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Abstract

Our objective: Find limit cycles and analyze their stability in a hybrid modeling framework of gene regulatory networks [Cornillon et al. 2016] [Behaegel, Comet,
Bernot, et al. 2016] [Behaegel, Comet, and Folschette 2017] which extends René Thomas’ discrete modeling.

Our idea: Extend Poincaré map to this hybrid framework.

Our contribution: We search for potential cycles by abstracting the continuous trajectory into a succession of visited discrete domains. Then we introduce transition
matrices and stable zones to analyze the concrete continuous dynamics and find the actual cycles that are stable.

Hybrid gene regulatory networks (HGRN)

Figure 1. Influence graph of a simple gene regulatory networks in 2 dimensions

A discrete state ds is an integer vector which describes the discrete levels of all
genes.

A celerity cs is a real vector assigned to ds which describes the temporal
derivative of the system in ds. It is constant in all ds.

A (hybrid) state of a HGRN, noted h = (π, ds), contains a fractional part π and
a discrete state ds. The fractional part π is a real vector bounded in [0, 1]N with
N the number of genes in the system.

Figure 2. Example of
dynamics of a discrete model
(depending on discrete
parameters)

Figure 3. Example of dynamics
of a HGRN (depending on real
parameters) ; the black arrows
represent the celerities

Compared with discrete models (Figure 2), HGRNs model a continuous dynamics
inside each discrete state (Figure 3). [Cornillon et al. 2016]

1. Abstraction of a HGRN into discrete domains

A discrete domain is a set of hybrid states that touch the same boundaries. For
example, discrete state (1, 1) has 8 discrete domains (see Figure 4), among which:

(1+, 1+) =
{
(π, (1, 1)) | π1 = 1, π2 = 1

}
,

(1, 1+) =
{
(π, (1, 1)) | π1 ∈ ]0, 1[, π2 = 1

}
, ...

In the graph of discrete domains (see Figure 5), a discrete domain Dj is a
successor of Di if, considering only the signs of celerities, a simple trajectory
(straight line) could exist from Di to Dj. We ignore the case of trajectories that
reach more than one boundary at the same time.

Figure 4. Discrete domains of
the discrete state (1, 1)T

Figure 5. Graph of discrete domains of
the HGRN
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2. Find closed discrete trajectories

The stable zone S of a sequence of discrete domains T = (D0,D1, ...Dm) is the
maximal subset of D0 such that any trajectory starting from S stays inside T
(begins from D0 and reaches by order all discrete domains of T ).

If the stable zone S of T is not empty, then T is called a discrete trajectory.

For a discrete trajectory T = (D0,D1, ...Dm), if D0 = Dm, then T is a closed
discrete trajectory.

In order to find limit cycles, we find closed discrete trajectories at first, because a
limit cycle must be inside a closed discrete trajectory.
A depth first algorithm is used to find closed discrete trajectories (see Figure 6).
The HGRN of Figure 5 has 5 closed discrete trajectories (see Figure 7).

Figure 6. Illustration of the depth first algorithm starting
from discrete domain (0, 0+)T

Figure 7. Examples of hybrid
trajectories contained inside 5
different discrete trajectories

For example, in Figure 7, trajectory number 3 is contained in sequence:
(0, 0+) −→ (0+, 0) −→ (1−, 0) −→ (1, 0+) −→ (1, 1−) −→ (1, 1+) −→ (1−, 1+) −→
(0+, 1+) −→ (0, 1−) −→ (0, 0+), which is also a closed discrete trajectory.

3. Find a limit cycle and analyze its stability

We note G(.) the Poincaré map on the stable zone of T which is calculated based
on the transition matrix. The Poincaré map, which is widely used to study periodic
trajectories in nonlinear dynamical systems, is the intersection of periodic
trajectories with a certain lower-dimensional subspace, called the Poincaré section.

To verify if there is a limit cycle inside a closed discrete trajectory
T = (D0,D1, ...Dm,D0), we only need to verify:

∃(π0, d0) ∈ D0 such that G(π0) = π0, and

(π0, d0) belongs to the stable zone of T .

Figure 8. Illustration of the method to find limit cycle

To verify if the limit cycle inside T = (D0, ...Dm,D0) that crosses (π0, d0) is
stable, we only need to verify whether maxi∈{1,2,...,p} |λi| < 1, where:

λ1, λ2, ..., λp are the eigenvalues of A, and

x = Ax + b is equivalent to G(π0) = π0,

where x is the reduction of π0 which only contains the dimensions in which the
boundaries are not reached and A is the same reduction on the transition matrix.

Application

We applied our method on a HGRN of the cell cycle in 5 dimensions [Behaegel,
Comet, Bernot, et al. 2016] and successfully found two limit cycles.

Figure 9. Simulation of limit cycles. Left: stable limit cycle. Right: unstable limit cycle.
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