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Abstract

The present paper introduces a novel Bayesian filter for estimating mechan-

ical excitation sources in the time domain from a set of vibration measure-

ments. The proposed filter is derived from a very general Bayesian formula-

tion, unifying most of the state-of-the-art recursive filters developed in the

last decade for solving input-state estimation problems. More specifically,

the proposed Bayesian filter allows promoting the spatial sparsity of the esti-

mated input vector, by assuming that the predicted input vector is a random

vector with independent and identically distributed components following a

generalized Gaussian distribution. To properly estimate the most probable

parameters of the latter probability distribution, a nested Bayesian optimiza-

tion is implemented. The validity of the proposed approach, called Sparse

adaptive Bayesian Filter, is assessed both numerically and experimentally.

In particular, the comparisons performed with some state-of-the-art filters

show that the proposed strategy outperforms the existing filters in terms of

input estimation accuracy and avoids the so-called drift effect.
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approach, Bayesian filter, Kalman filter.

1. Introduction

Force reconstruction is a current topic in the structural dynamics commu-

nity, which emerges from the need to know the mechanical excitations acting

on a structure for improving its design or monitoring its structural health.

As an example, a mechanical impact (or shock), whether intended or not,

can cause damages in structures, such as mechanical failures or a breakdown

in the embedded devices. However, the actual impact is sometimes hard to

specify, due to the potential difficulty in instrumenting the area of interest

or to the lack of knowledge of its space-time characteristics (location, dura-

tion and intensity). Such practical considerations make the implementation

of inverse identification methods necessary to identify the excitation sources

acting on a mechanical structure from the measurement of kinematic quan-

tities such as strain, displacement, velocity or acceleration. Unfortunately,

inverse problems are generally mathematically ill-posed, so that low-level

measurement noise can cause large reconstruction errors. For time domain

applications, this adverse effect has been handled through the development

of dedicated resolution strategies, such as dynamic programming [1–3], neu-

ral networks [4–7], virtual field method [8, 9], the force analysis technique

[10, 11] or the sequential deconvolution [12, 13] to cite only a few of them.

However, among all the methods existing in the literature, Tikhonov-like

regularization and Kalman-like filtering are certainly the most widely used.

Both methods find their roots in the early 1960’s from the seminal works of

Andrey Tikhonov [14] and Rudolf Kalman [15]. Despite their apparent dif-
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ferences, they share some common features. First, the Kalman gain can be

seen as a regularized inverse operator, similar to that defined in Tikhonov-

like regularization. Second, both methods can be derived from the Bayesian

formalism [16, 17], which allows a better understanding of the main assump-

tions underlying these strategies and paves the way for further developments

and analyses. More precisely, Tikhonov-like regularization is a special type

of Bayesian regularization, while Kalman-like filters belong to the general

class of Bayesian filters.

From the Bayesian perspective, Tikhonov-like regularization addresses the

ill-posedness problem by including in the formulation of the inverse prob-

lem some prior information on the noise corrupting the data and the time

or space-time distribution of the excitation sources. This information is en-

coded respectively in the data-fidelity and regularization terms. Such a the-

oretical framework has led to the development of several methods in the

context of time-domain force reconstruction. One can cite for instance the

`2-regularization [18–21], the `1-regularization [22–24], the `q-regularization

[25] or the `2,q-regularization [26].

Whereas Tikhonov-like regularization operates on the whole set of measure-

ments, Kalman-like filtering solves the inverse problem recursively using a

prediction/estimation scheme at each time step. In this sense, it is an online

approach requiring a lower computational cost than Tikhonov-like regular-

ization, which is an offline strategy. An additional benefit of Kalman-like

filtering over Tikhonov-like regularization relies in the possibility of jointly es-

timated the state of the system (strain, displacement or velocity for instance)

and the external inputs (mechanical excitations) that it undergoes. One the
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first Kalman-like filter proposed for this purpose is probably the Gillijns and

De Moor filter (GDF) [27, 28], which carries out the input estimation prior to

the state estimation. Consequently, the input-state estimation is performed

sequentially and not strictly jointly. To this end, Lourens et al. introduce a

fictitious state equation for the input in order to form an augmented state

vector. This fictitious equation assumes a random walk model for the evo-

lution of the input vector. In doing so, they derive the Augmented Kalman

Filter (AKF), that estimates the augmented state vector using a standard

Kalman filter [29]. The counterpart of this simplicity is the necessary tuning

of the variance of the noise process associated to the input’s fictitious equa-

tion, which is estimated offline from the L-curve principle. Unfortunately,

the abovementioned filters suffer from the so-called drift effect in the esti-

mations, especially when only acceleration measurements are used as input

data. As an attempt to mitigate the drift effect, three alternative filters have

been proposed. The first one is the Dual Kalman Filter (DKF) proposed

by Eftekhar Azam et al. [30, 31]. In DKF, two standard Kalman filters are

running in a sequential way, one for the input vector and one for the state

vector. To do so, DKF makes use of the same fictitious state equation for the

input vector as that implemented in AKF, whose noise variance also needs to

be tuned offline. The second alternative is to extend the AKF. By doing this,

Nayek proposes to model each component of the input vector as a Gaussian

latent process instead of a random walk process [32]. Here again, an offline

optimization procedure is required to properly tuned the hyperparameters

governing the covariance functions related to each Gaussian process. An-

other extension is brought by Naets et al. [33]. The analytical analysis of
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the observability properties of AKF leads to understand that the estimation

based only on acceleration measurements is not observable, thus unreliable,

as a drift is induced. To counterbalance this phenomenon, dummy measure-

ments are introduced, which remove almost entirely the drift effect. Finally,

Wei et al. also proposes a variation of the AKF, based on sparse constraint

theory [34]. The estimations of the state and its covariance are corrected

within a given range at every time step, and, under some assumptions, the

drift is removed. The last alternative is the Sequential Bayesian Filter (SBF)

developed by Sedehi et al. [35], which is a fully online strategy obtained

by revisiting the input-state estimation problem from a Bayesian perspec-

tive. More specifically, in the prediction phase of SBF, the input vector at

some time step is supposed to follow a multivariate Gaussian distribution

with zero mean and covariance matrix equal to that estimated for the input

vector at the previous time step. Furthermore, in SBF, the drift is avoided

thanks to an additional trick consisting in modifying the predicted state vec-

tor used for estimating the input vector at a given time step. Despite their

reasonable performances on the examples presented in the literature, none of

the filters discussed above allows introducing some prior information on the

spatial distribution of the input vector. As it will be shown later, this can

lead to inaccurate reconstruction of the excitation field when the excitation

sources are spatially sparse and a dense sensor network is used to measure

the vibration field.

It is worth mentioning here that these practical situations can be en-

countered nowadays thanks to the advent of full-field measurements, such as

Digital Image Correlation [36], high-speed holography [37] or infrared deflec-
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tometry [38].

This paper introduces a Sparse adaptive Bayesian Filter (SaBF) aiming

at avoiding the drift effect and promoting some kind of spatial sparsity of

the excitation field if needed, while remaining purely online. To take this

challenge, the proposed approach is derived from a very general Bayesian

formulation of the sequential input-state estimation problem inspired by the

work of Sedehi et al. [35]. However, the present paper goes one step further

by showing that most of the state-of-the-art filters, namely, GDF, DKF and

SBF, can be actually derived from the same Bayesian formulation. Prac-

tically, they mainly differ from each other by the hypothesis made on the

input vector during the prediction step. This observation is at the roots of

the proposed Bayesian Filter, which assumes that the predicted input vector

is a random vector with independent and identically distributed components

following a generalized Gaussian distribution characterized by its shape and

scale parameters. To avoid a manual and cumbersome tuning of these hyper-

parameters, a nested Bayesian optimization is implemented to estimate their

most probable values given the data available at each time step. In doing so,

the proposed SaBF remains a strictly online strategy.

To properly describe and validate the SaBF, the present paper is divided

into 5 parts. Section 2 describes the state-space representation generally

used for dealing with input-state estimation problems. In section 3, the gen-

eral Bayesian formulation of the joint input-state estimation problem at the

roots of AKF is presented. The main steps and equations are developed to

better highlight the main hypotheses and their influence on the computa-

tional form of this filter. This Bayesian formalism is extended in section 4 to
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address the sequential input-state estimation problem. As it will be shown in

this section, this extended Bayesian formulation provides a unique and uni-

fied framework to derive most of the state-of-the-art recursive filters, such

as GDF, DKF and SBF. This section also emphasizes the main hypotheses

made to obtain these filters, thus paving the way to SaBF, which is discussed

in detail in section 5. In section 6, SaBF is applied in a purely numerical

context in order to assess its robustness with respect to various practical pa-

rameters, such as the measurement noise, the sensors’ density or the duration

of the estimation (short-term or long-term). Finally, a real-world application

is presented in section 7 to evaluate the performances of SaBF in operating

conditions. In both numerical and experimental applications, SaBF is sys-

tematically compared to AKF, GDF, DKF and SBF, which allows putting

into perspectives the overall performances of this novel Bayesian Filter.

2. Discretized state-space representation of dynamical systems

Bayesian filtering is based on the state-space representation of the dy-

namical system of interest. From a very general standpoint, it is composed

of a state equation, describing the evolution of the system state at a certain

time step from the knowledge of the system state and input at the previ-

ous time step, and an observation equation, encoding the relation between

the measured data to the system state and input. Formally, the discretized

state-space representation of a linear and time invariant system is expressed

by: xk+1 = Axk + Buk + wx
k

yk = Cxk + Duk + vk

, (1)

7



where xk, uk and yk are the state, input and output vectors at sample k,

while A, B, C and D are, respectively, the discretized state, input, output

and feedthrough matrices. Here, wx
k denotes the Gaussian process noise with

zero mean and covariance matrix Qx
k and vk is the Gaussian measurement

noise with zero mean and covariance matrix Rk.

Several strategies have been developed to obtain the discretized state-space

representation of dynamical systems given by Eq. (1), such as the zero-order-

hold sampling technique [29], the Newmark integration scheme [39] or the

Runge-Kutta method [40]. Here, it has been chosen to apply the explicit

generalized-α integration scheme proposed by Aucejo et al. in Ref. [41] to a

modally reduced order model of the considered dynamical system.

From a Bayesian perspective, the previous discretized state-space repre-

sentation can be expressed as [17]:xk+1 ∼ p(xk+1|xk,uk) = N (xk+1|Axk + Buk,Q
x
k)

yk ∼ p(yk|xk,uk) = N (yk|Cxk + Duk,Rk)

, (2)

where N (x|µ,Σ) is the multivariate normal distribution with mean µ and

covariance matrix Σ associated to the random vector x.

3. Bayesian formulation of the joint input-state estimation problem

This section introduces the Bayesian formulation at the roots of the Aug-

mented Kalman Filter (AKF), which allows the joint estimation of the state

and input vectors of a linear and time invariant dynamical system.
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3.1. Probabilistic augmented state-space model

In the joint input-state estimation problem, the state vector xk and the

input vector uk are computed jointly in a statistical sense. Such an estimation

process requires the introduction of an augmented state xa
k defined such that:

xa
k =

xk

uk

 . (3)

However, to form the corresponding joint state-space representation, one has

to introduce a fictitious state equation, describing the evolution of the input

vector uk from one time step to another. Generally, a random walk model is

assumed, namely:

uk+1 ∼ p(uk+1|uk) = N (uk+1|uk,Qu
k ), (4)

implying that [29]:

uk+1 = uk + wu
k , (5)

where wu
k is a Gaussian process noise with zero mean and covariance matrix

Qu
k . In doing so, the following probabilistic augmented state-space model is

obtained: xa
k+1 ∼ p(xa

k+1|xa
k) = N (xa

k+1|Aax
a
k,Q

a
k)

yk ∼ p(yk|xa
k) = N (yk|Cax

a
k,Rk)

, (6)

where

Aa =

A B

0 I

 , Ca =
[
C D

]
, Qa

k =

Qx
k 0

0 Qu
k

 , (7)

where I is the identity matrix.
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3.2. AKF revisited from the Bayesian perspective

The previous section suggests that the state vector and input vector can

be jointly estimated from a standard Kalman Filter, which is known as the

Augmented Kalman Filter (AKF) in the dedicated literature [29]. A stan-

dard Kalman Filter is a Bayesian Filter, whose purpose is to estimate the

state vector xa
k given all the observations made up to the current time step k

and denoted y1:k = {y1, . . . ,yk}. In probabilistic terms, the previous state-

ment corresponds to the computation of the following filtering probability

distribution:

p(xa
k|y1:k) = N (xa

k|x̂a
k,P

x
k). (8)

To this end, the Bayesian Filter proceeds in three steps. After an ini-

tialization phase defining the prior distribution on the initial state vector,

namely p(xa
0), the second step consists, at some time step k, in computing

the predictive probability distribution p(xa
k|y1:k−1) corresponding to the pre-

diction of the state vector xa
k at the time step k given all the observations

made up to the previous time step k − 1. Then, the predicted state vector

is updated from the Bayes’ rule to take into account the current observation

yk. It results that the Bayesian formulation of the standard Kalman Filter

can be summarized as follows [17]:

1. Initialization at k = 0

p(xa
0) = N (xa

0 |x̂a
0 ,P

x
0 ), (9)

where the mean vector x̂a
0 and the covariance matrix Px

0 are known

quantities.
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2. Prediction step at time step k

p(xa
k|y1:k−1) =

∫
xa
k

p(xa
k|xa

k−1) p(x
a
k−1|y1:k−1) dx

a
k−1

= N (xa
k|x̃a

k, P̃
x
k),

(10)

where x̃a
k = Aax̂

a
k−1 and P̃x

k = AaP
x
k−1A

T
a + Qa

k−1.

3. Estimation step at time step k

p(xa
k|y1:k) ∝ p(yk|xa

k) p(x
a
k|y1:k−1)

= N (xa
k|x̂a

k,P
x
k),

(11)

where x̂a
k = x̃a

k + Kx
k(yk − Ca x̃a

k) and Px
k = (I − Kx

kCa)P̃x
k . In the

foregoing, Kx
k = P̃x

kC
T
a (CaP̃

x
kC

T
a + Rk)

−1 is known as the Kalman

gain.

The interested reader will find the resulting computational algorithm cor-

responding to the Augmented Kalman Filter in Appendix A.1.

4. Bayesian formulation of the sequential input-state estimation

problem

This section extends the Bayesian formulation described previously to

deal with the sequential input-state estimation problem. In particular, a

Bayesian formulation, inspired by the work of Sedehi et al. [35], is first pro-

posed. Then, we demonstrate how this general formulation allows recovering

the main state-of-the-art sequential filters, i.e. GDF, SBF and DKF.

4.1. General Bayesian formulation

In the sequential input-state estimation problem, the state vector xk and

the input vector uk are computed sequentially, meaning that the estima-

tion of both vectors are not performed simultaneously. From a very general
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standpoint, this allows using the state-space representation given in Eq. (1)

directly. For this purpose, the Bayesian formulation presented in section 3 to

derive the standard Kalman Filter needs to be extended to account for the

sequential nature of the filtering process. More specifically, this implies the

introduction of predictive and filtering distributions associated to the input

vector, namely p(uk|y1:k−1) and p(uk|y1:k). A careful analysis of the existing

literature shows that the Bayesian formulation of the sequential input-state

estimation problem can be divided into the following five steps:

1. Initialization at k = 0

The initialization of the input and state vectors consists in defining the

prior probability distributions over the initial input vector, u0, and the

initial state vector, x0. Here, these prior probability distributions are

defined as follows:

p(u0) = N (u0|û0,P
u
0 ) and p(x0) = N (x0|x̂0,P

x
0 ), (12)

where the mean vectors, û0 and x̂0, and the covariance matrices, Pu
0

and Px
0 , are known quantities.

To complete the initialization step, one has to compute the predictive

distribution p(x1|y0). Assuming that the initial input and state vectors

are statistically independent, one has:

p(x1|y0) =

∫
x0

∫
u0

p(x1,x0,u0|y0) dx0 du0

=

∫
x0

∫
u0

p(x1|x0,u0) p(x0) p(u0) dx0 du0

= N (x1|x̃1, P̃
x
1 ),

(13)
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where x̃1 = Ax̂0 + Bû0 and P̃x
1 = APx

0A
T + BPu

0BT + Q0.

2. Prediction of the input vectors at time step k

The prediction of the input vector relies on the definition of the pre-

dictive distribution p(uk|y1:k−1). However, as said in the preamble of

this section, sequential input-state estimation methods are based on

the state-space representation given by Eq. (1). It results that the

predictive distribution p(uk|y1:k−1) remains unknown if no assumption

is made on the shape or the evolution through time of the input vec-

tor. Consequently, some hypotheses must be made on this probability

distribution in order to make the sequential input-state estimation pos-

sible. This is generally at this stage that the state-of-the-art sequential

filters differ. To make the sequential Bayesian Filter rather general re-

garding the existing literature, it is assumed without loss of generality

that the predictive probability distribution is a multivariate Gaussian

distribution with mean ũk and covariance matrix P̃u
k , that is:

p(uk|y1:k−1) = N (uk|ũk, P̃u
k ). (14)

3. Estimation of the input vectors at time step k

The estimation of the input vector requires the computation of the

filtering probability distribution p(uk|y1:k), corresponding to the fol-

lowing marginal distribution:

p(uk|y1:k) =

∫
xk

p(uk|xk,y1:k) p(xk|y1:k) dxk. (15)

Unfortunately, the previous probability distribution can’t be estimated

directly, because the filtering distribution over the state vector p(xk|y1:k)
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is unknown at this stage. To pursue the filtering process, the filtering

distribution is approximated by the predictive one, namely p(xk|y1:k−1).

Hence, by making the previous approximation and applying the Bayes’

rule to p(uk|xk,y1:k), the filtering probability distribution over the in-

put vector becomes:

p(uk|y1:k) ∝
∫
xk

p(yk|xk,uk) p(uk|y1:k−1) p(xk|y1:k−1) dxk

= N (uk|ûk,Pu
k ),

(16)

where

ûk = ũk + Ku
k (yk −Cx̃k −Dũk), (17a)

Pu
k = (I−Ku

kD)P̃u
k + Ku

kCP̃x
kC

TKuT
k , (17b)

Ku
k = P̃u

kD
T(DP̃u

kD
T + Rk)

−1. (17c)

4. Estimation of the state vector at time step k

As for the input vector, the estimation of the state vector requires the

computation of the filtering probability distribution p(xk|y1:k), corre-

sponding to the following marginal distribution:

p(xk|y1:k) =

∫
uk

p(xk|uk,y1:k) p(uk|y1:k) duk

∝
∫
uk

p(yk|xk,uk) p(xk|y1:k−1) p(uk|y1:k) duk

= N (xk|x̂k,Px
k),

(18)

where

x̂k = x̃k + Kx
k(yk −Cx̃k −Dûk), (19a)

Px
k = (I−Kx

kC)P̃x
k + Kx

kDPu
kD

TKxT
k , (19b)

Kx
k = P̃x

kC
T(CP̃x

kC
T + Rk)

−1. (19c)
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At this stage, it is possible to compute the cross-covariance matrix Pxu
k ,

which is defined such that:

Pxu
k = E

[
(xk − x̂k)(uk − ûk)

T
]
, (20)

where E(x) is the expected value of the random vector x. From Eq. (19a),

it readily comes that:

Pxu
k = −Kx

kDPu
k . (21)

5. Prediction of the state vector at time step k + 1

The last step of the sequential Bayesian Filter is the computation of

the predictive distribution over the state vector at time step k + 1, in

order to continue the recursive process. The calculation of the latter

probability distribution is as follows:

p(xk+1|y1:k) =

∫
xk

∫
uk

p(xk+1,xk,uk|yk) dxk duk

=

∫
xk

∫
uk

p(xk+1|xk,uk) p(xk,uk|y1:k) dxk duk.

(22)

In the previous equation, p(xk,uk|y1:k) is the joint filtering probability

distribution of the state and input vectors. Formally, it is expressed as:

p(xk,uk|y1:k) = p(xk|y1:k) = N (xk|x̂k,Pk), (23)

where

x̂k =

x̂k

ûk

 and Pk =

 Px
k Pxu

k

Pxu
k

T Pu
k

 . (24)

Including the previous result in Eq. (22), one finally gets:

p(xk+1|y1:k) = N (xk+1|x̃k+1, P̃
x
k+1), (25)

15



where

x̃k+1 = Ax̂k + Bûk, (26a)

P̃x
k+1 =

[
A B

] Px
k Pxu

k

Pxu
k

T Pu
k

AT

BT

+ Qk. (26b)

4.2. Application to the main state of the art sequential filters

This section aims at demonstrating how the main state-of-the-art sequen-

tial filters, namely GDF, SBF and DKF, can all be derived from the general

Bayesian formulation described in section 4.1. More specifically, the main

hypotheses made for obtaining each filter are carefully explained in the light

of the Bayesian interpretation.

4.2.1. Gillijns and De Moor Filter

In the Gillijns and De Moor Filter (GDF) introduced in Ref. [27], the

authors implicitly state that all the predicted input vectors are equiproba-

ble, thus reflecting the lack of prior knowledge of the spatial distribution of

the input vector at some time step k. This assumption can be encoded by

assuming that the predicted input vector follows a uniform distribution, that

is:

p(uk|y1:k−1) = U(−a, a) with a sufficiently large

∝ 1
(27)

The introduction of this predictive probability distribution into the gen-

eral Bayesian formulation detailed in section 4.1 leads to a change in the
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mathematical expression of the filtering probability distribution over the in-

put vector, which becomes:

p(uk|y1:k) = N (uk|ûk,Pu
k ), (28)

where

ûk = Ku
k (yk −Cx̃k), (29a)

Pu
k = (DS−1

k DT)−1, (29b)

Ku
k = Pu

kD
TS−1

k , (29c)

Sk = CP̃x
kC

T + Rk. (29d)

Except this slight modification, all the remaining probability distributions

remain unchanged. The resulting computational algorithm, known as GDF,

is recalled in Appendix A.2.

4.2.2. Sequential Bayesian Filter

In the Sequential Bayesian Filter (SBF) proposed by Sedehi et al. [35],

the sole assumption made by the authors is that the predicted input vector

follows a multivariate Gaussian distribution with zero mean and covariance

matrix Pu
k−1. Mathematically, this implies that the predictive probability

distribution over the input vector is written:

p(uk|y1:k−1) = N (uk|0,Pu
k−1) (30)

At first sight, this assumption is not supported by any physical rationale.

According to the authors, such a predictive probability distribution implies

that the input vector is independent of its estimation at the previous time step
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and only relies on the related estimated covariance matrix [35]. The practical

implication of this assumption on the whole filtering process is hard to assess.

In addition to this assumption, the authors propose an additional trick to

limit the drift effect. They argue that the drift effect is caused by the use of

erroneous input estimations, that lead to errors accumulation with time [35].

To mitigate this adverse effect, the influence of the estimated input vector is

removed from the predicted state vector only for estimating the input vector

at the next time step. In other words, this means that Eq. (17a) becomes:

ûk = Ku
k (yk −CAx̂k−1), (31)

because ũk = 0 according to Eq. (30).

Based on the previous assumptions, one derives the computational form

of SBF presented in Appendix A.3.

4.2.3. Dual Kalman Filter

As said in the introduction, the Dual Kalman Filter performs the input-

state estimation by running two standard Kalman Filters in a sequential way.

Practically, DKF makes first use of the fictitious state equation for the input

vector defined in Eq. (4). From this, the predictive probability distribution

for the input vector can be derived as follows:

p(uk|y1:k−1) =

∫
uk−1

p(uk|uk−1) p(uk−1|y1:k−1) duk−1

= N (uk|ũk, P̃u
k ),

(32)

where ũk = ûk−1 and P̃u
k = Pu

k−1 + Qu
k−1.

In order to run two standard Kalman Filters sequentially, a set of assump-

tions must be introduced in the next steps of the filtering process. First,
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the filtering distribution over the input vector is computed assuming that

the predicted state vector x̃k is perfectly known and equal the estimated

state vector at the previous time step x̂k−1. It results that the predictive

distribution over the state vector defined in Eq. (16) should be such that

p(xk|y1:k−1) = δ(xk − x̂k−1). In doing so, one has:

p(uk|y1:k) = N (uk|ûk,Pu
k ), (33)

where ûk = ũk + Ku
k (yk−Cx̂k−1−Dũk) and Pu

k = (I−Ku
kD)P̃u

k . Here, the

expression of the Kalman gain Ku
k remains unchanged (see Eq. (17c)).

Second, the predictive distribution over the state vector at time k is

calculated by assuming that the input and state vectors are uncorrelated

(which is consistent with the previous assumptions) and that the estimated

input vector at time step k is perfectly known. Hence, it becomes:

p(xk|y1:k−1) =

∫
xk−1

p(xk|xk−1, ûk) p(xk−1|y1:k−1) dxk−1

= N (xk|x̃k, P̃x
k),

(34)

where x̃k = Ax̂k−1 + Bûk , while P̃x
k+1 = APx

k−1A
T + Qx

k−1.

Finally, the filtering distribution over the state vector is computed assum-

ing that the estimated input vector ûk is perfectly known, i.e. p(uk|y1:k) =

δ(uk − ûk). Thus, it induces:

p(xk|y1:k) = N (xk|x̂k,Px
k), (35)

where x̂k = x̃k + Kx
k(yk −Cx̃k −Dûk) and Px

k = (I −Kx
kC)P̃x

k . Here, the

expression of the Kalman gain Kx
k remains unchanged (see Eq. (19c)).

19



The implementation of resulting filter, called DKF, is fully given in Ap-

pendix A.4.

5. Sparse adaptive Bayesian Filter

In the previous section, a general formulation of the sequential input-

state estimation problem has been derived. It has also been shown that

this formulation allows recovering most of the state-of-the-art filters. More

precisely, a particular focus has been made on the assumptions at the core

of each filter. The proposed derivation from the Bayesian formalism has

demonstrated that the sequential Kalman-like filters existing in the literature

used a different assumption to define the predictive probability distribution

over the input vector p(uk|y1:k−1). This observation is actually at the root

of the Sparse adaptive Bayesian Filter (SaBF), which aims at introducing in

the formulation some kind of prior information on the spatial distribution of

the input vector.

5.1. Mathematical intuition

Before detailing the derivation of SaBF, it is important to understand

the mathematical intuition behind it. Actually, everything starts from the

expression of the mean of the estimated input vector given by Eq. (17a),

which can be rewritten as:

ûk = ũk + P̃u
kD

T(DP̃u
kD

T + Rk)
−1(ik −Dũk) (36)

where ik = yk − Cx̃k is the innovation vector, which is a measure of the

information brought by a new measurement.

20



From the following matrix inversion lemma:

BAT(ABAT + C)−1 = (AC−1AT + B−1)−1ATC−1, (37)

Eq. (36) becomes:

ûk = ũk +

(
DTR−1

k D +
[
P̃u
k

]−1
)−1

DTR−1
k (ik −Dũk). (38)

Readers, well-versed in regularization techniques, can immediately ob-

serve that Eq. (38) is actually the solution of the following minimization

problem:

ûk = argmin
uk

1

2
‖ik −Duk‖2Rk

+
1

2
‖uk − ũk‖2P̃u

k

, (39)

where ‖x‖2Q = xTQ−1x is the squared Mahalanobis distance.

From a Bayesian perspective, the solution of Eq. (39) is the Maximum A

Posteriori (MAP) estimator of the following posterior probability distribu-

tion:

p(uk|ik) ∝ p(ik|uk) p(uk), (40)

where the likelihood function p(ik|uk) and the prior distribution p(uk) are

defined such that:

p(ik|uk) = N (ik|Duk,Rk) and p(uk) = N (uk|ũk, P̃u
k ). (41)

The mathematical equivalence between Eqs. (36), (39) and (40) demon-

strates that some prior knowledge of the spatial distribution of the input vec-

tor can be easily added in the formulation of the general sequential Bayesian

Filter, introduced in section 4.1, through an adequate choice of the prior

distribution p(uk), corresponding to the predictive distribution p(uk|y1:k−1)
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in the Bayesian filtering formalism. This observation gives rise to the Sparse

adaptive Bayesian Filter derived in the next section.

5.2. Formal derivation

The basic idea of the Sparse adaptive Bayesian Filter (SaBF) is to intro-

duce some prior knowledge of the spatial distribution of the input vector. As

explained in the previous section, this can be done by wisely choosing the

predictive distribution p(uk|y1:k−1).

5.2.1. Preliminaries

In SaBF, this probability distribution is chosen so as to promote either

the sparsity or the smoothness of the spatial distribution of the input vec-

tor. Practically, a probability distribution that meets this requirement is

the univariate generalized Gaussian distribution [42]. If we further assume

that the components of the input vector are independent and identically dis-

tributed, the predictive distribution over the input vector is thus chosen as

the multivariate generalized Gaussian distribution with zero mean:

p(uk|y1:k−1) = Ng(uk|0, τk, qk)

=

 q
1− 1

qk
k

2Γ( 1
qk

)

Nu

τ
Nu
qk
k exp

(
−τk
qk
‖uk‖qkqk

)
,

(42)

where:

• qk is the shape parameter of the distribution at the time step k. Its

value is defined in R+∗;

• ‖ • ‖q is the `q-norm (q ≥ 1) or quasi-norm (q < 1);
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• τk is the scale parameter of the distribution at the time step k;

• Nu is the number of components of the input vector;

• Γ(x) is the gamma function.

It is worth mentioning here that the choice of the previous multivariate

Gaussian distribution offers some flexibility for encoding one’s prior knowl-

edge of the spatial distribution of the input vector, since it allows enforcing

the sparsity of the input vector when qk ≤ 1 or its smoothness when qk = 2

[43].

To comply with the Bayesian formulation presented in section 4.1, it must

be noted that the following Gaussian approximation [44]:

Ng(uk|0, τk, qk) ∝ N (uk|0,W−1
k /τk), (43)

holds for an adequate choice of the scale and shape parameters (τk, qk) and the

matrix W. The latter matrix has to satisfy the Mercer’s condition (positive,

definite, symmetric).

From the proposed predictive distribution and the previous approxima-

tion, Eq. (38) becomes:

ûk = (DR−1
k DT + τkWk)

−1DTR−1
k ik. (44)

The latter equation allows identifying the Kalman gain Ku
k and the predictive

covariance matrix P̃u
k as:

Ku
k = (DR−1

k DT + τkWk)
−1DTR−1

k and P̃u
k = (τkWk)

−1. (45)
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At this stage, it remains to determine the scale and shape parameters

(τk, qk) and the matrix Wk satisfying the Gaussian approximation. To this

end, a Bayesian optimization is proposed to determine at each time step

the most probable values of all the parameters of the problem, including ûk,

given the innovation ik.

5.2.2. Optimal computation of uk, τk and qk

In the present paper, the optimal parameters, uk, τk and qk, are computed

as the Maximum A Posteriori (MAP) solution of the following Bayesian op-

timization problem:

(ûk, τ̂k, q̂k) = argmax
(uk,τk,qk)

p(uk, τk, qk|ik), (46)

where the posterior distribution p(uk, τk, qk|ik) is given by:

p(uk, τk, qk|ik) ∝ p(ik|uk) p(uk|τk, qk) p(τk) p(qk), (47)

where the prior distribution p(uk|τk, qk) = p(uk|y1:k−1), while the likelihood

function p(ik|uk) is the multivariate Gaussian distribution with known co-

variance matrix Rk defined in Eq. (41).

The solution of the previous optimization problem can be obtained by

maximizing the full conditional probability distributions associated to each

parameter. In this respect, the solution of the complete Bayesian optimiza-

tion problem given by Eq. (46) can be found by solving iteratively the fol-
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lowing equations:

τ̂k = argmax
τk

p(ûk|τk, qk) p(τk), (48a)

q̂k = argmax
q

p(ûk|τk, qk) p(qk), (48b)

ûk = argmax
uk

p(uk|ik) p(uk|τk, qk). (48c)

To complete the formulation of the Bayesian optimization problem, it

remains to specify the prior probability distribution over the scale and shape

parameters, τk and qk. To determine the adequate prior distribution p(τk),

one has to notice that the scale parameter τk is a strictly positive real number.

For this reason, this prior distribution is chosen as Gamma distribution,

which is defined such that:

G(τk|αt, βt) =
βαt
t

Γ(αt)
ταt−1
t exp(−βtτk) with αt > 0, βt > 0, (49)

where αt and βt are respectively the scale parameter and the rate parame-

ter of the distribution. However, the order of magnitude of τt is generally

unknown in practice. That is why, the prior distribution over τt must be

weakly informative to avoid biasing the optimization process. This require-

ment leads us to set αt = 1 and βt = 10−18.

The choice of the prior probability distribution over the shape parameter qk

follows the same philosophy as that used for selecting the prior distribution of

τk. Here, one has to note that the shape parameter is a strictly positive and

bounded real number. Indeed, the existing literature shows that it is gener-

ally comprised in the interval ]0, 2] [43, 45]. Keeping in mind the conjugacy

property, a reasonable choice is the truncated inverse Gamma distribution:

IGT (qk|αq, βq) ∝ IG(q|αq, βq) I[lb,ub](qk), (50)
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where:

• IG(qk|αq, βq) is the inverse Gamma distribution defined as:

IG(qk|αq, βq) =
β
αq
q

Γ(αq)
(1/qk)

αq+1 exp(−βq/qk) (51)

• I[lb,ub](qk) is the truncation function restricting the support of the in-

verse Gamma distribution between the lower bound lb and the upper

bound ub.

Practically, even if the support of qk is specified in the interval ]0, 2], its actual

value is only vaguely known. To translate this information into mathematical

terms, one sets αq = 1, βq = 10−18 and (lb, ub) = (0.01, 2).

Now that the problem is fully specified, the MAP solution of the systems

of equations (48) can be computed. Practically, it is easier to solve the dual

minimization problem, consisting in computing the parameters minimizing

the opposite of the logarithm of the full conditional probability distributions.

In doing so, one has:

τ̂k = argmin
τk

τk
(
βt qk + ‖uk‖qkqk

)
− (Nu + qk(αt − 1)) log(τk), (52a)

q̂k = argmin
q

f(qk|uk, τk) for qk ∈ [lb, ub], (52b)

ûk = argmin
uk

1

2
‖ik −Duk‖2Rk

+
τk
qk
‖uk‖qkqk , (52c)

where:

f(qk|uk, τk) = Nu log Γ(1/qk)−Nu
log τk
qk

+
τk‖uk‖qkqk + βq

qk

−
(
Nu

(
1− 1

qk

)
− αq − 1

)
log qk.

(53)
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As already mentioned, the resolution of the previous system of equations

can only be performed in an iterative manner, since the optimal value of

a given parameter depends on the values of the others. It results that the

resolution process at a time step k can be summarized as follows:

1. Initialization

a. Set q̂(0)k = q̂k−1 and û
(0)
k = ûk−1

2. while convergence is not reached

a. Compute τ̂ (i)k from Eq. (52a) given û
(i−1)
k and q̂(i−1)

k

b. Compute q̂(i)k from Eq. (52b) given û
(i−1)
k and τ̂ (i)k

c. Compute û
(i)
k from Eq. (52c) given τ̂ (i)k and q̂(i)k

end while

3. return ûk, τ̂k and q̂k

The practical implementation of the previous procedure requires some

comments regarding the resolution of the set of equations (52).

Computation of τ̂ (i)
k

The computation of the optimal scale parameter τ̂ (i)k is rather straightfor-

ward, since the solution of the minimization problem given by Eq. (52a) can

be analytically calculated. Indeed, when applying the first-order optimality

condition, one easily finds:

τ̂
(i)
k =

Nu + q̂
(i−1)
k (αt − 1)

βt q̂
(i−1)
k +

∥∥∥û(i−1)
k

∥∥∥q̂(i−1)
k

q̂
(i−1)
k

. (54)

Computation of q̂(i)k
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To compute the optimal value of the shape parameter at an iteration

i, several algorithms can be used such as bound-constrained minimization

methods [46, 47]. However, because the function f
(
qk|û(i−1)

k , τ̂
(i)
k

)
is explicitly

defined, it is computationally more efficient to apply a brute-force search

approach. Consequently, it has been chosen to evaluate f
(
qk|û(i−1)

k , τ̂
(i)
k

)
for

a discrete set q̄k ∈ [0.01, 2], having a resolution ∆q̄k = 0.02. The optimal

shape parameter q̂(i)k is the value of q̄k such that f
(
q̂
(i)
k |û

(i−1)
k , τ̂

(i)
k

)
is minimum.

Computation of û(i)
k

The optimal input vector û
(i)
k is solution of the following minimization

problem:

û
(i)
k = argmin

uk

1

2
‖ik −Duk‖2Rk

+
τ̂
(i)
k

q̂
(i)
k

‖uk‖
q̂
(i)
k

q̂
(i)
k

. (55)

Unfortunately, the previous minimization problem has no explicit solution

and requires the implementation of an iterative resolution procedure, based

on the application of the first-order optimality condition. At a given iteration

j of the iterative process, one has:

û
(i,j)
k =

(
DR−1

k DT + τ̂
(i)
k W

(i,j)
k

)−1

DTR−1
k ik, (56)

where W
(i,j)
k is a positive definite diagonal weighting matrix expressed as:

W
(i,j)
k = diag

(
w

(i,j)
k,1 , . . . , w

(i,j)
k,n , . . . , w

(i,j)
k,Nu

)
, (57)

where:

w
(i,j)
k,n = max

(
εi,
∣∣∣û(i,j−1)
k,n

∣∣∣)q̂(i)k −2

. (58)

In the previous equation, û(i,j−1)
k,n is the nth component of the input vector

û
(i,j−1)
k and εi is a small real positive number avoiding infinite weights when
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∣∣∣û(i,j−1)
k,n

∣∣∣→ 0 and q̂(i)k < 2. Its value is computed so that 5% of the values of∣∣∣û(i,0)
k

∣∣∣ are less than or equal to εi.

To complete the description if this iterative sub-process, it should be

mentioned that the initial solution of the iterative process is computed from

Eq. (56) by taking W
(i,0)
k = I, while the process is converged when the relative

error δ, defined such that:

δ
(
û
(i,j−1)
k , û

(i,j)
k

)
=

∥∥∥û(i,j)
k − û

(i,j−1)
k

∥∥∥2
2∥∥∥û(i,j−1)

k

∥∥∥2
2

, (59)

is less than some tolerance, sets here to 10−8. Finally, at convergence of the

iterative process after J iterations, one has:

û
(i)
k = û

(i,J)
k and W

(i)
k = W

(i,J)
k . (60)

Convergence monitoring of the optimization process

As for the iterative computation of û
(i)
k , the optimization process is stopped

when the relative error δ
(
û
(i−1)
k , û

(i)
k

)
is less than 10−8. At convergence of

the optimization process after I iterations, one gets:

q̂k = q̂
(I)
k , τ̂k = τ̂

(I)
k , ûk = û

(I)
k and Wk = W

(I)
k . (61)

As a final step, τ̂k and Wk must be introduced in Eq. (45) to compute

the Kalman gain Ku
k and the predictive covariance matrix P̃u

k and thus to

continue the filtering process.

5.3. Computational algorithms

To provide a global overview of the proposed Sparse adaptive Bayesian

Filter, the different computational steps are gathered into Algorithms 1 and 2.
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More precisely, Algorithm 1 describes the general implementation of SaBF,

while Algorithm 2 summarizes the nested Bayesian optimization process in-

troduced in section 5.2.2.
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Algorithm 1: Sparse adaptive Bayesian Filter – SaBF
Input: yk, A, B, C, D, û0, Pu

0 , x̂0, Px
0 , Q

x
k , Rk, q̂0

Output: ûk, Pu
k , x̂k, Px

k

0. Initialization

x̃1 = Ax̂0 + Bû0

P̃x
1 = APx

0A
T + BPu

0BT + Qx
0

for each time step k > 0 do
1. Input estimation

ik = yk −Cx̃k(
ûk, Ku

k , P̃u
k , q̂k

)
= OptimalEstimation(D, ik, R, ûk−1, q̂k−1)

Pu
k = (I−Ku

kD) P̃u
k (I−Ku

kD)T + Ku
k

(
CP̃x

kC
T + Rk

)
Ku
k
T

2. State estimation

Kx
k = P̃x

kC
T
(
CP̃x

kC
T + Rk

)−1

x̂k = x̃k + Kx
k (ik −Dûk)

Px
k = (I−Kx

kC) P̃x
k (I−Kx

kC)T + Kx
k

(
DPu

kD
T + Rk

)
Kx
k
T

Pxu
k = −Kx

kDPu
k

3. State prediction

x̃k+1 = Ax̂k + Bûk

P̃x
k+1 =

[
A B

]Px
k Pxu

k

Pux
k Pu

k

AT

BT

+ Qx
k

end
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Algorithm 2: OptimalEstimation
Input: D, ik, Rk, ûk−1, q̂k−1

Output: ûk, Ku
k , P̃u

k , q̂k

0. Initialization

q̂
(0)
k = q̂k−1, û

(0)
k = ûk−1

while δ < tol do
i = i+ 1

1. Compute τ̂ (i)k from Eq. (54) given û
(i−1)
k and q̂(i−1)

k .

2. Compute q̂(i)k from the brute force approach applied to Eq. (53) given

û
(i−1)
k and τ̂ (i)k .

3. Compute û
(i)
k and W

(i)
k from Eqs. (55)-(60) given q̂(i)k and τ̂ (i)k .

4. Convergence monitoring - Computation of δ:

δ =

∥∥∥û(i)
k − û

(i−1)
k

∥∥∥2
2∥∥∥û(i−1)

k

∥∥∥2
2

end

q̂k = q̂
(I)
k , τ̂k = τ̂

(I)
k and Wk = W

(I)
k

P̃u
k = (τ̂kWk)

−1
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6. Numerical experiment

This section introduces the application of the SaBF in a purely numerical

context. Its robustness with respect to various practical parameters, such as

the measurement noise, the sensors’ density or the duration of the estimation

(short-term or long-term) is assessed and its performances are compared

to those of some state-of-the-art filters. Only the estimation of the input

vector is targeted here, even though the estimation of the state vector can

be of primary interest in some applications. Hence, the problem is oriented

to the solution of the force identification problem rather than to the state

reconstruction through the measures.

6.1. Problem definition

The structure under consideration is a simply supported stainless steel

beam. The beam has a length of L = 3m, with a cross-sectional area

S = 1060mm2 and quadratic moment of inertia I = 171mm4. The mate-

rial properties are E = 210GPa for the Young’s modulus and ρ = 7850kg/m3

for the density. The modal damping factor is set to 0.01.

In the present numerical application, it is supposed that the beam under-

goes a hammer impact at location xexc = 0.98m, measured from its left end.

This type of excitation can be modeled by a Gamma-like function of shape

and scale parameters p and θ [26], that is:

uref(t) = u0

( t

pθ

)p
exp
(
− t
θ

+ p
)
, (62)

where u0 is the force intensity. In this example, it is assumed that the

structure is impacted by a hammer equipped with a soft rubber tip in order to
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excite only the low frequency modes of the beam. To reflect this assumption,

the parameters of the input excitation are chosen such that u0 = 15N, p = 8.7

and θ = 0.6ms. Furthermore, a delay of 8ms is added at the beginning of

the signal to simulate a pre-trigger. This reference force is shown in Fig. 1.

It must be noted here that the applied hammer excitation has a cut-off

frequency around 500 Hz.
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Figure 1: Synthesized hammer impact excitation signal - (a) Time domain representation

and (b) Frequency domain representation.

Along the beam, a set of 20 sensors are mounted on the structure to

measure kinematic variables, such as strain, displacement, velocity or ac-

celeration. Here, it is supposed that only acceleration data are available,

since they lead to better input reconstructions when Kalman-like filters are

to be used [26, 29, 31, 35]. To synthesize these measured data, a modally

reduced order model of the beam is used. The considered modal basis con-

tains the first 53 analytical vibration modes, corresponding to modes having
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a resonance frequency below 1kHz. The noiseless acceleration data are com-

puted over 0.1s from an unconditionally stable and second-order accurate

Newmark’s integration scheme using a time step size of 10µs. Then, for sim-

ulating the measurement process, the computed data are corrupted by an

additive Gaussian white noise with a controlled signal-to-noise ratio (SNR)

set to 25 dB.

To properly implement all the filters compared in this paper, it remains

to define the initial conditions (x̂0,P
x
0 ) and (û0,P

u
0 ) as well as the covariance

matrices Qx
k and Rk. Here, the initial covariance matrices Px

0 and Pu
0 are

assumed isotropic with a variance set to 10−20, while the initial state and

input vectors x̂0 and û0 are null vectors. The noise covariances Qx
k and Rk

are supposed isotropic and constant over the time, with respective values of

10−20 and 10−2. For the SaBF, the initial shape parameter has also to be

specified. Here, q̂0 is set to 1, because the spatial distribution of the input

vector should be sparse. For AKF and DKF, the covariance matrix associated

to the fictitious equation on the input vector is supposed isotropic and its

variance is adjusted following the procedure described in Refs. [29, 31].

In absence of contradictory information, all the values given above form

the default configuration. In addition, it should be noting here that colocated

configurations are required for instantaneous inversion, i.e. the estimation of

the system input without a time delay [48]. This practically implies that the

input vector is estimated at sensors locations.

Finally, to quantify the accuracy of the estimated input vector, three

indicators are introduced. First, the Global Relative Error (GRE) is used
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to evaluate the accuracy of the estimation over the whole structure. Its

expression is given in the following equation:

GRE =
‖û− uref‖1
‖uref‖1

. (63)

where uref and û are respectively the reference and estimated input vectors

defined over the whole estimation duration.

The two other indicators are local. The Peak Error (PE) is representing the

relative error between the maximal intensity of the hammer impact estimated

at the actual point force location ûexc and that of the reference one uexc
ref . This

indicator is mathematically expressed as:

PE =
ûexc − uexc

ref

uexc
ref

. (64)

Its sign allows knowing whether the estimated value is higher (or lower) than

the targeted value.

The last indicator is the Correlation Coefficient (CC), which defines the over-

all accuracy of the estimated excitation history, ûexc, with respect to the

reference one, uexc
ref , at the actual impact point location:

CC =
uexc

ref ûexcT

‖uexc
ref ‖2 ‖ûexc‖2

. (65)

6.2. Identification of a hammer impact

As a first application, SaBF is compared to AKF, DKF and GDF on

the default configuration described in the previous section. It should be

mentioned here, that SBF is not considered here and in the rest of the paper,

because it diverges for the parameters used in the paper to tune the filter

(see Appendix B). One of the main causes of divergence is related to the trick
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introduced by Sedehi et al. in Ref. [35] and recalled in Eq. (31) to mitigate

the drift effect. Other parameters may explain this result, but a thorough

analysis of the tuning of SBF is outside the scope of this paper.
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Figure 2: Time history of the estimated input obtained from the default configuration -

(—) Reference, (−−) SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

The estimation of the input time history presented in Fig. 2 shows that

the peak value estimated by all filters is close to the reference value of 15N.

The peak error of each filter is below 1%, as exposed in the Table 1. Moreover,

another important aspect of the reconstruction is the behavior after having

identified the hammer impact: the residual value that exists leads the filter

to diverge instead of remaining constant. This is the so-called drift effect,

which characterizes the way the identified variable tends to deviate from a

constant value, null here. That drift is clearly observable on all filters from

t = 50ms, except on SaBF where the estimation stagnates, with a standard

deviation of 0.18mN.
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Table 1 gathers the values of the three indicators, GRE, PE and CC,

for each filter compared in this study. It shows that the global error is

significantly reduced while using the SaBF compared to the state-of-the-

art filters, whereas the peak error is acceptable. Moreover, the correlation

coefficient between the reference force and the estimate input history is the

highest for the SaBF.

Table 1: Table of indicators for each filter tested for the default configuration

Filter GRE (%) PE (%) CC (%)

GDF 75.49 -0.2 99.2

DKF 59.32 -0.4 99.5

AKF 74.88 -0.2 99.2

SaBF 3.95 -0.6 99.9

Finally, as shown in Fig. 2 and Table 1, SaBF outperforms the existing

Kalman-like filters in the identification of the input time history. Neverthe-

less, all filters identify well the impact location. The Fig. 3 afterwards shows

the estimated location and time history of the impact, according to each

filter.

For this experimental configuration, the shape parameter q is computed

by following the iterative procedure described in Algorithm 2. Although this

parameter is mathematically in R+∗, it is restricted to the range ]lb;ub] with

lb = 0 and ub = 2 in the implementation as classically done in the literature.

This parameter is optimised at each time-step with the minimization of the

cost function of the Eq. (53). As shown in Fig. 4, the initial value q0 doesn’t

affect the final result. Finally, considering the initial value of the shape
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(a) (b)

(c) (d)

Figure 3: Estimated input distribution from the default configuration – (a) SaBF, (b)

AKF, (c) DKF and (d) GDF.
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parameter at each iteration (before the optimisation), two choices are possible

: qk = q0, set to 1 for example, and qk = qk−1. The second one has been

chosen, as it allows to obtain a better calculation speed. Actually, as the

source is fixed and remains sparse along the time, qk is quite close to qk−1.
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Figure 4: Time history of qopt with (—) q0 = 1 and (−−) q0 = 2.

6.3. Influence of the experimental parameters

In the engineering practice, some parameters can have an important in-

fluence on the quality of the estimated solutions. Among those, the mea-

surement noise level and the number of sensors are of particular interest.

Consequently, this section aims at evaluating the influence of these parame-

ters on the performances of all the filters considered in this paper.
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6.3.1. Influence of the measurement noise

The noise added to acceleration data is increased, from a signal-to-noise

ratio of 25dB to 15dB. This rise is reflected in the results, especially on the

time history. As shown in Fig. 5, all the state-of-the-art filters are drifted

up after the impact, whereas the time history after impact of the SaBF is

still constant with a null value and a standard deviation around 0.15N. So,

the higher the noise, the steeper the slope of this drift is for AKF, DKF and

GDF.
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Figure 5: Time history of the estimated input for a SNR of 15dB - (—) Reference, (−−)

SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

When looking at the values of the performance indicators given in Ta-

ble 2, one can notice that the proposed SaBF produces significantly better

results in terms of global identification even though DKF provides a slightly

better identification of the peak value. Furthermore, even though the impact

is correctly located, a drift appears on almost all the identification points,
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Table 2: Table of indicators for each filter tested for a SNR of 15dB.

Filter GRE (%) PE (%) CC (%)

GDF 242.7 2.2 90.3

DKF 190.2 1.27 94.1

AKF 240.8 2.2 90.1

SaBF 22.84 1.43 99.8

except for SaBF. As the data are noisy, Kalman-like filters tends to predict

and correct the estimation with regards to non-null data. Hence, the pre-

dicted values drift progressively, the sign of the estimation only depends on

the initial mean of the noise, which cannot be controlled. The high value of

the correlation coefficient for the SaBF is mainly due to the removal of the

drift (see Fig. 6).

6.3.2. Influence of the number of sensors

The number of sensors controls the total amount of data that the filter

uses to perform the input-state estimation. Hence, the process may last

longer to complete the global computation. By doubling this number, from

20 to 40 sensors, it appears that the state-of-the-art filters behave in a worse

way. Actually, as the problem is under-determined, a greater amount of

information does not lead to a more accurate estimation. As shown in Fig. 7

and in the same way as it happens when the measurement noise increases,

all the state-of-the-art filters are drifted up, whereas SaBF remains constant

with a null value and a standard deviation around 0.15mN.

Thus, both the global relative error and the peak error for SaBF are the
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(a) (b)

(c) (d)

Figure 6: Spatial distribution of the input estimated for a SNR of 15dB – (a) SaBF, (b)

AKF, (c) DKF and (d) GDF.
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Figure 7: Time history of the estimated input obtained for a set 40 sensors - (—) Reference,

(−−) SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

lowest of all introduced filters, as shown in Table 3, while the correlation

coefficient is still very close to the maximal value (99.98 %). As for the

Table 3: Table of indicators for each filter tested with 40 sensors

Filter GRE (%) PE (%) CC (%)

GDF 550.0 -4.33 92.7

DKF 483.9 -7.53 92.7

AKF 552.6 -4.8 91.4

SaBF 4.20 0.07 99.9

measurement noise, the number of sensors has a great influence on the pres-

ence of drifting on the identification points: doubling the number of sensors

leads to a higher mean drift and an offset on the final results for all of the

state-of-the-art filters. These two phenomena lead to a significant error after
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0.1s: the force estimated by the filters reaches almost 50% of the peak value

(around 7N) on points that are not excited at all. These erroneous values

can be observed on Fig. 8.

(a) (b)

(c) (d)

Figure 8: Spatial distribution of the input estimated at 40 locations – (a) SaBF, (b) AKF,

(c) DKF and (d) GDF.

To complete this part on the influence of the number of sensors, the same

study is done with a reduced set of 9 sensors. In this situation, the filters

are expected to provide similar performances. Figs. 9 and 10 and Table 4

confirm this intuition, since the results are rather similar for all filters. To
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sum it up, all the results presented in this section highlight the robustness

of SaBF with respect to the number of sensors.
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Figure 9: Time history of the estimated input obtained for a set 9 sensors - (—) Reference,

(−−) SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

Table 4: Table of indicators for each filter tested for a simulation with 9 sensors.

Filter GRE (%) PE (%) CC (%)

GDF 12.45 0.33 99.92

DKF 12.41 0.4 99.92

AKF 12.55 0.33 99.92

SaBF 2.81 0.01 99.99

6.3.3. Influence of the total duration

As observed in the previous subsection, the total duration of the experi-

ment combined with the drift induces a significant error on the input estima-
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(a) (b)

(c) (d)

Figure 10: Spatial distribution of the input estimated at 9 locations – (a) SaBF, (b) AKF,

(c) DKF and (d) GDF
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tion. This error accumulates at each time step, following an unpredictable

behavior at each identification point. Hence, as shown in Fig. 11, AKF, DKF

and GDF provide almost the same wrong estimation of the input. On the

other hand, the force identified by SaBF remains constant and null, with a

standard deviation around 39.4µN.
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Figure 11: Time history of the estimated input computed over 1s - (—) Reference, (−−)

SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

As expected, the effect of the drift is much more important over a long

duration: when observing all the identification points, it seems that a dis-

tributed force is applied all along the beam for the state-of-the-art filters (see

Fig. 11). The maximal value of the absolute error reached by these spurious

forces is around 10.8N, which is around the nominal value of the impact.

Hence, the identification of impacts with these filters cannot be done online:

even though a shock would have been identified in terms of intensity and
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location, the estimation is wrong the next second and could potentially lead

to misunderstand the actual phenomenon that happens.

(a) (b)

(c) (d)

Figure 12: Spatial distribution of the input estimated over 1s – (a) SaBF, (b) AKF, (c)

DKF and (d) GDF.

The performance indicators, collected in Table 5, demonstrate that the

input estimation is totally biased by the presence of the drift for AKF, DKF

and GDF. Thus, even though the peak amplitude is well estimated by all the

filters, SaBF outperforms all the presented filters over long duration.
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Table 5: Table of indicators for each filter tested for a 1 second simulation.

Filter GRE (%) PE (%) CC (%)

GDF 520.1 0.2 41.4

DKF 517.8 0.27 41.8

AKF 518.6 0.28 41.7

SaBF 6.41 -1.5 99.9

7. Real-world application

This section aims at confirming the conclusions drawn in the numerical

experiment on a real-world application. The basic motivation of this exper-

imental validation is to assess the performances of the proposed Bayesian

Filter in operating conditions. In what follows, two parameters are carefully

studied. The first one is the influence of the measurement noise level, while

the second one is related to the behavior of the filter over the long term.

As for the numerical validation, SaBF is compared to some state-of-the-art

filters.

7.1. Description of the experimental set-up

The structure under test is a thin aluminum plate of 60cm in length,

40cm in width and 6mm in thickness, clamped along its length in a wooden

support. The effective width of the plate resulting from the mounting con-

ditions is 39.1cm. To perform all the subsequent measurements, the system

is suspended to a rigid structure through a set of elastic bungee cords (see

Fig. 13).
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Figure 13: Structure under test - Clamped plate suspended to a rigid frame by bungee

cords

7.1.1. State-space representation

As it has been done in the numerical experiment, the explicit generalized-

α integration scheme is chosen to compute the modally reduced state-space

matrices of the considered dynamical system [41]. Because one of the bound-

ary conditions is not perfectly known, the modal basis of the structure has

been obtained from an Experimental Modal Analysis (EMA). More precisely,

a roving hammer test has been conducted on a grid of 17×17 points (see

Fig. 13) using three reference accelerometers to measure a set of Frequency

Response Functions. By applying a MDOF curve fitting algorithm, the first

83 vibration modes have been extracted. For the purpose of the proposed ex-

perimental validation only the first 34 vibration modes have been retained in

the modal basis. This actually corresponds to the modes having a resonance

frequency below 2kHz.
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Regarding the parameters of the filters, the initial state and input con-

ditions must be specified as well as the covariance matrices associated to

the process and measurement noises. For this experimental applications, the

values of these parameters are the same as those defined for the numerical

application (see section 6.1).

7.1.2. Data acquisition

In the present experiment, a set of 4 accelerometers have been mounted

on the structure to measure the vibrations resulting from a hammer impact.

To satisfy the instantaneous inversion constraint, the input force and accel-

eration data have been located at some nodes of the grid used to perform the

EMA. The locations and identification numbers (ID) of the hammer impact

and the acceleration measurements are presented in Fig. 14.
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Figure 14: Location of the accelerometers and the hammer impact on the grid used to

perform the EMA – – (◦) EMA grid, (�) Accelerometers and (♦) Hammer impact
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Practically, the impact hammer is equipped with a soft rubber tip in order

to excite only the low frequency modes of the plate, i.e. below 1kHz. In

doing so, the state-space model, built using all the modes having a resonance

frequency below 2 kHz, is expected to be well-representative of the considered

system. As shown in Fig. 15, the considered hammer impact excites the

structure for frequencies below 1kHz, while the maximum intensity is 34.65N.

However, to mitigate the influence of out-of-band modes during the system

inversion, acceleration data are filtered at 2kHz and resampled at 16 384Hz

following the recommendations of Lourens et al. [29].
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Figure 15: Hammer impact measured at node 236 – (a) Time history and (b) Frequency

spectrum

7.2. Reconstruction of the hammer impact

An analysis, similar to that proposed in section 6, is done hereafter from

the acceleration data measured on the impacted plate. The time history and

the location of the impact are estimated for a set of 4 sensors over a time
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window of approximately 0.1s. Compared to the numerical experiment that

has been conducted, only SaBF and GDF provide a correct identification

of the intensity of the peak, as it is shown in the following Fig. 16. AKF

identifies a 20N peak, then it tends toward an offset of 4.55N. A similar

behavior is adopted by DKF, but in a worse way: the identified peak is

around 5N while the final value remains at -1.3N. Finally, a slight drift is

observed on the GDF result, which should be increased with the noise level

and a longer estimation duration.
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Figure 16: Time history of the estimated impact of the hammer locally on node 236 - (—)

Reference, (−−) SaBF, (· · · ) AKF, (− · −) DKF and (−−) GDF.

The performance indicators allow quantifying the likelihood of the input

estimation with the reference signal (see Table 6). As expected, those values

are not acceptable for DKF and AKF. However, even though the GDF pro-

vides a great estimation of the peak, its global error is the worst, as the drift

is very important at the other identification nodes (see Fig. 17).
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Table 6: Table of indicators for each filter tested in the reference configuration.

Filter GRE (%) PE (%) CC (%)

GDF 142.9 1.76 82.9

DKF 100.5 -83.78 46.9

AKF 87.8 -42.02 45.9

SaBF 1.1 0.35 99.8

The steep drift of the GDF is remarkable on the spatial distribution,

even for a short experiment (here, 0.1s), whereas SaBF estimations on each

node that are not subjected to a shock are completely flattened and nil. Here

again, SaBF outperforms the other filters, whether in terms of peak detection,

location or deviation after the impact during the rest of the experimentation.

7.2.1. Influence of the measurement noise level

In order to observe the effect of the noise level on the estimation, a Gaus-

sian white noise is added to the measured data, so as to obtain a SNR around

15dB. As observed previously, the noise level leads to an increase of the slope

of the drift. As GDF is the only filter that induces this phenomenon, it is

only visible on its estimation. On the same duration, the absolute error,

which reached 5N with a 25dB SNR, is currently at almost 20N. The peak

value that was well estimated before, is now overtaking the targeted value.

Meanwhile, the same problem of offset and low peak estimation is renewed

for AKF and DKF.
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(a) (b)

(c) (d)

Figure 17: Spatial distribution of the estimated impact of the hammer – (a) SaBF, (b)

AKF, (c) DKF and (d) GDF
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Figure 18: Time history of the estimated impact of the hammer locally on node 236 for

an estimated SNR of 15dB - (—) Reference, (−−) SaBF, (· · · ) AKF, (− · −) DKF and

(−−) GDF.

As expected in the default experimental configuration, even though the

impact is well located, the higher the noise level, the higher the drift (see

Fig. 18). It soars to reach a higher absolute value than the nominal force

applied. From Fig. 19, AKF seems to be the more efficient identifying solu-

tion after SaBF. This observation is reinforced by the global indicator GRE,

which is the second lowest of the Table 7 after the one of SaBF.

7.2.2. Influence of the estimation duration

Finally, the total duration of the experiment is investigated. Instead of a

0.1s time window, it has been decided to increase it to 0.9s, in order to observe

the behavior of the each filter. As already highlighted, SaBF, AKF and

DKF provide a constant force estimation after 0.05s, whereas GDF follows

an unpredictable path. Hence, its values diverge noticeably at the excitation
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(a) (b)

(c) (d)

Figure 19: Spatial distribution of the estimated impact of the hammer for an estimated

SNR of 15 dB – (a) SaBF, (b) AKF, (c) DKF and (d) GDF.

Table 7: Table of indicators for each filter tested for SNR = 15dB.

Filter GRE (%) PE (%) CC (%)

GDF 466.3 5.92 33.1

DKF 100.5 -91.6 45.6

AKF 77.69 -36.05 45.0

SaBF 1.93 1.36 99.8
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point, as shown the Fig. 20, as well as at the identification points of Fig. 21.

This trend is reflected by the performance indicators presented in Table 8.

Finally, it worth mentioning here that the performances SaBF are almost

unaffected by a change in the measurement noise level or the estimation

duration.
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Figure 20: Time history of the estimated impact of the hammer locally on node 236 for

a 1 second simulation - (—) Reference, (−−) SaBF, (· · · ) AKF, (− · −) DKF and (−−)

GDF.

8. Conclusion

In this paper, a novel sequential Bayesian Filter has been developed for

solving the input-state estimation problem. The initial motivation of the pa-

per was to introduce some prior knowledge of the spatial distribution of the

sources exciting a structure. To this end, a general Bayesian formulation of

the problem has been presented. It is interesting to note that the proposed
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(a) (b)

(c) (d)

Figure 21: Spatial distribution of the estimated impact of the hammer for a 1 second

simulation – (a) SaBF, (b) AKF, (c) DKF and (d) GDF.

Table 8: Table of indicators for each filter tested for a 1 second simulation.

Filter GRE (%) PE (%) CC (%)

GDF 4055.6 1.76 6.07

DKF 100.1 -81.96 14.35

AKF 87.78 -42.02 12.67

SaBF 1.10 0.35 99.6
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formulation is at the roots of most of the state-of-the-art filters developed in

the literature, such as AKF, GDF, DKF or SBF. By clearly describing and

detailing the hypotheses made by each filter, it has been demonstrated that

the existing filters mainly differ by the assumption made in the definition of

predictive probability distribution over the input vector. From this observa-

tion, it has been concluded that one’s prior knowledge of the input vector can

be properly reflected by an adequate choice of this probability distribution.

Here, it has been assumed that the predictive input vector followed a multi-

variate generalized Gaussian distribution, given rise to the Sparse adaptive

Bayesian Filter (SaBF) discussed in this paper. The proposed approach con-

tains several parameters that are optimally estimated from a nested Bayesian

optimization procedure.

A numerical experiment has been conducted to compare the performances of

AKF, GDF, DKF, SBF and SaBF with respect to several key parameters,

such as the measurement noise, the sensors’ density or the estimation du-

ration. The obtained results show that SaBF outperforms standard filters,

especially because it is a purely online approach that allows inferring the spa-

tial sparsity pattern of the input vector from the data and the model. This

sparsity adaption property has a nice side effect, since it avoids the drift that

appears when only acceleration measurements are used. This conclusion has

been confirmed experimentally.

Finally, this paper demonstrates through the proposed general Bayesian

framework that new Bayesian filters can be obtained by choosing different

set of hypotheses. This is a topic of ongoing research.
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A. Computational algorithms of input-state estimation problems

This appendix summarizes the computational algorithms of the state-of-

the-art methods introduced in sections 3 and 4.

A.1. Augmented Kalman Filter

Algorithm 3: Augmented Kalman Filter – AKF
Input: yk, Aa, Ca, x̂a

0 , Px
0 , Q

a
k, Rk

Output: x̂a
k, Px

k

for each time step k > 0 do
1. State prediction

x̃a
k = Aax̂

a
k−1

P̃x
k = AaP

x
k−1A

T
a + Qa

k−1

2. State estimation

Kx
k = P̃x

kC
T
a (CaP̃

x
kC

T
a + Rk)

−1

x̂a
k = x̃a

k + Kx
k(yk −Ca x̃a

k)

Px
k = (I−Kx

kCa)P̃x
k

end
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A.2. Gillijns and De Moor Filter

Algorithm 4: Gillijns and De Moor Filter – GDF
Input: yk, A, B, C, D, x̂0, Px

0 , û0, Pu
0 , Qx

k , Rk

Output: ûk, Pu
k , x̂k, Px

k

0. Initialization

x̃1 = Ax̂0 + Bû0

P̃x
1 = AP0A

T + BPu
0BT + Qx

0

for each time step k > 0 do
1. Input estimation

Sk = CP̃x
kC

T + Rk

Pu
k = (DS−1

k DT)−1

Ku
k = Pu

kD
TS−1

k

ûk = Ku
k (yk −Cx̃k)

2. State estimation

Kx
k = P̃x

kC
TS−1

k

x̂k = x̃k + Kx
k(yk −Cx̃k −Dûk)

Px
k = (I−Kx

kC)P̃x
k + Kx

kDPu
kD

TKx
k
T

Pxu
k = −Kx

kDPu
k

3. State prediction

x̃k+1 = Ax̂k + Bûk

P̃x
k+1 =

[
A B

] Px
k Pxu

k

Pxu
k

T Pu
k

AT

BT

+ Qx
k

end
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A.3. Sequential Bayesian Filter

Algorithm 5: Sequential Bayesian Filter – SBF
Input: yk,A,B,C,D, x̂0,P

x
0 , û0,P

u
0 ,Q

x
k ,Rk

Output: ûk, Pu
k , x̂k, Px

k

0. Initialization

x̃1 = Ax̂0 + Bû0

P̃x
1 = AP0A

T + BPu
0BT + Qx

0

for each time step k > 0 do
1. Input estimation

Ku
k = Pu

k−1D
T(DPu

k−1D
T + Rk)

−1

ûk = Ku
k (yk −CAx̂k−1)

Pu
k = (I−Ku

kD)Pu
k−1(I−Ku

kD)T + Ku
k (CP̃x

kC
T + Rk)K

u
k
T

2. State estimation

Kx
k = P̃x

kC
T(CP̃x

kC
T + Rk)

−1

x̂k = x̃k + Kx
k(yk −Cx̃k −Dûk)

Px
k = (I−Kx

kC)P̃x
k(I−Kx

kC)T + Kx
k(DPu

kD
T + Rk)Kx

k
T

Pxu
k = −Kx

kDPu
k

3. State prediction

x̃k+1 = Ax̂k + Bûk

P̃x
k+1 =

[
A B

] Px
k Pxu

k

Pxu
k

T Pu
k

AT

BT

+ Qx
k

end
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A.4. Dual Kalman Filter

Algorithm 6: Dual Kalman Filter – DKF
Input: yk, A, B, C, D, x̂0,P

x
0 , û0,P

u
0 ,Q

x
k , Qu

k , Rk

Output: ûk, Pu
k , x̂k, Px

k

for each time step k > 0 do
1. Input prediction

ũk = ûk−1

P̃u
k = Pu

k−1 + Qu
k−1

2. Input estimation

Ku
k = P̃u

kD
T(DP̃u

kD
T + Rk)

−1

ûk = ũk + Ku
k (yk −Cx̂k−1 −Dũk)

Pu
k = (I−Ku

kD)P̃u
k

3. State prediction

x̃k = Ax̂k−1 + Bûk

P̃x
k = APx

k−1A
T + Qx

k−1

4. State estimation

Kx
k = P̃x

kC
T(CP̃x

kC
T + Rk)

−1

x̂k = x̃k + Kx
k(yk −Cx̃k −Dûk)

Px
k = (I−Kx

kC)P̃x
k

end

B. Numerical results obtained with SBF

This section presents the results obtained with SBF for the default con-

figuration of the numerical application presented in section 6. As explained

in the core of the text and illustrated in Fig. B.1, SBF diverges for the set
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of parameters defined in section 6.1. The same observation has been made

when using experimental data. That is why, SBF has not been considered

for comparison in the present paper.
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Figure B.1: Input estimation from SBF for the default configuration of the numerical

application – (a) Time history and (b) Spatial distribution – (—) Reference and (−−)

SBF
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