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Abstract—If AI algorithms are now pervasive in our daily life,
they essentially deliver non-critical services, i.e., services which
failures remain socially and economically acceptable. In order to
introduce those algorithms in critical systems, new engineering
practices must be defined to give a justified trust in the capability
of the system to deliver the intended services. In this paper, we
give an overview of the approach that we have put in place to
reach this goal in the framework of the French Confiance.ai
program. Based on the needs of the industrial partners of
the program, we propose a model-based analysis framework
capturing the two dimensions of the problem: the one related to
the development and operation of the system and the one related
to the trust in the system.

Index Terms—Artificial intelligence, Systems engineering and
theory, System verification, Mission critical systems

I. INTRODUCTION

A. A long journey for deploying AI in an industrial solution

Artificial Intelligence (AI) faces challenges on different
levels that need to be addressed to speed up the adoption
and deployment of AI in industry. Towards that goal, we
need a SoSE workbench and methods that support trustworthy
AI at both the component and system levels, whether the
specifications come from regulation, societal concerns, safety
or security, etc.

With an allocated budget of C45M for the period 2021-
2024, The French program “Confiance.ai” (www.confiance.ai)
is a collective endeavour of 9 major French industrial (Air Liq-
uide, Airbus, Atos, Naval Group, Renault, Safran, Sopra Steria,
Thales and Valeo) and academic partners (CEA, IRT Saint
Exupéry, IRT SystemX, INRIA). Its target is the creation of
an engineering workbench enhanced by methods and tools that
will enable the integration of AI into products or services con-
sidered as critical, i.e. where accidents, failures or errors could
have serious consequences for people and/or valuable assets.
The program is organized in 7 projects: EC1, which builds an
integrated environment for the development and deployment of
trustworthy AI (the “workbench” mentioned previously); EC2,
focused on engineering processes and methods; EC3, focused
on the characterization and qualification of AI components;
EC4, focused on the design of AI components; EC5, focused
on data, information and knowledge engineering; EC6, focused
on on Integration, Verification, Validation and Qualification

(IVVQ) activities; EC7, focused on embeddability issues. The
results presented below have been achieved essentially in
projects EC1, EC2 and EC6 in close collaboration with the
other projects of the program.

Based on the observation that, in some areas, too few AI
Proof of Concept (PoC) are reaching production level, a survey
was sent to all industrial partners of Confiance.ai to identify
their current practices and needs concerning trustworthy AI.

B. Capturing the industrial practices and needs

Each industrial partner received questionnaires dedicated
to their respondent’s business profile. Each question corre-
sponded to a specific engineering phase as well as to an
object of interest (algorithmic engineering, data engineering...)
for a total of 140 different questions, most of them being
open-ended. 52 questionnaires were returned, from which
3583 responses to individual questions were extracted. The
following graph highlights the global distribution of answers
according to the respondent’s business profile.

Fig. 1. Global distribution of answers according to the respondent’s business
profile

Organized in eighteen items, we started by trust and
confidence issues, and general questions about the current
and future use of AI solutions. Then, a number of objects
of interest were addressed, namely the ODD (Operational
Design Domain) specification, data, machine learning solu-
tions, knowledge-based solutions, and some transverse aspects:



human-computer interaction, safety and software interoper-
ability. All engineering phases were examined, starting by life-
cycle management, followed by seven phases: requirements,
design, algorithmic engineering, assessment, deployment, su-
pervision/monitoring and certification. The last item contained
a few additional issues not included in the previous ones.

• Trust and confidence: Dealing with general considera-
tions about trust/confidence, the questionnaire emphasizes
the need to share a common view of the terminology
used, of the available technologies and methods. How-
ever, most bibliographic references mentioned are norms
and standards. The main expected services are linked to
certification and validation on representative use cases,
with supporting methods and tools.

• Generalities: Many partners have already implemented
AI components in a solution, but only a small number of
them have been up to operational use. However, an in-
creasing number of applications are envisaged, to improve
existing system or to provide new functionalities: e.g.
perception, decision support, question answering, mission
support, command and control systems, etc. Foreseen
applications are both batch and streaming/real time, with
optimism on the level of autonomy that can be reached
in the next five years.

• Operational Design Domain (ODD): Since the ODD
concept is relatively new, there is a lack of methods
and tools for its definition. Several partners use in-house
solutions for its formalization, but with no confidence in
their methodology regarding the necessary components
and properties they may consider. ODD is also deemed
important for the operational phase since the system
must detect in operation when it exits the ODD limits
to perform the adequate fallback actions. However, the
partners have no clue on how to deal with this challenge.

• Data engineering: Many tools are mentioned for various
aspects of the data lifecycle: feature engineering, data
augmentation, training and validation, data engineering in
general. Many off-the-shelf commercial tools are used as
well as specific in-house tools developed by the partners
often using Python, for example with Scikit-learn. A
number of data engineering methodologies are mentioned
but in most cases the tools play the role of methodologies.

• Machine Learning: Industrial partners use commercial
and academic tools such as Tensorflow, Keras, Scikit-
learn, Pytorch... and sometimes in-house products for
their Machine Learning (ML) developments. In upstream
phases, no methodology seems to be used, but once
engineers move to practical implementation, they are
empowered by the richness of the current supply.

• Knowledge-based approaches: Knowledge-based ap-
proaches are today little used by industrial partners. Only
few mentions of ontology tools such as Protégé are
reported.

• Human-Computer Interaction: The collaboration be-
tween AI systems and human requests AI systems to be

reliable, reactive, to reduce the worker’s cognitive load,
to be reproducible, transparent, in short to behave as a
trustworthy co-worker. The major risk identified is that
an AI system reproduces the same errors over and over
again, leading to the famous saying “trust takes the stairs
up and the elevator down”.

• Safety: The main safety concerns raised by industrial
partners are the potential errors of an AI system and their
consequences. Guaranteeing precision and generalization,
characterizing the uncertainty of answers are obvious
needs. Several standards have been designated, depending
on the industrial domain and reveal that industrial part-
ners almost systematically work in standard controlled
environment.

• Lifecycle management: Lifecycle management is an
activity that seems to be little addressed and, sometimes,
relegated to a single tool (MLFlow and Git are often used
for the model) and sometimes ignored.

• Requirements engineering: Requirements are expressed
in terms of performance, robustness, explainability, in-
terpretability. When dealing with embedded systems, the
usual constraints are mentioned: size, power consump-
tion, real time performance. The methods and tools used
for requirements engineering of AI components are the
ones currently used by industrial partners for traditional
components.

• Design: Formal methods, processes and methodologies
and the supporting tools for AI components and AI-based
systems are not often used in current practice. However,
when companies integrate components from third parties
(i.e. suppliers) they tend to ask for guarantees of some
sort in the contracts.

• Deployment: Deployment for embedded systems is the
main concern since deployment on large-scale infrastruc-
tures or cloud does not seem to be a subject of concern.

• Supervision/Monitoring: Generally speaking, the pro-
cess of integrating the monitoring of AI-based systems
does not seem mature. Various open-source tools are fre-
quently mentioned (MLFlow, Kubernetes, Tensorboard,
Prometheus, Grafana) as well as tools delivered with
AI platforms (Azure, AWS Sagemaker), sometimes in-
house tools monitoring specific system indicators are
mentioned.

• Certification: It seems clear to everyone that certification
of AI component will have a major impact on the current
practices, for methodologies as well as for tools used
in the development chain, essentially because there is
little or no use of certification tools and methods for AI
systems at the moment. Engineers are keen to apply such
changes if the added-value is demonstrated. However,
they ask to have some freedom of choice, not to be
constrained by the requirements of certification tools and
methods.

All these issues highlight today’s roadblocks that need to
be addressed to bridge the gap between Proof of Concepts
and actual deployment of dependable (system of) systems



involving AI algorithms. We consider that those issues can
only be tackled by a deep revamping of current engineering
practices.

Fig. 2. Global view of the analysis framework

II. ENGINEERING DEPENDABLE INDUSTRIAL AI-BASED
SYSTEMS

A. Dependable AI-based systems

The operational exploitation of AI is relatively recent. It was
determined by the spectacular improvements of algorithms and
the hardware components executing those algorithms. Initially
exploited for non-critical tasks showing no or a very low
level of risk, building an AI system was essentially a matter
of combining ad-hoc engineering practices with the objective
of providing “usable” results in the most cost-effective way.
When it comes to industrial critical systems, several additional
constraints must be considered. First processes must be ratio-
nalized, justified, made reproducible, optimized, etc. Second,
processes must ensure that the overarching properties of the
system under design are actually satisfied with the appropriate
level of confidence: (i) the defined intended behavior of the
system is correct and complete with respect to the desired
behavior, (ii) the implementation of the system is correct with
respect to its defined intended behavior, under foreseeable
operating conditions, (iii) any part of the implementation
that is not required by the defined intended behavior has no
unacceptable safety impact [1].

In the context of Confiance.ai program, we propose to
reconcile these two approaches, namely learning from ad-hoc
engineering practices on the different use cases on the one
hand, and structuring reproducible processes for achieving ap-
propriate level of confidence on the other hand. To achieve this
reconciliation, we need an analysis framework able to capture
and organize engineering contexts, constraints, activities, data,
lifecycle, etc. concurrently under different viewpoints, in order
to build a global and comprehensive model. Each viewpoint
enriches others in an iterative and incremental, multi-viewpoint
analysis.

B. Capturing and modeling the engineering processes of de-
pendable AI-based systems

To ensure that AI-based systems will possess the necessary
“Trust Properties”, specific System Development activities
(elaborated by project EC2) and IVVQ activities (elaborated
by project EC6) are required. These activities will use a chain
of elementary methods and tools, specified or recommended
by projects EC3, EC4, EC5 and EC7.

The roles and the relations between the main artefacts
produced by these activities are depicted in Fig. 3. The System
Development Activities will produce Engineering Items. The
IVVQ Activities will propose various Strategies to generate
the Evidences showing that these Engineering Items possess
the Trust Properties. The Trust Environment (produced by
Confiance.ai project EC1) will orchestrate these System Devel-
opment Activities and IVVQ Activities, and will store or ref-
erence the produced Engineering Items and Trust Evidences.

Fig. 3. Roles and relations between artefacts in Confiance.ai

The Trustable AI analysis framework designed by the
Confiance.ai program will allow to elaborate the strategies for
System Development Activities and for IVVQ Activities and
will contribute to the specification of the Trust Environment.

The approach consists in:
• Defining analysis viewpoints, formalized in a modeling

tool by a meta-model containing the definition of involved
concepts and semantic relationships between these con-
cepts. As of today, the analysis framework implementa-
tion is derived from the Capella toolbox1. Capella has
been chosen to develop the first version of the tool so as
to leverage our experience on this technology and its un-
derlying system development methodology (ARCADIA).
However, our approach is independent from the modeling
technology, and other tools may well be used.

• Consolidating the methodological outputs of the Confi-
ance.ai projects by analyzing their various aspects: en-
gineering context, constraints, activities, data, lifecycle,
etc.

• Formalizing the analyzed methods in a modeling tool,
according to the meta-models of the considered view-
points. The modeling will help ensuring that all methods
are compatible with each other, and that the Confiance.ai

1See https://www.eclipse.org/capella



program will produce a consistent end-to-end process
allowing the design of dependable AI-based systems.

The overall structure of the analysis framework is depicted
on Fig.2.

The viewpoints for System Development (left part of the
figure) are the following:

• 2 generic viewpoints:
– Engineering activities for trustable AI (layer 1):

Define the tasks to perform so as to specify, de-
sign, produce, deploy and operate an appropriate
and trustable solution to a well understood need,
involving AI techniques. An example of engineering
activities viewpoint limited to ML algorithm engi-
neering is shown Fig. 4.

– AI-related data life cycle (layer 2): Identify major
data required/produced by AI engineering, when they
are produced/used, and how they evolve with time

• 2 viewpoints dedicated to risk on trust (ie. risk that
the trust on the capability of the system to deliver the
expected service is reduced or lost):

– Risk on trust due to engineering (layer 3): identify
major sources of bias or errors brought by other
engineering activities to inputs and outputs of AI
engineering and data

– Risk on trust due to system during operation
(layer 4): identify major sources of bias or corruption
brought by other system components interacting with
AI components in Operation

• 2 viewpoints dedicated to trust development and support:
– Trust through system behavior (layer 5): define

major system capabilities needed to ensure Trust in
Operation

– Trust through Human/System/AI Collaboration
(layer 6): define expectations of humans stakehold-
ers, their role and workshare with System AI,
in delivering the expected services in a trustable
manner.

4 transverse system viewpoints are also identified (right part
of Fig.2):

• Integration of AI functions: characterize and address
specific concerns related to integrating one or more
AI functions together in system target context; deliver
guidance on how to manage each concern,

• Trust on Performance, Safety, Security: define main
needs, contributions and obstacles regarding Trust applied
to AI decision performance, safety, and security of the
global solution including AI,

• Engineering Lifecycle Management: define processes to
revisit engineering choices and decisions according to
evolution of context, environment and needs,

• Engineering Environment Capabilities: define the tooling
support required to make trustable AI systems engineer-
ing feasible, scalable, efficient and secure.

Consistency of the content in all those viewpoints shall be
checked.

The next section focuses on VV aspects in relation with
these engineering viewpoints.

III. COUPLING THE ENGINEERING AND V&V CONCERNS

Verification and validation activities are essential contrib-
utors to trust. Indeed, those means are essentially aimed at
providing evidences that the system will realize the intended
function. Towards that goal, we propose to establish a clear,
traceable, auditable, and as formal as possible relationship
between the engineering items produced by an AI system en-
gineering activity, the properties that those items must satisfy,
and the activities providing evidences that those properties are
actually satisfied. In the Confiance.ai program, this relationship
is captured by means of Assurance Cases [4].

An Assurance Case provides a structured argument to
justify certain properties (sometimes called “claims”) about the
system under design, based on evidences concerning both the
system and the environment in which it operates. The objective
is to demonstrate as rigorously as possible that if some
evidences are provided then some claim is justified. This argu-
ment cannot be as rigorous as a mathematical demonstration2,
simply because it does not refer to mathematical entities and
mathematical properties. Nevertheless, the objective is to make
it as close as possible to what a mathematical demonstration
would be. In particular, terms and properties must be defined
as precisely as possible, hypothesis and assumptions must be
clearly stated, etc.

A claim concerns the satisfaction of some property by the
system (e.g. system-level properties such as safety, security, or
item-level properties such as “completeness”, “consistency”,
etc.). Building an argument consists to decompose the initial
claim into sub-claims deemed easier to justify in a divide-
and-conquer approach, down to the point where claims can be
directly justified by showing evidences. During the construc-
tion of the argument, claims and properties may concern the
whole system or some engineering items produced and used
to engineer the system. As for the design of the system itself,
building the Assurance Case of the system is not an ideal and
strict top-down process that would start from some top-level
property (e.g., “the system performs the intended function”)
and would be progressively decomposed into more and more
primitive properties applicable to more and more primitive
items. It is rather a combination of top-down and bottom-up
approaches.

Assurance Cases are not a new practice. They actually
derive from the now-well established practice of safety cases
that are already required in some industrial domains (e.g. in the
automotive domain with the ISO 26262 [2]). For the interested
reader, the genesis of Assurance Cases is very well described
in [5].

As stated earlier, the introduction of AI in industrial prac-
tices strongly changes well-established practices, in particular
those related to certification [3], and many initiatives are cur-
rently working on updating or defining new practices address-
ing the specificity of AI (e.g., EUROCAE WG114, ISO/TC204

2It is not strictly deductive.



Fig. 4. Illustration of a 1st Capella model for ML Algo Engineering

WG14). Basically, most current practices are based on recom-
mendations established on the basis of historical record, but
as stated by Rushby et al in [5], “[...] one reason for looking
beyond guidelines and toward assurance cases is to admit new
methods of assurance [...] and new kinds of systems [...], so
relevance of the historical record becomes unclear. ”

It is worth noting that, in the context of Confiance.ai, Assur-
ance Cases are strictly considered as a means to formalize the
argumentation and build trust. It is a reference model from
which other, specific representations, can be extracted. This
includes, in particular, representations that will eventually be
required by certification authorities. Our Assurance Cases are

• Not a verification and validation plan, but it may be used
to build it.

• Not a Certification Standard, but it may be used to build
one and, at least, it may be used to determine the activities
to be carried out to comply with the existing ones.
Traceability between the objectives / recommendations of
standards and our Assurance Case is not yet addressed.

The methods identified in the Assurance Case to provide
evidences are normally captured by verification and validation
activities of the engineering process. Therefore, the overall
process is the following:

• The design / development / deployment / etc. workflow is
established and the artefacts involved in this - workflow
are described

• Claims concerning the properties that those artefacts must
possess are expressed

• Assurance cases are built to show how those properties
will be assessed

• At the “bottom” of the argumentation (the leaves of the
tree), one find evidences

• Evidences are brought thanks to some dedicated verifica-
tion and validation activity

• Those activities are inserted in the workflow to give the
complete picture.

Fig. 5. From the workflow to the Assurance Cases and backward

The navigation between the Assurance Case model and the
engineering process model is illustrated on Figure 5.

The Assurance Cases developed in Confiance.ai are fairly
generic for they need to be applicable in different contexts
(embedded system, production lines,. . . ), industrial domains
(aeronautics, space, automotive, etc.), and for different types
of applications involving different types of sensors and algo-
rithms, with different level of criticality.

The Assurance Cases capture this diversity using “strate-
gies”. For instance, the same claim about a given property
P may be decomposed (or justified) in different manners, or
strategy, according to the level of criticality of the system. This
way, a claim about temporal determinism may be achieved
empirically by means of measurements performed on the
actual system in one strategy, and may be performed using
complex static analysis techniques based on formal methods
(e.g., abstract interpretation) in another strategy. In this exam-
ple, the confidence on the engineering item will (normally)
depends on the strategy.

At the end of the day, the objective is to use the model to
help making the optimal choice considering (i) the additional
confidence brought by the method on the capability of the
system to perform its intended function, and (ii) the cost of



Fig. 6. Engineering and Assurance Case tooling

implementing the method.
To reach this objective, we are currently developing a tool

that allows navigating between the engineering workflow and
the Assurance Case. A screenshot of the tool interface is given
on Figure 6. It shows the workflow (on the top left), the
Assurance Case (on the top right), and the applied strategy (on
the bottom right). Thanks to this tool, the user will eventually
be able to (i) build a V&V strategy considering the risk level
associated with errors affecting engineering item, cost and trust
indicators associated with the production of evidences, and to
(ii) display the resulting engineering workflow including V&V
activities.

IV. CONCLUSION: FROM THE MODEL TO THE WORKBENCH

Adoption of AI in our industry raises many technical
and non technical challenges and a huge effort is currently
deployed to address these challenges and facilitate the early
industrial adoption of AI in a cost-effective and safe way.

In the context of the Confiance.ai program, the most critical
of those challenges have been identified, covering two main
aspects: dependability to provide the capability to give a
justified trust on the capability of the system to deliver the
expected service, and industrial efficiency in order to ensure
that dependability will be achieved in a cost-effective way.

The Confiance.ai program addresses most of the dimensions
of the problem, from the provision new ML algorithms and
techniques addressing the various dimension of trust, including
explicability, fairness, temporal determinism, etc. But the
engineering practices themselves must also be updated to
account for the specificities of AI. Towards that goal, we
propose a “Trustable AI Engineering Definition Framework”
to build system development and V&V workflow integrating

explicitly the various dimension of trust. The framework relies
on a model-based approach involving a series of 10 viewpoints
capturing the various aspects of system development including
those related to data engineering, risk analysis, etc.

As of today, a meta-model capturing and organizing the
concepts supporting the different viewpoints has been devel-
oped, and its implementation in the Capella environment is
on-going.

In the next phase, our objective is (i) to populate the
engineering model using the methods and tools developed
or recommended by the different projects (EC3,4,5,7), (ii)
to build the complete V&V argumentation with clear links
between the workflow activities, the engineering items, ev-
idences, and activities providing evidences, and (iii) bring
together related methodology elements and adequate tooling to
support collaboration of all engineering disciplines for trust-
worthy AI-based products over their life cycle. The models
obtained in this first phase will be used to evaluate, validate
and possibly correct the approach.
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