM and EDF scheduling, where the latter shows great results and is able to correctly schedule few task sets having a system utilization of 100%. In contrast to that, semi-federated scheduling as well as the thread pool model with improved thread assignment perform almost equally, however, not as well as GlobalEDF.Classic. Looking at the constrained deadline results in Figure 2(b), we can easily observe the huge drop of success rate for the semi-federated scheduler. This can easily be explained by regarding the processor assignment function in Equation 3: For smaller deadlines, the number of processors n i becomes larger, yielding an infeasible schedule when the tasks require more processors than available. Even though the thread assignment strategy proposed in this work uses a similar procedure, a feasible schedule might still be found due to the global scheduling mechanism, even if there are more threads than processors in the system. Apart from that, the results are as expected and all scheduling algorithms suffer more or less equally from the constrained deadline setup, leading to a earlier drop of the success rate.

Figure 3 shows the second set of experiments where the average number of preemptions per task set is shown, again for implicit and constrained deadline task sets. Both figures clearly show the downsides of global scheduling without the use of thread pools. Due to the high parallelism and the resulting processor contention, the number of preemptions is immensely high. We can also see that semi-federated scheduling also suffers from a lot of preemptions. These preemptions are essentially caused by the runtime scheduler of the container tasks which execute small portions of the subtasks on the shared processors. Furthermore, both figures show a drop of preemptions for semi-federated scheduling. These drops happen for two reasons: First, the tasks can no longer be correctly allocated to the processors. This leads to unfeasible task sets, which are also included in the graph even though no preemptions are accounted for in these cases. Second, for higher utilizations the number of light tasks (Wi Di ≤ 1) that execute for rather long durations on the shared processors decreases. In addition, more fractional parts of heavy tasks are executed on the shared processors. In contrast to the light tasks, these fractional parts are rarely preempted. Another finding can be seen when comparing the implicit with the constrained results. In the case of the thread pool model, the number of preemptions rises, whereas the average number of preemptions in the classical global scheduling model remains equal. Again, this can be explained with the thread assignment strategies: For smaller deadlines, more threads are assigned to tasks according to Equations 1 and 2, and due to the higher thread count in the system, more preemptions occur in the execution process.

Finally, our last set of experiments shown in Figure 4 shows the response time distributions of a single task set. The box plots depicting the response times as a fraction of the task period can be interpreted as follows: The whiskers illustrate the 99th percentile and all outliers are depicted as x, the median is shown in orange and the values at 1.0 indicate the failed deadlines. For the global FP scheduling algorithms shown in Figures 4(a) -4(b), we can immediately see the highest priority tasks which are never preempted and therefore suffer no interference at all. In the thread pool model, those tasks effectively execute on dedicated processors and therefore, the response time does not vary. In contrast, lower priority tasks have to contend for the free processors and thus, suffer from interference which is especially prevalent in the classical model shown in Figure 4(c) where already the second highest priority task has to make way for the highest priority task at some point in time.

In Figures 4(d) and 4(e), the graphs show wider response time distributions which we would expect from the dynamic priority assignments of EDF scheduling. Figure 4(e) reproduces the results of the schedulability evaluations and shows only very little deadline misses for all tasks even for a system utilization of 100%. When comparing DM with EDF in the thread pool model, the fixed-priority algorithm misses more deadlines (note that the number cannot be completely inferred from the figures) but the deadline misses are limited to the lowest priority tasks, whereas EDF scheduling misses most deadlines on tasks with high relative deadlines.

Finally, the plots of semi-federated scheduling shown in Figure 4(f) eminently illustrate the processor allocation: Five heavy tasks run mostly on allocated processors and thus, execute without much interference. Those five tasks are therefore able to meet most of their deadlines, whereas the two light tasks are constantly preempted by the early deadline fractional parts of the heavy tasks and therefore, miss all of their deadlines. Note that the heavy tasks all have a very high ratio of response time to task period, e.g. 0.92 for Task 6. This results from the processor allocation mechanism in Equation 3, where each task is assigned as little processors as possible, thus, prolonging the response time as much as possible.

We did not include the response time distribution plots for constrained deadline task sets because they do not provide new relevant insight about the investigated scheduling algorithms.

VI. DISCUSSION

When it comes to the implementation details the classic global scheduling algorithm with fixed priorities should be the first choice due to its simplicity. However, different metrics, e.g. response times, criticality and runtime behavior amongst others, have to be considered as well when the feasibility of the system has to be guaranteed. While classical global EDF scheduling performs best in the evaluations of the acceptance ratio, other effects have to be taken into account when choosing a scheduler for real embedded systems. Our experiments have shown that global scheduling algorithms are suboptimal for fine-grained parallel applications due to their high thread counts which leads to a large number of preemptions and presumably to significant scheduling overhead when executed on real hardware. Also semi-federated scheduling, which to the best of our knowledge has one of the best performing schedulability analysis [START_REF] Schmid | Response Time Analysis of Parallel Real-Time DAG Tasks Scheduled by Thread Pools[END_REF], [START_REF] Jiang | Semi-Federated Scheduling of Parallel Real-Time Tasks on Multiprocessors[END_REF] in the current state-of-theart, suffers from huge amounts of preemptions on the shared processors that execute the fractional parts of the high density On this matter, the thread pool task model model offers the possibility of reducing the number of threads in the system and the experiments demonstrate the desired effect: The number of preemptions is drastically reduced compared to the classical variant, especially in the implicit deadline experiments. Another advantage of the thread pool model is that it works in conjunction with global schedulers. For this reason, it is possible to combine the classic DAG task model and the thread pool model in the same system: the classic task model is used for applications with low rates of parallelism while the task pool model is employed for large-scale parallel applications. However, better thread assignment strategies have to be derived in order to combine the classic and thread pool model in a system with global EDF scheduling.

While schedulability and preemptions are relevant metrics to consider, the criticality of the tasks has sometimes to be taken into account. Looking at the response time distributions of Figure 4, global EDF scheduling (on both, the classical and thread pool model) might not be a suitable candidate for this matter as priorities are computed dynamically which leads to widely varying response times and deadline misses might therefore occur on most tasks. Semi-federated scheduling favors heavy task whereas the light tasks suffer from lots of preemptions and as a result, miss a lot of deadlines. To this end, the fixed-priority assignment algorithms are the best choice when the consideration of the criticality of tasks is necessary.

A short summary of our findings is presented in Table I where the feasibility, number of preemptions and criticality are evaluated for the different investigated scheduling algorithms.

VII. CONCLUSION

In this paper, we presented the evaluations of scheduling algorithms for the classic DAG task model using simulations. In the evaluations, we generated random task sets and measured their performance according to their feasibility, number of preemptions and response time distributions. We furthermore discussed our findings of the evaluations to help with future implementations of real-time systems that need to correctly schedule fine-grained parallel applications.

We showed that global EDF scheduling of the classical DAG task model yields great results in the feasibility analysis, however, may not be a suitable fit for real systems due to the large number of preemptions. For this reason, we suggest the use of the thread pool task model for large-scale parallel applications. In the thread pool task model, each task has a limited maximum parallelism adjustable by the number of threads assigned to each task individually. Both task models can be easily used concurrently in the same system which allows to exploit the benefits of both models.

Fig. 1 .

 1 Fig. 1. Example of a DAG task with eleven subtasks.

Fig. 2 .

 2 Fig. 2. Feasibility of task sets with m = 8.

Fig. 3 .

 3 Fig. 3. Average number of preemptions per task set with m = 8.

 Fig. 4. Evaluation of single task set with utilization Utot = 8

TABLE I SUMMARY

 I OF RESULTS (WORST: --& BEST: ++).

	Algorithm	Feasibility	Preemptions	Criticality
		Implicit deadlines	
	GDM.TP	--	++	++
	GDM.ITP	+	+	++
	GDM.Classic	-	--	++
	GEDF.TP	--	++	--
	GEDF.Classic	++	--	--
	SF.Partitioned	+	-	-
		Constrained deadlines	
	GDM.TP	--	++	++
	GDM.ITP	+	-	++
	GDM.Classic	+	--	++
	GEDF.TP	--	++	--
	GEDF.Classic	++	--	--
	SF.Partitioned	--	--	-

The notations of applications and tasks are used interchangeably throughout this paper.

In the sequential task model, the notation of subtasks is not used. Instead, a job represents a single sequential computation and executes for at most C i units in time, where C i represents the worst-case execution time of the task.

Note that RM and DM are equal for implicit deadline tasks.

ACKNOWLEDGMENTS

The research leading to these results has received funding from the Federal Ministry for Education and Research (BMBF) under Grant 01IS18047D in the context of the ITEA3 EU-Project PANORAMA as well as from the Center Digitization.Bavaria under Grant 16-1541.