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Abstract

The aim of this paper is the study of the signal received by an antenna (RX) when a
transmit antenna (TX) sends a short pulse in a large scale space, for instance, in an urban en-
vironment. Integral equations are established which link the densities of charges and currents
inside the environment objects with the incident field created by the TX antenna. From this
equations we define an integral operator K. The densities can be obtained inverting 1 −K .
The introduction of Daubechies wavelets allows us to obtain sparse matrices for KK∗ which
is computationally convenient to get (1 −K)−1.
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Alex Grossmann started his career with two papers with Tai Tsun Wu [10] on ”The Schrôdinger
scattering amplitude for a fixed potential”. The forecoming paper is an homage to his deepness
and his clarity in a field which is still alive.

1 Introduction

With the development of wireless telephony there is a need to better understand the propagation
of signals in an urban environment with its buildings, its inhabitants, its cars, its furniture... It
becomes important to characterize the electrical field received by an user walking in the street
when the antenna of the base station, situated on a roof or on a house front, transmits signals.

Previously the efforts were concentrated in the propagation of harmonic signals or narrow
band signals. In this case, the signal at the user antenna, which, in many cases, is considered as
pointwise, is determined once we get the complex amplitude of the electrical field at this point. To
calculate the electric field scattered by the urban environment there are mainly two ways . The first
one consists in using the geometrical optics approximation. Researchers and engineers introduce
the reflections, transmission and diffraction of rays. Today, in the range of 0.3 GHz to 6 GHz,
despite the great number of models and softwares implementing this technique, the calculations
suffer many discrepancies from measurements. The problem often comes from the difficulty to
take into account the irregularities of the house front, windows, balconies... The second way is
to use Lippmann Schwinger type equations [3], [8]. As the wavelength is much smaller than the
geometrical dimensions of the buildings, the matrix which has to be inverted numerically is very
large. Even if new techniques are available for the inversion of large matrices [11], [12], they have
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not been applied to the urban problem. The numerical results concern only smaller bodies and
simple geometries.

Even if the harmonic problem was already difficult, the interest of the wireless community has
been moving towards the propagation of ultra wide band (UWB) signals i.e short pulses in the
nanosecond range, for which the study, of course, is more challenging [16], [17]. Apple launched
the first three phones with ultra-wideband capabilities in september 2019. Once again, the tech-
nique which is commonly used is the geometrical optics approximation which obviously infers an
imprecise description of the received signal at the user antenna, giving only some indications on
the time arrival and the amplitude of the signal, showing some picks corresponding to the main
reflections. Comparison with measured signals is not good, the latter are much more complex and
they present an important tail, very badly described by the models deduced from ray tracing.

At our knowledge, in the UWB situation, analytic techniques starting from the Maxwell equa-
tions have not yet been considered as probably the idea is that they should lead to the inversion
of such a large matrix that it is infeasible at present time.

The aim of this paper is to show that it exists a way which could help to solve the problem
partly analytically and partly numerically with a control of the different approximations.

Section 2 is devoted to establish the definition of the K operator (the equivalent of the Lipp-
mann Schwinger operator in scattering theory ) acting on the Hilbert space L2(R4) ⊗ C4 of four
functions di(x, t), i = 0, 1, 2, 3. d0(x, t) represents the density of charges at different times, inside
the materials and di(x, t), i = 1, 2, 3 represent the three components of the density of currents.
These densities satisfy a Lippmann Schwinger type equation, (1−K)d = din. This equation links
the densities d to some functions din, called ”incident densities”, which depend on the incident
electrical field alone i.e the field generated in free space by the TX antenna. The way to establish
this equation seems to be new and relatively simple compared with the way Lippmann Schwinger
type equation was obtained in electromagnetism for the harmonic signals, [8]. Notice that the
usual Lippmann Schwinger (LS) type equations include the electric and magnetic field in full
space, instead our equations involve functions which are defined only inside the materials.

Let us notice that once charge density and current density inside the materials are obtained,
one can easily get the scattered electric field and adding to it the incident field one gets the total
electric field anywhere in space and time.

To solve numerically the Lippmann Schwinger type equation, one could choose a subspace of
L2(R4) ⊗ C4 of finite dimension, generated by a finite number of well chosen wavelets and write
the LS type equation in this space only. This is problematic because the corresponding matrix,
even if it is sparse, is not hermitian and contains large elements. The control of the stability of
the solution as we enlarge the subspace is difficult. Does the densities converge when new basis
vectors are added ?

The aim of this paper is to show that it is possible to tackle the problem differently. Multiplying
the two terms of the LS type equation by 1−K∗ we get (1−K∗)(1−K)d = (1−K∗)din. So to
get d, we have to solve this new system or to invert (1−K∗)(1−K). Notice that (1−K∗)(1−K)
is an hermitian operator which makes easier the problem of the stability of solutions. To invert
(1 − K∗)(1 − K) we write it as the sum of a diagonal matrix, D and an off diagonal matrix,
A, (1 − K∗)(1 − K) = D + A = D1/2(1 + D−1/2AD−1/2)D1/2. So [(1 − K∗)(1 − K)]−1 =
D−1/2(1 + D−1/2AD−1/2)−1D−1/2. We are going to prove that D−1/2AD−1/2 is sparse and its
elements are small.

In section 3 we build a subspace of L2(R4)⊗C4 using the orthonormal basis of Daubechies−p
wavelets in the Hilbert space L2(R). The first p moments of the Daubechies−p wavelet are zero
and their Fourier transform is essentially concentrated in two intervals in which its absolute value
part looks like a smoothed characteristic function, (see Daubechies wavelets in Wikipedia [18]
and Wolfram Mathworld [20]). From the mother wavelet w whose support is compact, equal to
[−p+1, p], is built the spatial wavelet wmn(x) = 2m1/22m2/22m3/2w(2m1(x1−2−m1n1))w(2m2(x2−
2−m2n2))w(2m3(x3 − 2−m3n3)) where m denotes (m1,m2,m3) ∈ Z3 and n denotes (n1, n2, n3) ∈
Z3. Also is built the temporal wavelet wjk(t) = 2j/2w(2j(t−2−jk)). Their product constitute a ba-

sis for L2(R4). We denote xmn := (2−m1n1, 2
−m2n2, 2

−m3n3) , xm′n′ := (2−m
′
1n′1, 2

−m′2n′2, 2
−m′3n′3),
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tjk := 2−jk and tj′k′ := 2−j
′
k′. One defines a subspace of L2(R4)⊗C4 as the linear span of a set

of wavelets corresponding to a finite set of m, n, j and k.
In sections 3 and 4 we will show that the matrix corresponding to (1 − K∗)(1 − K) in this

subspace is sparse, contrarily to what could be expected since multiplying two sparse matrices give
us generally a non sparse matrix. This result is obtained through the use of spheroidal coordinates.
The study of the regularities of the kernel of K∗K allow us to prove the smallness of many matrix
elements of K∗K.

In the figure below, using the results established in Theorems 3.1 and 3.4 for the matrix ele-

ments
(
wm′n′wj′k′ ,K

∗Kwmnwjk

)
, we present, in the case the material volume is a parallelepiped,P,

three artist views of the amplitude of some matrix elements as m, n, j and k are fixed (so we
are looking only to the elements of the column, K∗Kwmnwjk as functions of xm′n′ ∈ P for three
different tj′k′ . The coordinates of the center of the yellow spot in the upper figure are xmn. Notice
that they are also the center coordinates of the spherical crowns in the middle and lower figures .

The upper figure corresponds to the values for
(
wm′n′wj′k′ ,K

∗Kwmnwjk

)
as a function of xm′n′

when tj′k′ − tjk is fixed and close to zero. The figure in the middle corresponds to the values for(
wm′n′wj′k′ ,K

∗Kwmnwjk

)
for a larger value of tj′k′ − tjk positive, the mean radius of the dark

red crown is c(tj′k′ − tjk) ( c is the light velocity). The lower figure corresponds to the values for(
wm′n′wj′k′ ,K

∗Kwmnwjk

)
foe an even greater value of tj′k′ − tjk , again the mean radius of the

dark red crown is c(tj′k′ − tjk).
Yellow color represents strongest amplitude, black color represents zero amplitude, while a

gradation of black and red is associated with values, more or less large depending on the proportion
of red.

Notice that if the time difference tj′k′ − tjk becomes sufficiently large the black region covers
all the parallelepiped. So the time difference for which all the matrix elements become equal to
zero can be easily estimated in terms of the initial position xmn and the geometry. The presence
of red scars results from theorem 4.3. They disappear in the lower figure.

130622.pdf

Figure 1: A representation of the modulus of the matrix element for
(
wm′n′wj′k′ ,K

∗Kwmnwjk

)
for three different couples (j′, k′) corresponding to increasing times tj′k′ .

In section 5 we evaluate the proportion of matrix elements of K∗K which are non negligible.
In section 6 we discuss the choice of the Daubechies wavelets order, in conjunction with the

irregularities of the permittivity of the materials and their geometry. We will also discuss briefly
the stability of the obtained densities as the number of elements of wavelets is increased and give
some perspectives.

Remark. The reason why we will call K∗K and KK∗ time reversal operators is because their
sparsity has something to do with the time reversal technique . In the time reversal technique [6]
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a pulse si(t) is sent by the ith TX antenna. This signal propagates in the environment and it
is registered by some RX antennas disposed around the materials. At the jth RX antenna, the
received signal rji(t) = (Gjisi)(t) is memorized and time reversed, that is transformed in fji(t) =
rji(2τ−t). After, each jth RX antenna acting now as an emitter sends its reversed signal. Then the
i′th antenna, which was previously a TX antenna, receives now a signal ri′i(t) =

∑
j(Gi′jfji)(t).

What can be observed is that the ith TX antenna receives now a pulse rii(t) which is concen-
trated in time and more important than the signals ri′i(t) received by the others TX antennas.

If one chooses τ as the time origin, the time reversal transform can be express in terms of the
operator G∗ , and the signal received at the TX antennas calculated from GG∗ . The experiment
indicates that in G∗G the diagonal elements are greater than the non diagonal ones .

The analogy between K and G gave us the idea of the sparsity of K∗K.
In Appendix 7 in order to prefigure the calculation of the densities in the buildings of a street,

we calculate the kernel in the case the volume is a set of parallelepipeds into each of which the
permittivity is constant.

In appendix 8 we study the matrix elements of K+K∗ and finally prove that the non negligible
matrix elements for (1 +K∗)(1 +K) are the ones on the diagonal and its vicinity.

Finally in Appendix 9 we indicate a way to calculate the diagonal elements without the use of
the spheroidal coordinates , using the Fourier transform of the wavelets.

2 Direct and scattered fields

Once the coordinate system has been chosen conveniently with respect to the city, ( for instance
the 0z axis can be chosen vertical , the 0y axis parallel to the street axis), the TX antenna is
at point A, whose coordinates are given by a ∈ R3. We choose some axis Ax′, Ay′, Az′ linked
with the antenna geometry and denote by r′, θ′, φ′ the spherical coordinates of some point u with
respect to the Ax′, Ay′, Az′ axis. We suppose that in free space, the electrical field at point u,
generated by a given voltage excitation, v(t), is given in the far field approximation by

Ein(u, t) =
1

|u− a|
f(φ′, θ′)

dv

dt
(t− |u− a|/c) (2.1)

f(φ′, θ′) is a vector whose components fr′(θ
′, φ′), fθ′(θ

′, φ′), fφ′(θ
′, φ′) have the dimension of a

time. In the far field approximation (see [1]) f(φ′, θ′) is transversal i.e fr′(θ
′, φ′) = 0

We are going to choose an ultra wide band input voltage v(t) which means that its Fourier
transform has a support whose width is large, to fix the ideas, if the central frequency is f0 = 2πω0,
the bandwidth is 0.1f0. Today in wireless telephony 0.8 GHz < f0 < 6 GHz but higher frequencies
will appear soon.

The environment materials respond to the incident field Ein(u, t), charges and currents are
created inside them. In turn, these charges and currents create everywhere an electrical field (
called the scattered field ) and summing it with the incident field, total field is obtained inside or
outside the materials.

We are going to show that charge and current densities satisfy integral equations of Lippmann-
Schwinger type.

Let us come back to the electromagnetic theory. The total field polarizes the materials. Polar-
ization means that under the effect of the total electric field, the bound electrons of atoms move,
the charge density inside the materials is modified (some ”dipoles” are created) and currents are
generated. Introducing the polarisation vector P = ε0χ(E), the charge density inside the material
becomes ρp(u, t) = −∇.P(u, t) and the current density is given by Jp(u, t) = ∂

∂tP(u, t). In the
literature [9], [19], the relation between the total electric field and the polarisation vector has been
discussed and many simplifications have been introduced.

To simplify our forthcoming analysis we will admit that in our situation, one can write that,
approximatively, P(u, t) = ε0χ(u)E(u, t), then
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ρp(u, t) = −ε0∇.(χ(u)E(u, t)) = −ε0∇χ(u).E(u, t)− ε0χ(u)∇.E(u, t) (2.2)

As ∇.E(u, t) = ρp(u, t)/ε0

ρp(u, t) = − ε0
1 + χ(u)

∇χ(u).E(u, t) (2.3)

and

Jp(u, t) = ε0χ(u)
∂

∂t
E(u, t). (2.4)

If there are free electrons inside the materials (which is the case in metals) they can move under
the effect of the electrical field and some current density is created. We will admit the linearity
between the current density and the field i.e the Ohm law,

Jf (u, t) = σe(u)E(u, t) (2.5)

,
where σe(u) is the conductivity at point u.
Suppose that inside the materials, the volume of which is denoted V , charge density is given

by ρ(1)(u1, t) and the current density by J(1)(u1, t). In the Lorenz gauge the scalar potential and
the vector potential created at some point u2, at time t, respectively by the charge density and
the current density in the materials, are given by the so called retarded potential formulas :

φ(1)(u2, t) =
1

4πε0

∫
V

du1
ρ(1)(u1, t− |u2 − u1|/c)

|u2 − u1|

A(1)(u2, t) =
µ0

4π

∫
V

du1
J(1)(u1, t− |u2 − u1|/c)

|u2 − u1|
(2.6)

Now let us recall that the scattered electric field is related to the potentials by: Es = −∇φ−
∂
∂tA, then

E(1)
s (u2, t) = − 1

4πε0
∇
∫
V

du1
ρ(1)(u1, t− |u2 − u1|/c)

|u2 − u1|
− µ0

4π

∂

∂t

∫
V

du1
J(1)(u1, t− |u2 − u1|/c)

|u2 − u1|
(2.7)

The charges density induced by the total field, Et(u2, t) = Ein(u2, t) + E
(1)
s (u2, t), using (2.3)

is

ρ(2)(u2, t) = − ε0
1 + χ̂(u2)

∇χ(u2).Et(u2, t)

= − ε0
1 + χ̂(u2)

∇χ(u2).Ein(u2, t)

+
1

4π(1 + χ(u2))
∇χ(u2).∇

∫
V

du1
1

|u2 − u1|
ρ(1)(u1, t− |u2 − u1|/c)

+
ε0µ0

4π(1 + χ(u2))
∇χ(u2).

∂

∂t

∫
V

du1
1

|u2 − u1|
J(1)(u1, t− |u2 − u1|/c) (2.8)

while using (2.4) and (2.5)
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J(2)(u2, t) = ε0χ(u2)
∂Et
∂t

(u2, t) + σe(u2)Et(u2, t)

= ε0χ(u2)
∂Ein
∂t

(u2, t) + σe(u2)Ein(u2, t)

−χ(u2)
1

4π
∇
∫
V

du1
1

|u2 − u1|
∂ρ(1)

∂t
(u1, t− |u2 − u1|/c)

−χ(u2)
ε0µ0

4π

∫
V

du1
1

|u2 − u1|
∂2J(1)

∂t2
(u1, t− |u2 − u1|/c)

−σ
e(u2)

4πε0
∇
∫
V

du1
1

|u2 − u1|
ρ(1)(u1, t− |u2 − u1|/c)

−µ0σ
e(u2)

4π

∫
V

du1
1

|u2 − u1|
∂J(1)

∂t
(u1, t− |u2 − u1|/c) (2.9)

.
Denoting by ρin(u, t) = − ε0

1+χ(u)∇χ(u).Ein(u, t) and by Jin(u, t) = ε0χ(u) ∂∂tEin(u, t) +

σ(u)Ein(u, t), we write (2.8) and (2.9) as (ρ(2),J(2)) = (ρin,Jin) +K(ρ(1),J(1)) where the matrix
elements of K

K =


K00 K01 K02 K03

K10 K11 K12 K13

K20 K21 K22 K23

K30 K31 K32 K33


are integral operators which, in the case the conductivity is neglected, are given by,

(K00ρ)(u2, t) =
1

4π(1 + χ(u2))
∇χ(u2).∇

∫
V

du1
1

|u2 − u1|
ρ(u1, t− |u2 − u1|/c)

(K0iJi)(u2, t) =
ε0µ0

4π(1 + χ(u2))

∂χ(u21, u22, u23)

∂u2i

∂

∂t

∫
V

du1
1

|u2 − u1|
Ji(u1, t− |u2 − u1|/c)

(Ki0ρ)(u2, t) = −χ(u2)
1

4π

∂

∂u2i

∫
V

du1
1

|u2 − u1|
∂ρ

∂t
(u1, t− |u2 − u1|/c)

(KiiJi)(u2, t) = −χ(u2)
ε0µ0

4π

∫
V

du1
1

|u2 − u1|
∂2Ji
∂t2

(u1, t− |u2 − u1|/c)

K12 = K13 = K21 = K23 = K31 = K32 = 0

i = 1, 2, 3
(2.10)

The true charges and currents densities have to be chosen consistently, so they have to satisfy
(ρ,J) = (ρin,Jin) +K(ρ,J). Then we get, (ρ,J) = (1−K)−1(ρin,Jin)

One uses (2.1) and (2.3) to get,

ρin(u, t) = − ε0
1 + χ(u)

1

|u− a|
∇χ(u).fin(û)

dv

dt
(t− |u− a|/c) (2.11)

and (2.1) and (2.4) to get,

Jin(u, t) =
1

|u− a|
fin(û)

(
σe(u)

dv

dt
(t− |u− a|/c) + ε0χ(u)

d2v

dt2
(t− |u− a|/c)

)
(2.12)

.

6



K is an unbounded operator due to the presence of the spatial and the temporal derivatives, so
the Neumann series cannot be used to calculate (1−K)−1 . It is already clear from the numerical
results obtained in small bodies that inside the materials the scattered field presents a shape very
different from the shape of the incident field, the wavelength is changed. Instead if we use the
Born approximation i.e (1 −K)−1 ≈ (1 + K) this would lead to densities whose shape would be
similar to the incident density ones.

For the reasons already mentioned in the introduction, we are going to study the self-adjoint
operator (1−K)∗(1−K) = 1−K∗ −K +K∗K. In particular we are going to study the sparsity
of K∗K in the Daubechies wavelet basis.

3 Time reversal operator

K∗K =
K∗00K00 +K∗10K10 +K∗20K20 +K∗30K30 K∗00K01 +K∗10K11 K∗00K02 +K∗20K22 K∗00K03 +K∗30K33

K∗01K00 +K∗11K10 K∗01K01 +K∗11K11 K∗01K02 K∗01K03

K∗02K00 +K∗22K20 K∗02K01 K∗02K02 +K∗22K22 K∗02K03

K∗03K00 +K∗33K30 K∗03K01 K∗03K02 K∗03K03 +K∗33K33


K∗K acts on a quadruplet constituted by the charge density function and the three components

of the current density field, which will be expressed on the basis formed by the products of the
spatial wavelets and the temporal wavelets. We want to study the operator K∗K in the quadruplet
basis(

wm0n0
(x)wj0k0(t), wm1n1

(x)wjk(t), wm2n2
(x)wj2k2(t), wm3n3

(x)wj3k3(t)
)

.

We are not going to study all the elements of K∗K as this would be pretty tedious. To simplify
the exposure we limit ourselves to the study of K∗01K01 + K∗11K11 which acts only on the first
component of the current density . To simplify we will also suppose that the conductivity is zero.

We are going to show that many matrix elements (wm′1n
′
1
wj′1k′1 , (K

∗
01K01+K∗11K11)wm1n1

wj1k1)
are equal to zero or very small. To simplify the writing we suppress the index 1 in the wavelet
notation.

The support of the Daubechies-p wavelet wmn(x) is

(2−m1n1 − 2−m1(p− 1), 2−m1n1 + 2−m1p)

×(2−m2n2 − 2−m2(p− 1), 2−m2n2 + 2−m2p)

×(2−m3n3 − 2−m3(p− 1), 2−m3n3 + 2−m3p) (3.1)

.
dm := p

√
2−2m1 + 2−2m2 + 2−2m3 is such that for any point x of the wmn(x) support , |x −

xmn| ≤ dm.
Similarly for the temporal wavelet wjk(t) we define dj := 2−jp is such that for any point t of

the wjk(t) support , |t− tjk| ≤ dj .
In the following theorem we want to show that some matrix elements of K∗01K01 + K∗11K11

corresponding to the column (j, k,m,n) are equal to zero. .

Theorem 3.1. For fixed (j, k,m,n),
if |xm′n′ − xmn| ≤ c

(
tj′k′ − tjk − dj − dj′

)
− dm − dm′

or if |xm′n′ − xmn| ≤ c
(
tjk − tj′k′ − dj − dj′

)
− dm − dm′ .

the matrix element
(
wm′n′wj′k′ , (K

∗
01K01 +K∗11K11)wmnwjk

)
= 0

Proof. Let us introduce the Green function for the d’Alembert equation

G(x1, t1,x2, t2) =
δ(t1 − t2 − |x1−x1|

c )

4π|x1 − x2|
(3.2)
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.
From (2.10) we get

(K11wmnwjk)(u, t”) = −χ(u)
1

4πc2

∫
dx

1

|u− x|
wmn(x)

d2wjk
dt2

(t”− |u− x|/c)

= −χ(u)
1

c2

∫
dxwmn(x)

∫ ∞
−∞

dt
d2wjk
dt2

(t) G(u, t”,x, t) (3.3)

.
Then the matrix element of K∗11K11 is

(wm′n′wj′k′ ,K
∗
11K11wmnwjk) = (K11wm′n′wj′k′ ,K11wmnwjk)

=
1

c4

∫
dx′ wm′n′(x

′)

∫
dx wmn(x)

∫ ∞
−∞

dt′
d2wj′k′

dt′2
(t′)

∫ ∞
−∞

dt
d2wjk
dt2

(t)∫ ∞
−∞

dt”

∫
V

du |χ(u)|2 G(u, t”,x′, t′)G(u, t”,x, t) (3.4)

.
Introducing the expression for the Green function

∫ ∞
−∞

dt”

∫
V

du |χ(u)|2G(u, t”,x′, t′)G(u, t”,x′, t) =∫
V

du |χ(u)|2 1

|u− x′||u− x|
δ(t′ − t+ |u− x′|/c− |u− x|/c) (3.5)

.
To calculate the integral over u in the material volume, we introduce the prolate spheroidal

coordinates.
The Cartesian coordinates for u = (u′1, u

′
2, u
′
3) are given with respect to the following orthonor-

mal vectors whose origins are the middle point in between x′ and x, e′3 = (x′ − x)/‖x′ − x‖, e′2
is parallel to the ground plane and perpendicular to e′3, while e′1 is perpendicular to the previous
ones.

If one denotes by 2a the distance in between x′ and x, the spheroidal coordinates are given by

τ =
1

2a

√
u
′2
1 + u

′2
2 + (u′3 + a)2 +

√
u
′2
1 + u

′2
2 + (u′3 − a)2

σ =
1

2a

√
u
′2
1 + u

′2
2 + (u′3 + a)2 −

√
u
′2
1 + u

′2
2 + (u′3 − a)2

φ = arctan
u′2
u′1

(3.6)

Notice that τ ∈ [1,∞) while σ ∈ [−1, 1). The cartesian coordinates , in term of the spheroidal
coordinates are given by

u′1 = a
√

(τ2 − 1)(1− σ2) cosφ

u′2 = a
√

(τ2 − 1)(1− σ2) sinφ

u′3 = aτσ (3.7)

The surfaces of constant τ are prolate spheroids while the surfaces of constant σ are hyper-
boloids denoted Hx,x′(σ).

The volume element is dV = a3(τ2 − σ2)dτdσdφ.
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Notice that as τ = 1
2a (|u−x′|+ |u−x|) and σ = 1

2a (|u−x′|− |u−x|), then |u−x′| = a(τ +σ)
and |u− x| = a(τ − σ), so |u− x′||u− x| = a2(τ2 − σ2) .

The integrand simplifies∫
V

du δ(t′ − t+ |u− x′|/c− |u− x|/c) |χ(u)|2 1

|u− x||u− x′|

= |x′ − x|/2
∫ 1

−1
dσ δ(t′ − t+ σ|x′ − x|/c)

∫ ∞
1

dτ

∫ 2π

0

dϕ|χ̃xx′(σ, τ, ϕ)|2 (3.8)

Using the fact that wmn(x) = wm0(x−xmn) and wjk(t) = wj0(t− tjk), performing the change
of variables x0 = x − xmn , x′0 = x′ − xm′n′ , t0 = t − tjk and t′0 = t′ − tj′k′ in the integrals the
matrix element of K∗11K11 is

(wm′n′wj′k′ ,K
∗
11K11wmnwjk) = (K11wm′n′wj′k′ ,K11wmnwjk)

=
1

2c4

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′0
d2wj′0
dt′2

(t′0)

∫ ∞
−∞

dt0
d2wj0
dt2

(t0)

×|xm′n′ − xmn + x′0 − x0|
∫ 1

−1
dσ δ(tj′k′ − tjk + t′0 − t0 + σ|xm′n′ − xmn + x′0 − x0|/c)

×
∫ ∞
1

dτ

∫ 2π

0

dϕ|χ̃xx′(σ, τ, ϕ)|2 (3.9)

.
For fixed (j, k,m,n), if |xm′n′ − xmn| ≤ c

(
tj′k′ − tjk − dj − dj′

)
− dm − dm′ , then

c(tj′k′−tjk+t
′
0−t0)

|xm′n′−xmn+x′0−x0| > 1, whenever x0, x′0, t0, t′0 are, so δ(tj′k′ − tjk + t′0− t0 +σ|xm′n′ −xmn +

x′0 − x0|/c) = 0 and (wm′n′wj′k′ ,K
∗
11K11wmnwjk) = 0

If |xm′n′ − xmn| ≤ c
(
tjk − tj′k′ − dj − dj′

)
− dm − dm′ ,

c(tj′k′−tjk+t
′
0−t0)

|xm′n′−xmn+x′0−x0| < −1 whenever x0,

x′0, t0, t′0 are, so (wm′n′wj′k′ ,K
∗
11K11wmnwjk) = 0 QED

Remark. Theorem results from a property of functions supports. It could have been obtained
more easily noticing that the operators Kij are the products of three operators, a time derivation
operator, a free wave propagation operator and a space derivation operator. If m and j are
sufficiently large, it is easy to follow, as t increases, the spatial support of Kijwmnwjk. At time
t = tjk the support is in a small ball, while at time t larger than t = tjk, the support is a spherical
crown centred at xmn whose mean radius is c(t − tjk) and width dm. Similarly the support
Kijwm′n′wj′k′ at time t is a spherical crown centred at xm′n′ whose mean radius is c(t− tj′k′) and

width dm′ . It is easy to see that if |xm′n′ −xmn| ≤ c
(
tj′k′ − tjk− (2−j + 2−j

′
)p+ 2−j

′)−dm−dm′
or if |xm′n′−xmn| ≤ c

(
tjk− tj′k′− (2−j +2−j

′
)p+2−j

)
−dm−dm′ the supports never intersect as

t evolves , so the scalar product of Kijwmnwjk and Kijwm′n′wj′k′ is equal to zero. So Theomem
3.1 is almost trivial and its proof could be obtained without the use of spheroidal coordinates.

4 Kernels regularity and matrix elements smallness

We want now to examine the values for the matrix elements (wm′n′wj′k′ ,K
∗
11K11wmnwjk) when

xmn,xm′n′ , tj′k′ , tj′k′ do not satisfy the conditions stated in the previous theorem.
In (3.9) we perform the integration w.r.to the σ variable , obtaining,
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(wm′n′wj′k′ ,K
∗
11K11wmnwjk) = (K11wm′n′wj′k′ ,K11wmnwjk)

=
1

2c3

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′0
d2wj′0
dt′2

(t′0)

∫ ∞
−∞

dt0
d2wj0
dt2

(t0)

×
∫ ∞
1

dτ

∫ 2π

0

dϕ|χ̃x0+xmn,x′0+xm′n′

( c(tjk − tj′k′ + t0 − t′0)

|xm′n′ − xmn + x′0 − x0|
, τ, ϕ

)
|2 (4.1)

.
In the following, to simplify the writing we will use the notations

f(σ,x,x′) :=

∫ ∞
1

dτ

∫ 2π

0

dϕ |χ̃x,x′(σ, τ, ϕ)|2 (4.2)

and

fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0, t

′
0) := f(

c(tjk − tj′k′ + t0 − t′0)

|xm′n′ − xmn + x′0 − x0|
,x0 + xmn,x

′
0 + xm′n′)

=

∫ ∞
1

dτ

∫ 2π

0

dϕ
∣∣∣χ̃x0+xmn,x′0+xm′n′

( c(tjk − tj′k′ + t0 − t′0)

|xm′n′ − xmn + x′0 − x0|
, τ, ϕ

)∣∣∣2 (4.3)

So

(wm′n′wj′k′ ,K
∗
11K11wmnwjk) = (K11wm′n′wj′k′ ,K11wmnwjk)

=
1

2c3

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′0
d2wj′0
dt2

(t′0)

∫ ∞
−∞

dt0
d2wj0
dt2

(t0)fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0, t

′
0)

(4.4)

.
Notice that fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t, t

′) = 0 if
c(tjk−tj′k′+t0−t

′
0)

|xm′n′−xmn+x′0−x0| > 1 or < −1.

In order to study the smallness of the matrix elements we are going to examine the regularity
of the function fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t, t

′) inside Imm′jj′ which is defined as the set of points

(x0,x
′
0, t, t

′) such that x0i ∈ (−2−mi(p− 1), 2−mip), x′0i ∈ (−2−m
′
i(p− 1), 2−m

′
ip), t ∈ (−2−j(p−

1), 2−jp), t′ ∈ (−2−j
′
(p − 1), 2−j

′
p) i.e the product of the supports of the wavelets wm0(x0),

wm′0(x′0), wj0(t0), wj′0(t′0).
To start, we consider simple geometries for the material volume and regularity of the permit-

tivity inside it .

Proposition 4.1. If the material volume is a polyhedron in which the permittivity is infinitely
differentiable , if
|xm′n′ − xmn| > c(tjk − tj′k′) + c(dj + dj′) + dm + dm′ (H1) or
|xm′n′ − xmn| > c(tj′k′ − tjk) + c(dj + dj′) + dm + dm′ (H2),
and if for fixed m,n,m′,n′, j, k, j′, k′ the set of hyperboloids

Hxmn+x0,xm′n′+x′0

(
c(tjk+t−tj′k′−t

′)

|xm′n′+x′0−xmn−x0|

)
with (x0,x

′
0, t0, t

′
0) ∈ Imm′jj′ hits only one face Fi

(H3) or if it hits several faces, Fi, Fi+1,...Fi+k but do not hit a corner point (H4),
then function fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t0, t

′
0) is regular for any (x0,x

′
0, t0, t

′
0) in Imm′jj′ .

Proof. For fixed m,n,m′,n′, j, k, j′, k′ one chooses (x0,x
′
0, t0, t

′
0) ∈ Imm′jj′ . From (H1) or

(H2) −1 <
c(tjk+t0−tj′k′−t

′
0)

|xm′n′+x′0−xmn−x0| < 1 .

Consider first , (H3), the case the intersection of the hyperboloidHxmn+x0,xm′n′+x′0

(
c(tjk+t0−tj′k′−t

′
0)

|xm′n′+x′0−xmn−x0|

)
and the polyhedron is totally inside the face Fi.

The spheroidal coordinates of the points of the intersection are denoted
(
σ =

c(tjk+t0−tj′k′−t
′
0)

|xm′n′+x′0−xmn−x0 |
, ϕ, τ(σ, ϕ)

)
We are going to calculate τ(σ, ϕ). We need to establish the equations for the plane Pi in the
spheroidal coordinates.
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We are going first to establish the link between the cartesian coordinates and the spheroidal
coordinates linked with x and x′. Vectors of the new basis are e′3 = x′−x

|x′−x| , e′2 is chosen parallel

to the ground and perpendicular to e′3, so e′2 =
x′2−x2√

(x′1−x1)2+(x′2−x2)2
e1 − x′1−x1√

(x′1−x1)2+(x′2−x2)2
e2,

and

e′1 = e′2 × e′3 = − (x′1 − x1)(x′3 − x3)√
(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

√
(x′1 − x1)2 + (x′3 − x3)2

e1

− (x′3 − x3)(x′2 − x2)√
(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2

√
(x′1 − x1)2 + (x′3 − x3)2

e2

+
x21 + x22 − 2x1x

′
1 + x

′2
1 − 2x2x

′
2 + x

′2
2√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2
√

(x′1 − x1)2 + (x′3 − x3)2
e3. (4.5)

The old vectors (e1, e2, e3) can be expressed in terms of the new ones (e′1, e
′
2, e
′
3) by the formulas

e1 = (e1.e
′
1)e′1 + (e1.e

′
2)e′2 + (e1.e

′
3)e′3

e2 = (e2.e
′
1)e′1 + (e2.e

′
2)e′2 + (e2.e

′
3)e′3

e3 = (e3.e
′
1)e′1 + (e3.e

′
2)e′2 + (e3.e

′
3)e′3 (4.6)

where the scalar products can be extracted from the formulas (4.5)
The old coordinates u1, u2, u3 can be expressed in terms of the new ones

u1 =
x1 + x′1

2
+ (e1.e

′
1)u′1 + (e1.e

′
2)u′2 + (e1.e

′
3)u′3

u2 =
x1 + x′1

2
+ (e2.e

′
1)u′1 + (e2.e

′
2)u′2 + (e2.e

′
3)u′3

u3 =
x1 + x′1

2
+ (e3.e

′
1)u′1 + (e3.e

′
2)u′2 + (e3.e

′
3)u′3 (4.7)

Now we are going to study the intersection of the hyperboloid Hσ and the plane Pi containing
the polyhedron face Fi.

The normal ni to the plane Pi is written, in the original basis, as ni = ni1e1 + ni2e2 + ni3e3,
in the basis e′1, e

′
2, e
′
3, it becomes

ni = ni1e1 + ni2e2 + ni3e3

= ni1
[
(e1.e

′
1)e′1 + (e1.e

′
2)e′2 + (e1.e

′
3)e′3

]
+ni2

[
(e2.e

′
1)e′1 + (e2.e

′
2)e′2 + (e2.e

′
3)e′3

]
+ni3

[
(e3.e

′
1)e′1 + (e3.e

′
2)e′2 + (e3.e

′
3)e′3

]
=
[
ni1(e1.e

′
1) + ni2(e2.e

′
1) + ni3(e3.e

′
1)
]
e′1

+
[
ni1(e1.e

′
2) + ni2(e2.e

′
2) + ni3(e3.e

′
2)
]
e′2

+
[
ni1(e1.e

′
3) + ni2(e2.e

′
3) + ni3(e3.e

′
3)
]
e′3 (4.8)

.
All the scalar products can be extracted from (4.5).
The equation of the plane Pi is obtained writing that if M = (u′1, u

′
2, u
′
3) ∈ Pi, O

′M.ni =

sie
′
3.ni, where O′ is the middle point x+x′

2 , (0, 0, si) are the coordinates, in the new basis, of the
intersection point of the line xx′ and the plane Pi . The previous equation becomes,

(u′1e
′
1 + u′2e

′
2 + u′3e

′
3).ni = sie

′
3.ni (4.9)

.
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The scalar products e′1.ni, e
′
2.ni, e

′
3.ni will be denoted respectively αi1, βi1, γi1, they can be

calculated from equation (4.8).
In spheroidal coordinates the plane equation becomes

αi,1

(
a
√

(τ2 − 1)(1− σ2) cosϕ
)

+ βi,1

(
a
√

(τ2 − 1)(1− σ2) sinϕ
)

+ γi,1

(
aτσ

)
= γi,1si (4.10)

.
Introducing ϕi,0 such that cosϕi,0 =

αi,1
α2
i,1+β

2
i,1

and sinϕi,0 =
β1,1

α2
i,1+β

2
i,1

we get from (4.10)

cos(ϕ− ϕi,0) =
γi,1(si − aτσ)

a
√

(τ2 − 1)(1− σ2)
(4.11)

.
To determine the limits of integration for the integrals which enter in f(σ,x,x′) we have to find

the relationship in between τ and ϕ. As for fixed −1 < σ < 1 the function Fσ(τ) := γi1(si−aτσ)
a
√

(τ2−1)(1−σ2)

is a decreasing function on [1,∞) its inverse F−1σ exists , so τ(σ, ϕ) = F−1σ (cos(ϕ− ϕ0,i))
So finally in the case Hσ hits only the face Fi, we obtain

f(σ,x,x′) =

∫ 2π

0

dϕ

∫ τ(σ,ϕ)

1

dτ |χ̃(σ, τ, ϕ|2, (4.12)

In the case the permittivity is a constant, χ0

f(σ,x,x′) = χ2
0

(
− 2π +

∫ 2π

0

dϕ τ(σ, ϕ)
)
, (4.13)

It is easy to see that γi, si, a are regular functions in x and x′ , so F and F−1 are regular and
finally τ(σ, ϕ) is also regular.

Using now the Leibniz integral function formula several times , the regularity of |χxx′(σ, τ, ϕ)|2
and τ(σ, ϕ) with respect to σ one gets that fmn,m′n′,jk,j′k′(x0,x

′
0, t0, t

′
0) is regular for any (x0,x

′
0, t0, t

′
0)

in Imm′jj′

Let us now examine the case for fixed m,n,m′,n′, j, k, j′, k′ the set of hyperboloids

Hxmn+x0,xm′n′+x′0

(
c(tjk+t0−tj′k′−t

′
0)

|xm′n′+x′0−xmn−x0 |

)
with (x0,x

′
0, t0, t

′
0) ∈ Imm′jj′ hits several faces, Fi,

Fi+1,...Fi+k but do not hit a corner point ( (H4) hypothesis).
The intersections of the hyperboloid with the polyhedron faces are pieces of ellipses. We have to

determine the spheroidal coordinates of the points which are at the intersection of the hyperboloid
with the edges of the polyhedron. Let us denote Eii′ the edge corresponding to the faces Fi and F ′i .
The spheroidal coordinates of the intersection point of Hσ and Eii′ are denoted (σ, ϕii′(σ), τii′(σ)).

We have to distinguish two cases . In the first case Hσ hits only the edge Ei,i+1 and it does
at two points. In the second case Hσ hits successively edges Ei,i+1, ..., Ei+l,i+l+1, ..., Ei+k,i and it
does at an unique point .

In the first case integrating always w.r.to ϕ in the counterclockwise

f(σ,x,x′) =
(∫ ϕi+1,i(σ)

ϕi,i+1(σ)

dϕ

∫ τ(σ,ϕ)

1

dτ |χ̃xx′(σ, τ, ϕ|2 +

∫ ϕi,i+1

ϕi+1,i

dϕ

∫ τ(σ,ϕ)

1

dτ |χ̃(σ, τ, ϕ|2
)

(4.14)

In the second case

f(σ,x,x′) =

k∑
l=0

∫ ϕi+l+1,i+l+2(σ)

ϕi+l,i+l+1(σ)

dϕ

∫ τ(σ,ϕ)

1

dτ |χ̃(σ, τ, ϕ|2 (4.15)

To calculate ϕi+l,i+l+1(σ) we use the fact that, at an intersection point of the two ellipses,
the value for the coordinate τ has to satisfy from (4.11) γi+l,1(si+l − aτσ) = γi+l+1,1(si+l+1 −
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aτσ), so it takes the value denoted, τi+l :=
γi+l+1,1si+l+1−γi+l,1si+l

aσ(γi+l+1,1−γi+l,1) and ϕi+l,i+l+1(σ) = ϕi+l,0 +

arccos
γi+l,1(si+l−aτi+lσ)
a
√

(τ2
i+l−1)(1−σ2)

It may be another value for ϕ, at the intersection of the hyperboloid with the edge, π −
(ϕi+l,i+l+1(σ)− ϕi+l,0). In the first case we have to take the two values for ϕ while in the second
case we have to choose the convenient one. From the regularity of the integral bounds we deduce
the regularity of function fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t0, t

′
0). QED

Remark. If
c(tjk−tj′k′ )
|xm′n′−xmn| is close to 1, when (x0,x

′
0, t0, t

′
0) belong to the wavelets supports it may

occur that
c(tjk+t−tj′k′−t

′)

|xm′n′−xmn+x′−x| < 1 or it may occur that
c(tjk+t−tj′k′−t

′)

|xm′n′−xmn+x′−x| > 1. Since f(σ,x,x′) has

a jump at σ = 1, fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0, t

′
0) = f

(
c(tj′k′−tjk+t

′
0−t0)

|xm′n′−xmn+x′0−x0| ,xmn + x0,xm′n′ + x′0

)
is not regular.

Theorem 4.2. If the volume material volume is a polyhedron in which the permittivity is infinitely
differentiable , if
|xm′n′ − xmn| > c(tj′k′ − tjk) + c(dj + dj′) + dm + dm′ , or if |xm′n′ − xmn| > c(tjk − tj′k′) +

c(dj + dj′) + dm + dm′ ,

if for fixed m,n,m′,n′, j, k, j′, k′ the set of hyperboloids Hxmn+x0,xm′n′+x′0

(
c(tjk+t−tj′k′−t

′)

xm′n′+x′0−xmn−x0|

)
with (x0,x

′
0, t, t

′) ∈ Imm′jj′ do not hit a corner point
the matrix element satisfies, for some constant C(
wm′n′wj′k′ , (K

∗
01K01+K∗11K11)wmnwjk

)
< C

8((p+1))!2
−(p+1)m/22−(p+1)m′/22−(p+1)j/22−(p+1)j′/2

.

Proof. Recall that

(wm′n′wj′k′ ,K
∗
11K11wmnwjk)

=
1

2c3

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′0
d2wj′0
dt′2

(t′)

∫ ∞
−∞

dt0
d2wj0
dt20

(t0) fmn,m′n′,jk,j′k′(x0,x
′
0, t0, t

′
0)

(4.16)

Integrating by parts

(wm′n′wj′k′ ,K
∗
11K11wmnwjk)

=
1

2c3

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′0 wj′0(t′0)

∫ ∞
−∞

dt0 wj0(t0)
∂4fmn,m′n′,jk,j′k′

∂t2∂t′2
(x0,x

′
0, t0, t

′
0)

(4.17)

From proposition 4.1, fmn,m′n′,jk,j′k′(x0,x
′
0, t0, t

′
0) is regular . To simplify the notations we replace

x0,x
′
0, t, t

′ by X such that X1 = x01,X2 = x02, Y3 = x03,X4 = x′01,X5 = x′02,X6 = x′03,X7 =
t0,X8 = t′0,

f̂(X ) :=
∂4fmn,m′n′,jk,j′k′

∂t20∂t
′2
0

(x0,x
′
0, t0, t

′
0) (4.18)

It has the following Taylor expansion at point (0).
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f̂(X ) = f̂(0) +

8∑
i=1

yi
∂f̂

∂yi
(0) +

1

2!

8∑
i=1

8∑
j=1

yiyj
∂2f̂

∂yi∂yj
(0) + ....

∑
α1+α2+...+α8≤k

1

α1!α2!...+ α8!
yα1
1 yα2

2 ...yα8
8

∂α1+α2+...+α8 f̂

∂ys11 ∂y
s2
2 ....∂y

s8
8

(0) +
∑

β1+β2+...+β8=k+1

yβ1

1 yβ2

2 ...yβ8

8 Rβ(X0)

(4.19)

, where Rβ(X0) is a bounded function which satisfies |Rβ(X0)| ≤ 1
β!max|α|=|β|max(X0)|DαF (X0)|.

Inserting the expression (4.19) in (4.17), the integration of the term yα1
1 yα2

2 ...yα8
8 give us 0 if

one of the exponents αi is smaller or equal to p, as the first p moments of the Daubechies -p
wavelets are null.

(wm′n′wj′k′ ,K
∗
11K11wmnwjk)

=
1

2c4

∫
dx′0wm′0(x′0)

∫
dx0wm0(x0)

∫ ∞
−∞

dt′ wj0(t′)

∫ ∞
−∞

dtwj0(t)

×
∑

β1+β2+...+β8=8(p+1)

xβ1

1 x
β2

2 ...t
′β8Rp+1(x0,x

′
0, t, t

′) (4.20)

.
In this case the matrix element is of order 1

(8(p+1))!2
−(p+1)m/22−(p+1)m′/22−(p+1)j/22−(p+1)j′/2.

Theorem 4.3. If the volume material volume is a polyhedron in which the permittivity is infinitely
differentiable and if |xm′n′ −xmn| > dm +dm′ (H5), if the regularity of the wavelets is sufficiently
high ,( for the Daubechies-p wavelets , p has to be sufficiently large) the matrix element satisfies, for

some constant C ,
(
wm′n′wj′k′ , (K

∗
01K01+K∗11K11)wmnwjk

)
< C

(7(p+1))!2
−(p+1)m/22−(p+1)m′/22−(p+1)j/2

Proof. The kernel f(x,x′, t, t′) is a function of the variables x, x′ and t − t′. For fixed xmn

and xm′n′ satisfying (H5), |x′ − x| is strictly positive whatever x,x′ are resp. in the support
of the wavelets wmn and wm′n′ . From the previous calculations it appears that if |x′ − x| > 0,
f(x,x′, t− t′) is regular except on surfaces corresponding to the values of (x,x′, t− t′) for which
the hyperbolod H c(t−t′)

|x−x′|
hits a corner.

Recall that the matrix element is written as

(wm′n′wj′k′ ,K
∗
11K11wmnwjk) =

1

2c3

∫
dx0wm0(x0)

∫ ∞
−∞

dt0
d2wj0
dt20

(t0)

×
∫
dx′0wm′0(x′0)

∫ ∞
−∞

dt′0
d2wj′0
dt′20

(t′0) fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0 − t′0) (4.21)

We denote Fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0) :=

∫∞
−∞ dt′0

d2wj′0
dt′20

(t′0) fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0 −

t′0).
It appears as the convolution of a regular function and a function fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t”0)

which is regular except on surfaces corresponding to the values of (x0,x
′
0, t”0) for which the hyper-

boloid H c(tjk+t”0−tj′k′ )

|x
m′n′+x′0−xmn−x0|

hits a corner. The partial derivatives of fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t”0)

exist also except on the same surfaces. Partial derivatives of first order contain jumps , par-
tial derivatives of second order contain delta functions... We suppose that the derivatives of the
wavelets exist up to orderN , from Leibniz integral rule , the partial derivatives of Fm,n,m′,n′,j,k,j′,k′(x0,x

′
0, t0)

with respect to x0,x′0,t0 exist, because the regularisation effect introduced by the convolution with
the regular wavelets.
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From the existence of the partial derivatives of Fm,n,m′,n′,j,k,j′,k′(x0,x
′
0, t0), on the support of

the wavelets wm0(x0),wm′0(x′0), wj0(t0) by the same arguments as in theorem 4.2, one can prove

that
(
wm′n′wj′k′ , (K

∗
01K01 +K∗11K11)wmnwjk

)
< C

(7(p+1))!2
−(p+1)m/22−(p+1)m′/22−(p+1)j/2

5 Evaluating the sparsity of the time reversal operator

In the case the Hilbert space L2(R4) ⊗ C4 is replaced by a finite dimensional space generated
by a finite set of wavelets we are going to estimate the proportion of matrix elements that are
not negligible. There is no clear limit to the wave propagation of pulses in cities, nevertheless
considering that TX antenna, situated at the origin, emits a short pulse at a time which can be
considered as the time origin, considering that this pulse will create charge and currents densities
in the materials which decrease rapidly in time and become negligible for t larger than some tmax,
we will impose a time limit and a space limit to the study, (measurements show that the signal
fade at the receiver antenna approximatively 300 ns after the emission, this could be tmax). Then
we will limit the study to a ball of radius ctmax. To simplify the calculations we suppose that the
selected volume is a parallelepiped (−L1, L1)× (−L2, L2)× (−L3, L3).

We limit the indices j, j′,mi,m
′
i to some set of values, j ∈ (J, J), j′ ∈ (J, J), mi ∈ (M i,M i)

, m′i ∈ (M i,M i). The values of M i depend on the support of the Daubechies-p wavelet and the
lengths L1, L2, L3. J depend on the support of the Daubechies-p wavelet and tmax. The values of
M i and J will be chosen depending on the objective, in terms of precision for the densities to be
calculated.

Once mi is given the ni is chosen such that the support of wmini(xi) i.e (2−mini − 2−mi(p−
1), 2−mini + 2−mip) intersects the interval (−Li, Li). Once j is given, k is chosen so that the
support of wjk(t) i.e (tjk − 2−j(p− 1), tjk + 2−jp) intersects the interval (0, tmax).

The total number of considered wmini spatial wavelets, is equal to

(1 + 2 + ...+ 2M1−M1)× (1 + 2 + ...+ 2M2−M2)× (1 + 2 + ...2M3−M3)

= 2M1+M2+M1−M1−M2−M3+3, while the total number of considered wjk temporal wavelets is

equal to (1 + 2 + ...+ 2J−J)N = 2J−J+1

So the truncated K∗11K11 operator acts on a space of dimension

N0 = 2M1+M2+M3+J−M1−M2−M3−J+4

We are going to consider that the matrix elements of (1 +K∗)(1 +K) which are of order
1

(p+1)!2
−(p+1)m/22−(p+1)m′/2 or smaller are negligible. From theorems 3.1, 4.3 and proposition

9.1 those which are not negligible are those such that |xm′n′−xmn| < dm +dm′ and c|tj′k′−tjk| <
2(dm + dm′) + (2−j + 2−j

′
)p. In fact if |xm′n′ − xmn| < dm + dm′ and c(tj′k′ − tjk) ≥ 2(dm +

dm′) + (2−j + 2−j
′
)p, |xm′n′ − xmn| < c(tj′k′ − tjk)− dm − dm′ which infers by theorem 3.1 that

the corresponding matrix element is 0.
We look at the column of the matrix (1+K∗)(1+K) corresponding to the basis vector wmnwjk

. We order the basis vectors wm′n′wj′k′ , the large scale wavelets with small m′ and j′ come first
, notice they are few , the small scale wavelets with large m′ and j′ are many , their number is of
the order 2m

′
1L1×2m

′
2L2×2m

′
3L3. For fixed m, n, j , k, m′ and j′ the number of matrix elements

(wm′n′wj′k′(1+K∗)(1+K)wmnwjk) which are not negligible is the product of the number of lattice
points n′ which are inside the material volume , in the ball of radius dm + dm′ centred at xmn by
the number of k′ which satisfy tj′k′ − tjk < 2(dm + dm′)/c+ (2−j + 2−j

′
)p/c . It is smaller than

2m
′
1+m

′
2+m

′
32j
′+1(dm1

+ dm′1)(dm2
+ dm′2)(dm3

+ dm′3). Then the total number of matrix elements

(wm′n′wj′k′K
∗
11K11wmnwjk) which are not negligible is

∑M
m′=M

∑J
j′=J 2m

′
1+m

′
2+m

′
32j
′+1(dm1

+

dm′1)(dm2
+dm′2)(dm3

+dm′3). Let us notice that for large m and j the proportion of non negligible
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elements with respect to the negligible ones becomes very small .

Let us estimate the sparsity in the case the volume is a parallelepipedic wall (L1 = 10m,L2 =
3m,L3 = 0.3m), signals are in the GHz range, the wavelength outside is of the order of the
centimetre. The unit of time is the nanosecond , then the light velocity is 0.3 m/ns. We choose the
Daubechies 10 wavelet. Then, p = 10 , as log2 L1/p = 0 , − log2 L2/p = 1.73, − log2 L1/cp = 5.05
, one chooses M1 = 0, M2 = 1, M3 = 5, J = 0. The values for M1 M2 and M3 can be determined
once the desired precision on the densities is chosen. We can for instance look for space details of
the order 1cm and temporal details of 0.01ns in which case M1 = M2 = M3 = − log2 10−3/p = 9
and J = 9. Then the dimension of the column vector is
N0 = 2M1+M2+M3+J−M1−M2−M3−J+4 = 234 = 1.7× 1010

The total number of non negligible elements of the column MnJk is∑M
m′=M

∑J
j′=J p

4(1 + 2m
′
1−M1)(1 + 2m

′
2−M2)(1 + 2m

′
3−M3)(1 + 2j

′−J) .
So for this column the ratio in between the non negligible elements and the vector dimension

is approximatively 34104/1.7× 1010 ≈ 5× 10−5.

6 Discussion and conclusion

Here we want to address some open problems and perspectives. The choice of p, which affects
the support of the Daubechies-p wavelet and its regularity , has to be tuned. From theorem 3.1
hypothesis, the number of matrix elements(

wm′n′wj′k′ ,K
∗
01K01 + K∗11K11wmnwjk

)
such that |xm′n′ − xmn| < c(tj′k′ − tjk − (2−j +

2−j
′
)p + 2−j

′
) − dm − dm′ , which are equal to zero, decreases with the increase of p as can be

checked from the inequality. Similarly from the hypothesis of theorem 4.2 , the number of matrix
elements of K∗01K01 + K∗11K11 such that |xm′n′ − xmn| > c(tj′k′ − tjk + (2−j + 2−j

′
)p − 2−j) +

dm + dm′ decreases with the increase of p but some of them become much smaller since of order
1

8((p+1))!2
−(p+1)m/22−(p+1)m′/22−(p+1)j/22−(p+1)j′/2. Notice also that the number of singularities

of f(σ,x,x′), inside intervals whose length depends on p, changes. All that affects the number of
matrix elements which will be neglected.

To solve numerically the (1 − K)∗(1 − K)d = (1 − K)∗din system, one has first to calculate
the non negligible matrix elements. Notice that for the K∗K matrix elements, using spheroidal
coordinates the involved integrals do not have strong singularities. Instead in the appendix-
Diagonal terms- we establish formulas, using Fourier transform which involve Cauchy principal
values. In fact it is a major benefit since the time used calculating numerically the matrix elements
becomes small .

Solving the system, even if the sparsity is important, will need clever algorithms and powerful
computers.

Finally we conjecture that the irregularities of the house fronts, windows, balconies...greatly
affect the signals, their presence modifies f(σ,x,x) and increases the number of non negligible
elements of the matrix (1−K)∗(1−K). To study better this point we could start with a simple
rectangular wall 20m wide, 10m high, 0.4m thick and after we would introduce several windows
of size 1m×2m distributed regularly. The aim would be to compare the resulting densities for the
two cases. We could also determine the behaviour of the signals at the user antenna and compare
them with the signals obtained by ray tracing.

An important question is the stability of the charge and current densities when we increase
the dimension of the space generated by a finite set of basis functions. Using the fact that
(1−K)∗(1−K) is Hermitian one could control the stability in the following way. Denoting A the
matrix (1−K)∗(1−K) restricted to the finite space spanned by a finite number of basis functions,
adding for instance the function wmnwJ+1,0 to the previous basis, a column and a line are added
to matrix A. Then the new matrix is formed by 4 sub-blocks A for the original matrix, B for the
added column without the last element, C for the added line without the last element, D for the
added diagonal element. Using the following analytic inversion formula
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[
A B
C D

]−1
=

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1C(A−BD−1C)−1BD−1

]
.

one notices that as D is large and B and C have many zero elements, it appears that BD−1C
is small so the block A−BD−1C is close to A. As the component of the ”incident densities”, din,
on the added wavelet is small, then the modified densities are very close to the densities previously
calculated since if we compare the first components of the new densities with the components of
the old densities, they are close since A−BD−1C is close to A and the added component of the
new densities is small.

7 Appendix - The K*K kernel for an union of parallelepipeds

We are going to calculate the K∗K kernel, f(x,x′, t, t′) in the case the volume material is the
union of parallelepipeds Pl with constant permittivity, χl. The Pl parallelepiped center is the
point (cl1, cl2, cl3) The parallelepipeds summits coordinates are : (cl1 ± dl1

2 , cl2 ±
dl2
2 , cl3 ±

dl3
2 ).

The faces perpendicular to ei are denoted F±li and the edge at the intersection of the faces F sli,

F s
′

lj are denoted Ess
′

lij .
We are going to evaluate f(σ,x,x′) using formula (3.9) and the fact that χ(u) =

∑
l χlIPl(u) .

To evaluate the integrals we need to see how the hyperboloid Hσ intersects the parallelepiped,
Pl. The intersection may be simple if it intersects only one face in which case the curve is an
ellipse or it may be a close curve made of several pieces of ellipses if the hyperboloid intersects the
edges of the parallelepiped . To examine the different cases we need to establish the equations for
the planes and the edges in the spheroidal coordinates.

Now we are going to study the intersection of Hσ and the planes P−1 , P+
1 , P−2 , P+

2 , P−3 , P+
3

containing resp.the parallelepiped faces F−1 , F+
1 , F−2 , F+

2 , F−3 , F+
3 . They are ellipses denoted

resp.E1, E+
1 , E2, E+

2 , E3, E+
3 . Each of these ellipses may be totally inside the face or partially

inside or totally outside the face. First we have to write the equation of the planes in the new
coordinates. The equations for the line which contains x and x′ is

y1 − x1
x′1 − x1

=
y2 − x2
x′2 − x2

=
y3 − x3
x′3 − x3

. (7.1)

The intersection of this line (or e′3 axis ) with the plane P−1 is obtained in introducing y1 =
c1 − d1

2 in the previous equation, so the coordinates of the intersection point in the old basis are

y1 = c1 − d1
2 , y2 = x2 − x′2−x2

x′1−x1
(c1 − d1

2 − x1), y3 = x3 − x′3−x3

x′1−x1
(c1 − d1

2 − x1). The distance from

(x′ + x)/2 to this point , denoted s−1 is given by

s−1 =

√(
c1 −

d1
2
− x1 + x′1

2

)2
+
(
x2 −

x′2 − x2
x′1 − x1

(c1 −
d1
2
− x1)− x′2 + x2

2

)2
+
(
x3 −

x′3 − x3
x′1 − x1

(c1 −
d1
2
− x1)− x3 + x′3

2

)2
(7.2)

.
Notice that the intersection of the line with the plane P−1 exits if x′1 6= x1.
The normals to the planes P−1 , P+

1 , P−2 , P+
2 , P−3 , P+

3 are in the original basis resp . −e1, e1,−e2, e2,−e3, e3
in the e′1, e

′
2, e
′
3 basis .

The equation of the plane P−1 is obtained writing that if M = (u′1, u
′
2, u
′
3) ∈ P−1 , O′M.e1 =

s−1 e
′
3.e1 or

(u′1e
′
1 + u′2e

′
2 + u′3e

′
3).e1 = s−1 e

′
3.e1 (7.3)

.
The scalar product e′1.e1 will be denoted α1 , e′2.e1 will be denoted β1 , e′3.e1 will be denoted

γ1 they are calculated from equation (4.6).
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In spheroidal coordinates the plane equation becomes

α1

(
a
√

(τ2 − 1)(1− σ2) cosφ
)

+ β1

(
a
√

(τ2 − 1)(1− σ2) sinφ
)

+ γ1

(
aτσ

)
= γs−1 (7.4)

.
The intersection of the hyperboloid Hσ and the plane of constant φ is a parabola. This parabola

intersects a face plane, for instance P−1 , at a point (σ, φ, τ−1 (σ, φ)) . τ−1 (σ, φ) using (4.19) is given
by

τ−1 (σ, φ) =
aγ2i s

−
i σ +

√
a2γ4i s

−
i σ

2 + a2(sin(φ− φ0)2(1− σ2)− γ2i σ2)(a2 sin(φ− φ0)2(1− σ2)− γ2i s
−
i )

a2(sin(φ− φ0)2(1− σ2)− γ2i σ2)
(7.5)

In (4.12) to determine the bounds for the integral with respect to φ we need to calculate the
coordinates of the intersection points of the parallelepiped edges with the hyperboloid of constant
σ. Each edge intersects Hσ at 0 or 1 or 2 points. The edge which is adjacent to the faces F−1 and
F+
2 is denoted E−+12 . E−+12 goes from the point points A = (c1 − d1/2, c2 + d2/2, c3 − d3/2) to the

point B = (c1 − d1/2, c2 + d2/2, c3 + d3/2) .In the new basis (e′1, e
′
2, e
′
3) the coordinates of these

points are

u′A1 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e1) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e1) + (c3 − d3/2−
x3 + x′3

2
)(e′3.e1)

u′A2 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e2) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e2) + (c3 − d3/2−
x3 + x′3

2
)(e′3.e2)

u′A3 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e3) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e3) + (c3 − d3/2−
x3 + x′3

2
)(e′3.e3)

u′B1 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e1) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e1) + (c2 + d2/2−
x3 + x′3

2
)(e′3.e1)

u′B2 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e2) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e2) + (c2 + d2/2−
x3 + x′3

2
)(e′3.e2)

u′B3 = (c1 − d1/2−
x1 + x′1

2
)(e′1.e3) + (c2 + d2/2−

x2 + x′2
2

)(e′2.e3) + (c2 + d2/2−
x3 + x′3

2
)(e′3.e3)

(7.6)

The points of the edge line satisfy the equations

u′1 − u′B1

u′A1 − u′B1

=
u′2 − u′B2

u′A2 − u′B2

=
u′3 − u′B3

u′A3 − u′B3

. (7.7)

.
or the equations

u′1 = u′B1 +
(u′A1 − u′B1)(u′3 − u′B3)

u′A3 − u′B3

u′2 = u′B2 +
(u′A2 − u′B2)(u′3 − u′B3)

u′A3 − u′B3

(7.8)

.
A point of Hσ has coordinates

u′1 = a
√

(τ2 − 1)(1− σ2) cosφ

u′2 = a
√

(τ2 − 1)(1− σ2) sinφ

u′3 = aτσ (7.9)
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Introducing these values for u′1, u
′
2, u
′
3 in the line equations we get

u
′2
1 + u

′2
2 = a2(τ2 − 1)(1− σ2) =(

u′B1 +
(u′A1 − u′B1)(aτσ − u′B3)

u′A3 − u′B3

)2
+
(
u′B2 +

(u′A2 − u′B2)(aτσ − u′B3)

u′A3 − u′B3

)2
(7.10)

For fixed σ from this equation of degree 2 has two solutions denoted τ−+12 (σ) and τ
′−+
12 (σ). For

each of these values for τ one can extract the value for φ,

φ−+12 (σ) = arccos
(u′B1 +

(u′A1−u
′
B1)(aτ

−+
12 (σ)σ−u′B3)

u′A3−u′B3

a
√

(τ−+12 (σ)2 − 1)(1− σ2)

)

φ
′−+
12 (σ) = arccos

(u′B1 +
(u′A1−u

′
B1)(aτ

′−+
12 (σ)σ−u′B3)

u′A3−u′B3

a
√

(τ
′−+
12 (σ)2 − 1)(1− σ2)

)
(7.11)

It remains to verify if the obtained points are inside or outside the edge. Doing the same
calculus for all the edges, finally we obtain a set of cardinality smaller than 24 ( at most 2 values

for φ by edge),(φ−+12 (σ), φ
′−+
12 (σ), ...) that we are going to order . For instance one can obtain the

following ordered set (φ−+31 < φ++
12 < φ−−13 < φ+−21 )

Then the contribution of the parallelepiped Pl to f(σ,x,x′) in the case of the ordered set
(φ−+31 < φ++

12 < φ−−13 < φ+−21 ), by inspection of the successive involved faces, can be written as

fl(σ,x,x
′) = χ2

l

(∫ φ++
12 (σ)

φ−+
31 (σ)

dφ

∫ τ+
1 (σ,φ)

τ−3 (σ,φ)

dτ +

∫ φ−−12 (σ)

φ++
12 (σ)

dφ

∫ τ+
2 (σ,φ)

τ−3 (σ,φ)

dτ +

∫ φ+−
21 (σ)

φ−−12 (σ)

dφ

∫ τ+
2 (σ,φ)

τ−1 (σ,φ)

dτ
)

= χ2
l

(∫ φ++
12 (σ)

φ−+
31 (σ)

dφ(τ+2 (σ, φ)− τ−3 (σ, φ)) +

∫ φ−−12 (σ)

φ++
12 (σ)

dφ(τ+2 (σ, φ)− τ−3 (σ, φ))

+

∫ φ+−
21 (σ)

φ−−12 (σ)

dφ(τ+2 (σ, φ)− τ−3 (σ, φ))
)

(7.12)

.
Using Mathematica it appears that the integrals have analytic expressions which include

the variables coming from the parallelepiped Pl. So we can obtain an analytic expression for
f(σ,x,x′) =

∑
l fl(σ,x,x

′).
It is clear that the kernel is very regular as long as the hyperboloid Hσ do not hit the paral-

lelepiped corners. Denoting cli the ith corner of parallelepiped Pl , once xmn, tjk, tj′k′ are fixed
, the singularity appears when |cli − xm′n′ | − |cli − xmn| = c(tj′k′ − tjk) i.e for the points xm′n′

which are on the circle of radius |cli−xmn|+ c(tj′k′ − tjk) centred at cli. Then the corresponding

matrix elements are of order (2−j + 2−j
′
).

In Figure 1 the red scars correspond to the singularities of f . . Notice that they disappeared in
the lower figure as for large time the intersection in the outer region of the crown with the spheres
centred at the corners is void.
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8 Appendix - Study for K +K∗ -

Proposition 8.1. If the volume material volume is a polyhedron in which the permittivity is
infinitely differentiable and if |xm′n′ − xmn| > dm + dm′ (H5), if the regularity of the wavelets is
sufficiently high ,( for the Daubechies-p wavelets , p has to be sufficiently large) the matrix element

satisfies, for some constant C ,
(
wm′n′wj′k′ ,K

∗
ii +Kiiwmnwjk

)
< C

(p+1)!2
−(p+1)m/22−(p+1)m′/2

Proof. From (3.3) the matrix element of Kii is

(wm′n′wj′k′ ,Kiiwmnwjk)

=
1

c2

∫
dx′ wm′n′(x

′)χ(x′)

∫
dx wmn(x)

∫ ∞
−∞

dt′wj′k′(t
′)

∫ ∞
−∞

dt
d2wjk
dt2

(t)G(x′, t′,x, t)

=
1

4πc2

∫
dx′ wm′n′(x

′)χ(x′)

∫
dx wmn(x)

1

|x′ − x|

∫ ∞
−∞

dt′wj′k′(t
′)
d2wjk
dt2

(t′ − |x
′ − x|
c

)

=
1

4πc2

∫
dx′0 wm′0(x′0)χ(xm′n′ + x′0)

∫
dx0 wm0(x0)

1

|xm′n′ − xmn + x′0 − x0|

×
∫ ∞
−∞

dt′wj′0(t′)
d2wj0
dt2

(
t′ + tj′k′ − tjk −

|xm′n′ − xmn + x′0 − x0|
c

)
(8.1)

Denoting W
(2)
jj′ (τ) =

∫∞
−∞ dt′wj′0(t′)

d2wj0
dt2 (t′ + τ)

(wm′n′wj′k′ ,Kiiwmnwjk)

=
1

4πc2

∫
dx′0wm′0(x′0)χ(xm′n′ + x′0)

∫
dx0wm0(x0)

1

|xm′n′ − xmn + x′0 − x0|

×W (2)
jj′

(
tj′k′ − tjk −

|xm′n′ − xmn + x′0 − x0|
c

)
(8.2)

Noticing that W
(2)
jj′ (τ) has its support in the interval

(
− (2−j +2−j

′
)(p−1), (2−j +2−j

′
)p
)

the

matrix element is equal to zero if |xm′n′ − xmn| ≥ c|tj′k′ − tjk|+ dm + dm′ + (2−j + 2−j
′
)(p− 1)

or if |xm′n′ − xmn| ≤ c|tj′k′ − tjk| − dm − dm′ − (2−j + 2−j
′
)p.

If |xm′n′ − xmn| > dm + dm′ ,
1

|xm′n′−xmn+x′0−x0|

W
(2)
jj′

(
tj′k′ − tjk − |xm′n′−xmn+x′0−x0|

c

)
are regular when x0, x′0, belong resp.to the supports of

wm0 and wm′0. In this case the matrix element (wm′n′wj′k′ ,Kiiwmnwjk) is of order
1

((p+1))!2
−(p+1)m/22−(p+1)m′/2. QED

In conclusion, the non zero matrix elements are negligible except those for which |xm′n′ −
xmn| < dm + dm′ and c|tj′k′ − tjk| < 2(dm + dm′) + (2−j + 2−j

′
)p.

9 Appendix -Diagonal matrix elements using Fourier transform-

The diagonal elements of the matrix K∗0iK0i + K∗iiKii for i=1,2,3, can be evaluated using the
spheroidal coordinates and formula (4.4). In this appendix we will use another way , introducing
the Fourier transform of the wavelets and known expressions for the d’Alembert kernel in the wave
vector space . The Fourier transform of the wavelets look like smoothed indicator functions (see
Wikipedia ) and they can be obtained in Python, Julia or Mathematica libraries.

ŵmn := Fwmn, ŵjk := Fwjk and the permittivity χ̂ := Fχ. Let us start with(
wmnwjk,K

∗
iiKiiwmnwjk

)
=
(
FKiiF

−1ŵmnŵjk,FKiiF
−1ŵmnŵjk

)
.
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As FKiiF
−1ŵmn(p)ŵjk(ω) = FχF−1 ω2

|p|2−ω2 ŵmn(p)ŵjk(ω), then

(
wmnwjk,K

∗
iiKiiwmnwjk

)
=

∫
dp

∫
dp′χ̂(p− p′)ŵmn(p′)

∫
dp”χ̂(p− p”) ŵmn(p”)

×
∫
dω

ω2

|p′|2c2 − ω2

ω2

|p”|2c2 − ω2
ŵjk(ω)ŵjk(ω) (9.1)

Writing the decomposition of the rational expression

ω2

|p′|2c2 − (ω + i0)2
ω2

|p”|2c2 − (ω + i0)2

1 +
|p′|3c3

2(ω + i0− |p′|c)(|p′|2c2 − (|p”|2c2)

− |p′|3c3

2(ω + i0 + |p′|c)(|p′|2c2 − |p”|2c2)

− |p”|3c3

2(ω + i0− |p”|c)(|p′|2c2 − |p”|2c2)

+
|p”|3c3

2(ω + i0 + |p”|c)(|p′|2c2 − |p”|2c2)
(9.2)

Using the Plemelj formula limε→0+
1

x±iε = ∓iπf(0) + pv
(

1
x

)
in the integration w.r.to ω and

performing the integration w.r.to p, we obtain

(
wmnwjk,K

∗
iiKiiwmnwjk

)
=

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

+

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p′|3c3

2(|p′|2c2 − |p”|2c2)

×
(
− iπŵjk(|p′|c)ŵjk(|p′|c) + pv

∫
dω

1

ω − |p′|c
ŵjk(ω)ŵjk(ω)

)
−
∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p′|3c3

2(|p′|2c2 − |p”|2c2)

×
(
− iπŵjk(−|p′|c)ŵjk(−|p′|c) + pv

∫
dω

1

ω + |p′|c
ŵjk(ω)ŵjk(ω)

)
−
∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p”|3c3

2(|p′|2c2 − |p”|2c2)

×
(
− iπŵjk(|p”|c)ŵjk(|p”|c) + pv

∫
dω

1

ω − |p”|c
ŵjk(ω)ŵjk(ω)

)
+

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p”|3c3

2(|p′|2c2 − |p”|2c2)

×
(
− iπŵjk(−|p”|c)ŵjk(−|p”|c) + pv

∫
dω

1

ω + |p”|c
ŵjk(ω)ŵjk(ω)

)
(9.3)

.
where χ̂(2)(p′ − p”) :=

∫
dpχ̂(p− p′)χ̂(p− p”)

Noticing that |ŵjk(−|p′|c)| = |ŵjk(|p′|c)| and that
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pv
∫
dω 1

ω+|p′|c |ŵjk(ω)|2 = −pv
∫
dω 1

ω−|p′|c |ŵjk(ω)|2, one obtains

(
wmnwjk,K

∗
iiKiiwmnwjk

)
=

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

+2

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p′|3c3

2(|p′|2c2 − |p”|2c2)

×pv
∫
dω

1

ω − |p′|c
ŵjk(ω)ŵjk(ω)

)
−2

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p”|3c3

2(|p′|2c2 − |p”|2c2)

×pv
∫
dω

1

ω − |p”|c
ŵjk(ω)ŵjk(ω)

)
=

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

+2

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

|p′|3c3

2(|p′|2c2 − |p”|2c2)

×pv
∫
dω

1

ω − |p′|c
|ŵjk(ω)|2

)
−2

∫
dp”ŵmn(p”)

∫
dp′χ̂(2)(p”− p′) ŵmn(p′)

|p′|3c3

2(|p”|2c2 − |p′|2c2)

×pv
∫
dω

1

ω − |p′|c
|ŵjk(ω)|2 (9.4)

.
Then

(
wmnwjk,K

∗
iiKiiwmnwjk

)
=

∫
dp′ŵmn(p′)

∫
dp”χ̂(2)(p′ − p”) ŵmn(p”)

+c

∫ ∫
dp′dp”

(
ŵmn(p′)χ̂(2)(p′ − p”) ŵmn(p”)− ŵmn(p”)χ̂(2)(p”− p′) ŵmn(p′)

)
× |p′|3

|p′|2 − |p”|2
pv

∫
dω

1

ω − |p′|c
|ŵjk(ω)|2 (9.5)

.
The integrand presents a singularity when |p′| = |p”|, the integral has to be considered as

lim
η→0

c

∫ ∫
dp′dp”

(
ŵmn(p′)χ̂(2)(p′ − p”) ŵmn(p”)− ŵmn(p”)χ̂(2)(p”− p′) ŵmn(p′)

)
× |p′|3

|p′|2 − (|p”|+ iη)2
pv

∫
dω

1

ω − |p′|c
|ŵjk(ω)|2

= lim
η→0

2ic

∫
dp′pv

∫
dω

1

ω − |p′|c
|ŵjk(ω)|2

×
∫
dp”Im

(
ŵmn(p′)χ̂(2)(p′ − p”) ŵmn(p”)

) |p′|3

|p′|2 − (|p”|+ iη)2
(9.6)

, to which once more the Plemelj formula can be applied .
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One notices that the first term is equal to 2m
∫
dx w(2m(x− xmn) χ2(x)

Let us look now at the diagonal term of K∗0iK0i i=1,2,3(
wmnwjk,K

∗
0iK0iwmnwjk

)
=
(
FK0iF

−1ŵmnŵjk,FK0iF
−1ŵmnŵjk

)
.

As FK0iF
−1ŵmn(p)ŵjk(ω) = F 1

4πc2

∂χ
∂ui

1+χF
−1 ωc2

(|p|+i0)2c2−ω2 ŵmn(p)ŵjk(ω), denoting fi(u) :=

1
4π

∂χ
∂ui

1+χ(u) then (
wmnwjk,K

∗
0iK0iwmnwjk

)
=∫

dp

∫
dω

∫
dp′f̂i(p− p′)

ω

(|p′|+ i0)2c2 − ω2
ŵmn(p′) ŵjk(ω)

×
∫
dp”f̂i(p− p”)

ω

(|p”|+ i0)2c2 − ω2
ŵmn(p”)ŵjk(ω) (9.7)

Writing the decomposition of the rational expression

ω

|p′|2c2 − (ω + i0)2
ω

|p”|2c2 − (ω + i0)2

=
|p′|c

2(ω + i0− |p′|c)(|p′|2c2 − |p”|2c2)

− |p′|c
2(ω + i0 + |p′|c)(|p′|2c2 − |p”|2c2)

− |p”|c
2(ω + i0− |p”|c)(|p′|2c2 − |p”|2c2)

+
|p”|c

2(ω + i0 + |p”|c)(|p′|2c2 − |p”|2c2)
(9.8)

we can as before obtain the matrix elements in terms of principal value integrals in the same
manner as in (??) (

wmnwjk,K
∗
0iK0iwm

)
= lim
η→0

1

c

∫ ∫
dp′dp”

(
ŵmn(p′)f̂

(2)
i (p′ − p”) ŵmn(p”)− ŵmn(p”)f̂

(2)
i (p”− p′) ŵmn(p′)

)
× |p′|
|p′|2 − (|p”|+ iη)2

pv

∫
dω

1

ω − |p′|c
|ŵjk(ω)|2

= lim
η→0

2i

c

∫
dp′pv

∫
dω

1

ω − |p′|c
|ŵjk(ω)|2

×
∫
dp”Im

(
ŵmn(p′)f̂

(2)
i (p′ − p”) ŵmn(p”)

) |p′|
|p′|2 − (|p”|+ iη)2

(9.9)

where f̂
(2)
i (p′ − p”) :=

∫
dpf̂i(p− p′)f̂i(p− p”)

The same technic can be used to evaluate the diagonal term of K∗00K00.
These evaluations have the interest to include the wavelets Fourier transform which contrarily

to the wavelets do not present oscillations but they have the drawback to need Cauchy principal
values estimation because of the singularities of the kernel in the Fourier representation.
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