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Statistical Destriping of Pushbroom-Type Images
Based on an Affine Detector Response

Mehdi Amrouche, Hervé Carfantan, Jérôme Idier, Member, IEEE, and Vincent Martin

Abstract—Remote sensing pushbroom-type imaging systems
acquire entire columns of an image with a single detector. As
a consequence, the miss-calibration of the detectors produces
stripes on the image. In this context, this paper introduces a new
self-calibration destriping method based on an affine response
model for the detectors, called Statistical Affine Destriping (SAD).
In contrast, some previous contributions were limited to a
purely linear model, while many others only considered an
additive structured noise model. It is based on the maximum a
posteriori estimation of the gain and offset parameters attached
to each detector given the observed image. Simple statistical prior
assumptions are adopted: respectively, a Gaussian white noise
model for the gains and offsets, and a first-order, homogeneous
Markov model for the observed scene. Based on a simplification of
the posterior likelihood, we propose a very efficient optimization
scheme based on a constrained Majorize-Minimize principle,
allowing us to process large dimension images. Moreover, simple
empirical rules are given to tune the hyperparameters of the
destriping method for high-resolution PLEIADES-type images.
Compared to the performance of a destriping method limited
to gain correction, we observe that the new version provides
reliable results in a wider range of situations. We also extend
the method in two directions. On the one hand, we consider
that some detectors may be atypical, with very high or very low
gains or offsets. On the other hand, we extend the method to
multispectral image destriping.

Index Terms—Image destriping; Affine detector model; Statis-
tical self-calibration; Constrained Majorize-Minimize algorithm.

I. INTRODUCTION

In remote sensing imaging, pushbroom-type images suffer
from a well-known phenomenon, called striping effect, which
is caused by a difference in the response of the sensors.
Indeed, pushbroom-type imaging instruments acquire images
line by line with a linear array of sensors placed across-track.
The other dimension is obtained thanks to the motion of the
satellite along its orbit. Therefore, differences in the response
of the sensors produce some stripes along the column of the
image. During the prelaunch calibration of the satellite, the
response of the detectors are identified and partially corrected.
Nevertheless, the evolution of the detectors over time may
require on-flight corrections. Correcting for the striping effect
is crucial, as stripes may perturb the analysis of the images,
by introducing errors in the outcome of post-processing meth-
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ods, for the purpose of geometric structure detection, image
segmentation, or image cross correlation, for instance.

Many destriping methods have been proposed in the litera-
ture. [1]. We invite the readers to refer to [1] for a recent and
thorough review of destriping methods and of their properties.
According to our own classification, most destriping methods
adopt a methodology that falls into one of the three categories.
(i) Stripe filtering methods are based on filtering to get rid
of the stripes in a filtering domain (Fourier, Wavelets...) [2]–
[7]. Such methods are particularly efficient for whiskbroom
acquisition systems, where the stripes are generally periodic as
each sensor acquire several rows across-track. Nonetheless, the
filtering domain also contains information about the observed
scene, which are lost in the filtering process, leading to the
possible generation of artefacts such as blurring or ringing
effects.
(ii) Image denoising: A lot of methods simply consider the
stripe effect as additive noise. Most of these methods are
based on an optimization principle where a cost function is
built using prior information on the stripe noise and on the
observed scene in a decomposition principle. Various kinds of
prior have been taken into account for the stripe noise and
for the scene, such as sparsity (with `0 [8] or `1 [8] norms
or mixed norms [9]), low-rank assumption [10]–[12], total
variation [11], [13], [14] or other variational properties [8],
[12], [15]. More recently, models of images [16] or stripes [1],
[17] have been learned from data using deep convolutional
neural networks trained on a large database of small simulated
images. Finally, some of these methods have been extended to
denoise multispectral or hyperspectral images, accounting for
the inter-band correlation of the images with a 3D prior such
as a low-rank tensor assumption [18], 3D-TV [11] or group
sparsity [18]. Finally, note that some recent image denoising
methods [1], [15] aim at proposing a universal destriping tool,
whatever the kind of stripes in the image (vertical, oblique,
local, global, periodic, banding, . . . ).
(iii) Statistical calibration methods exploit statistical proper-
ties of the image. Typically, some statistics of the observed
scene are assumed invariant along the columns, and an esti-
mation of the detector responses is built on this statistical ba-
sis [19]–[24]. The histogram matching techniques [20] assume
that the inputs of all sensors share the same probability density
functions. This assumption allows one to estimate a shape
of response function for the detectors. The moment match-
ing [22] techniques only make the hypothesis that the inputs
of all sensors share the same mean and standard deviation.
Based on these assumptions, an affine response function of
the detectors can be estimated. Unfortunately, such statistical
assumptions are quite strong. As a consequence, moment
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matching methods lack robustness, in the sense that they are
sensitive to variations in the observed image. More recently,
[25] proposed a Statistical Linear Destriping (SLD) method to
estimate either the offset or the gain of the sensors, modeling
the pixel intensities or their logarithm, respectively, with a
homogeneous Markov Model, which is a weaker assumption
compared to the previous ones. According to the comparative
study proposed in [1], SLD is one of the very best existing
methods of all categories. Moreover, the only methods with
(slightly) better performance (such as the one proposed in [1])
are dependent on a training phase involving labelled data, in
contrast with SLD.

During the commissioning phase of the high-resolution
imaging satellites PLEIADES-HR, it has been pointed out
that an affine model of the detector responses is relevant
to describe the striping effect [26]. Unfortunately, the only
existing destriping method handling an affine model is the
moment matching technique, which lacks robustness. This
paper originates from the need for a reliable destriping method
in the affine response case. Surprisingly, while the stripes
in the image clearly originate from a miscalibration of the
detector responses, only the statistical calibration methods
explicitly rely on a physical model for the detector responses.
For this reason, our new contribution to destriping in the affine
response case belongs to the statistical calibration category.
More precisely, given that SLD is a very efficient destriping
method based on a linear gain model, we have designed our
new destriping method as an extension of SLD to the affine
case. The proposed method will be referred to as Statistical
Affine Destriping (SAD).

The detector response being considered as an affine func-
tion, the relation between the perfect scene z = {zr,c}Γ
and the observed data w = {wr,c}Γ depends on two kinds
of calibration parameters: gains g = {gc}ΓC

and offsets
o = {oc}ΓC

and it can be written as:

zr,c = gcwr,c − oc (1)

where Γ = ΓR×ΓC is a grid of R rows ΓR = {1, ..., R} and
C columns ΓC = {1, ..., C}. In [25], it was assumed that the
offsets o are known, so the simpler model zr,c = gcwr,c was
considered, where the offsets are already corrected. Further-
more, the estimation of gains g was tackled by considering
the equivalent logarithmic relationlog zr,c = log gc + logwr,c.
Such a simplification is no more possible when the offsets are
unknown. Here, a new penalized fidelity-to-data criterion is
proposed, and a fast optimization scheme is deduced from a
simplification of the cost function without altering the perfor-
mance of calibration. The proposed method is compatible with
the calibration of large dimension/high-resolution images.

Throughout this paper, we will illustrate the results of the
proposed method on PLEIADES-type high resolution images,
but the proposed method can be used on images from any
pushbroom instrument as long as the sensor responses can be
considered affine.

The organization of this paper is as follows. In Section II,
the proposed estimator is presented in a statistical framework.
Section III is devoted to computational issues: a simplification
of the cost function allows us to derive an efficient constrained

Majorize-Minimize algorithm. The resulting numerical scheme
is tested on both simulated and real images, and an empirical
method is proposed to tune the hyper-parameters. In Sec-
tion IV, we propose a useful adaptation of the method to the
frequent cases where a small number of detectors have been
identified as behaving in an atypical way. Finally, we extend
the method to multispectral images in Section V. We show
that the correlation between the different spectral bands can
be taken into account in order to improve the calibration, with
no additional computational cost. Section VI concludes the
paper.

II. GENERAL BAYESIAN FRAMEWORK

Our objective is to estimate the C pairs of gains g and
offsets o given the R × C pixels of the observed image w,
where the relation between the perfect scene z, the observed
image w and the calibration parameters (g,o) is given by (1).

In the Bayesian framework, taking statistical prior models
on the calibration parameters and on the perfect scene z into
account, one can define the Maximum a Posteriori (MAP)
estimator of the calibration parameters that maximizes the
posterior neg-log-likelihood function J(g,o). This is the goal
of the present section.

A. A priori image model

Akin to [25], we adopt a basic first-order Markov field
model to model the spatial correlation between pixels of the
perfect scene. Its probability density function is given as:

fZ({zr,c}Γ) ∝ exp

− 1

T

∑
(r,c)∼(r′,c′)

φs(zr,c − zr′,c′)

 , (2)

where (r, c) ∼ (r′, c′) means summation over all distinct pairs
of horizontal and vertical neighboring pixels. The potential
function φs is an edge preserving function, which models the
strong correlation between neighboring pixels except at the
interface between distinct regions [27]. We have chosen to
focus our study on two functions that behave quadratically
near zero, while they are asymptotically linear or constant,
respectively:

φ2−1
s (x) =

√
x2 + s2 − s

φ2−0
s (x) =

x2

x2 + s2

From a modeling viewpoint, φ2−0
s has optimal edge preserving

characteristics thanks to its constant asymptotic behavior.
Therefore, on either side of an interface between two regions,
the difference between the pixel values can be arbitrarily large.
However, φ2−0

s is not a convex function. As a consequence, the
corresponding neg-log-likelihood function may be multimodal,
and local descent algorithms may converge in local mimina.
On the other hand, φ2−1

s is convex, but its edge preserving
capacity is weaker than that of φ2−0

s . Nonetheless, φ2−1
s is

better suited than a simple quadratic function, since the latter
has no edge preserving property at all.

Finally, T and s are hyper-parameters of the Markov model
related to the real scene z. Parameter s is a threshold between
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the quadratic behavior of the potential functions near zero, and
the asymptotic one, whereas T is a scale parameter. Hyper-
parameter tuning is discussed in Section III-D.

B. A priori model for the parameters
In an ideal case (i.e., image acquisition with no striping

effect), the observed image w should be equal to the real
scene z, which means that:

(gc, oc) = (1, 0), ∀ c ∈ ΓC . (3)

Considering an effective absolute radiometric calibration of
the instrument, we can assume that the global radiometry of
the image is preserved. Therefore, as E[zr,c] = E[gc] E[wr,c]+
E[oc], it seems natural to consider that the gains have a unitary
mean, and the offsets are zero-mean:

1

C

C∑
c=1

gc = 1,
1

C

C∑
c=1

oc = 0. (4)

In addition, let us assume that the parameters g and o are
mutually independent and identically distributed according to
Gaussian prior distributions:

∀c, gc ∼ N (1, σ2
g), oc ∼ N (0, σ2

o) (5)

where σ2
g and σ2

o are the variances of gc and oc, respectively.
In the rest of the paper, we will assume that both standard

deviations σg and σo are known. In practice, it is reasonable to
consider that at least their order of magnitude can be deduced
from informations resulting from the prelaunch phase or from
previous on-flight calibrations.

C. MAP estimator
Using the probabilistic models presented above, and ac-

cording to the Bayes rule, one can calculate the posterior
distribution of the parameters given the data:

f(g,o|w) = f(w|g,o)f(g)f(o)/f(w), (6)

where the likelihood term can be deduced from (2), with a
simple change of variable:

f(w|g,o) ∝
R∏
r=1

C∏
c=1

|gc| fZ(gcwr,c − oc). (7)

The proposed MAP estimator minimizes the anti-log posterior
density (under the constraints (4)), which is equal to (up to an
additional constant):

J(g,o) = Q(g,o) + J0(g,o) + J1(g) (8)

where

Q(g,o) = λg

C∑
c=1

(gc − 1)2 + λo

C∑
c=1

o2
c

with λg = 1
2σ2

g
and λo = 1

2σ2
o

, and

J0(g,o) =
1

T

R∑
r=1

C−1∑
c=1

φs(gcwr,c − gc+1wr,c+1 − oc + oc+1),

J1(g) =
1

T

R−1∑
r=1

C∑
c=1

φs(gc(wr,c − wr+1,c))−R
C∑
c=1

log |gc|.

Moreover, it is easy to show that the solution to this optimiza-
tion problem always satisfies

∑
c oc = 0. Thus, regarding the

constraints (4), only the constraint on the gains
∑
c gc = C is

relevant in the optimization process.

III. OPTIMIZATION

It is possible to recast the linearly constrained problem as
an unconstrained one [28, Chap. 11]. As a consequence, a
gradient based method such as the preconditioned conjugate
gradient (PCG) algorithm can be used to minimize the cost
function (8) under the constraint

∑
c gc = C. However, a

specificity of (8) is the presence of a logarithmic barrier,
which makes it difficult to design an efficient preconditioning
scheme. In practice, we selected a diagonal preconditioner,
among other choices. However, the resulting algorithm has
a slow convergence compared to the calibration method pro-
posed in [25], by at least one order of magnitude (see the
numerical validation in § III-C).

As an alternative, the next two subsections introduce a
simplified version of the cost function where the barrier term
is removed, and an associated algorithm that is substantially
faster.

A. Cost function simplification

Several tests on a PLEIADES-type simulated image
database have shown that the contribution of term J1 (and
more specifically, on the barrier term) has a negligible influ-
ence on the constrained minimizer of J (see the numerical
validation in § III-C). Such an empirical observation can be
explained by two elements:

• The gain parameter is assumed constant along each
column, so the first term of J1 has small variations,
and brings a limited amount of information on the gain
parameter itself.

• As far as the gain parameters have limited variations
around 1, the logarithmic shape of the second term of
J1 can be ignored.

As a consequence, let us define a simplified minimization
problem as:

min
g,o

K(g,o) s.t.
∑
c

gc = C (9)

where

K(g,o) = Q(g,o) + J0(g,o). (10)

Simpler algorithms can now be considered to solve prob-
lem (9). A natural choice is to rely on an Iterative Re-weighted
Least Squares (IRLS) scheme. Compared with other descent
algorithms, IRLS algorithms are easy to implement since only
a linear system is solved at each iteration, and no step-size
tuning is required. Furthermore, as shown below, the linear
constraint can be taken into account in a simple and direct
way.



4

B. A constrained IRLS algorithm

IRLS is a Majorize-Minimize (MM) algorithm, i.e., an
iterative minimization scheme where at each iteration, the
minimization of the original objective function is replaced by
that of a majorizing approximation [29]. MM iterations ensure
that the objective function is always descending towards a
(possibly local) minimum. Within the wide family of MM
algorithms, IRLS have the specificity to rely on a quadratic
majorizer.

Let us denote x = [gt,ot]t, so that the objective function
(10) can be written in a more compact form:

K(x) = Q(x) +
1

T

∑
r,c

φs([V
t
rx

(k)]c), (11)

where

Q(x) = xtQx− 2λge
tx, (12)

Q = diag {λg, . . . , λg, λo, . . . , λo} ,

Vr =

[
V1
r

V2
r

]
, e =

[
1[C×1]

0[C×1]

]
,

V1
r and V2

r being C × C − 1 matrices1:

V1
r = diag0{wr,1, . . . , wr,C−1} − diag−1{wr,2, . . . , wr,C}

V2
r = −diag0{1, . . . , 1}+ diag−1{1, . . . , 1}.

Moreover, the gain normalization constraint reads etx = C.
In Appendix A, we derive the following constrained IRLS

algorithm to solve the minimization problem (9). The algo-
rithm alternately updates auxiliary variables t(k)

r,c , and solves a
linear system to get the next iterate x(k+1):

t(k)
r,c =

φ′s([V
t
rx

(k)]c)

2[Vt
rx

(k)]c
, (13)

x(k+1) =
C(B(k))−1e

et(B(k))−1e
. (14)

with

B(k) = Q +
1

T

∑
r

VrL
(k)
r Vt

r, (15)

L(k)
r = diag

{
t(k)
r,c

}
c∈ΓC−1

. (16)

Furthermore, matrices B(k) are block-tridiagonal, which
makes the linear system easier to solve. For more details on
the construction of matrices B(k), the reader may refer to
Appendix B. The proposed SAD method identifies with the
constrained IRLS algorithm (13)-(14).

Let us mention that (9) is a convex programming problem if
function φs is convex. In such a case, the proposed constrained
IRLS is ensured to converge to the global solution. As stated
before, function φ2−1

s is convex.
In contrast, function φ2−0

s allows to model the high dynamic
variations more accurately, but at the price of loosing convex-
ity. As a consequence, local solutions may exist, and then the
constrained IRLS (as any other local descent algorithm) may

1For any positive integer n, diagn (respectively, diag−n) defines a matrix
by its nth diagonal above (resp., below) the main diagonal, all other entries
being zero. In the diagonal case, diag0 = diag.

be trapped in one of them. Nevertheless, we have empirically
observed that the algorithm always converges to the same
solution if initialized near the point (gc, oc) = (1, 0), ∀c ∈ ΓC .

C. Numerical validation

Here, we illustrate the behavior of the proposed SAD
method with an experiment using two large-size PLEIADES-
type test images, corresponding to two different types of
observed scenes (of size 4000×2000). In particular, test image
(A) has more intensity variations and texture compared to test
image (B), which has mainly smooth and uniform regions.
Examples are given in Fig. 1 under the form of two snapshots
of dimensions reduced to 200 × 200, for the sake of display
quality. Then, from a generated set of gains and offset we have
artificially simulated the striping effect according to model (1).

The purpose of this experiment is twofold. On the one hand,
is to assess the effect of the cost function simplification on the
quality of the calibration of the image and the computational
time (CT). On the other hand, the proposed SAD method is
compared to the minimization of (8) by PCG, and to the SLD
method presented in [25]. In order to quantify the quality of
the calibrated images we rely on several indexes including the
Structural Similarity Index (SSIM) [30], which measures the
degradation of image structures, and the Peak Signal to Noise
Ratio (PSNR):

PSNRdB = 20 log10

(
Imax

RMSE

)
,

which is related to the ratio between the maximum intensity of
the image and the root mean squared error (RMSE) between
the original image and the calibrated one. For both potential
functions φ2−0

s and φ2−1
s , Fig. 2 gives the PSNR of the

calibrated image and the computational cost of PCG and of
SAD, compared to the performance of the gain correction
with SLD, for several values of σo. Note that plotting the
SSIM instead of the PSNR would lead to the very same
conclusions. Such an additional figure is omitted here, for
the sake of brevity. For PCG and SAD, hyper-parameters
were set in an unsupervised way (see § III-D for a discussion
on unsupervised estimation), while for the gain correction
with SLD, we selected the optimal hyper-parameters using a
grid-search method. Indeed, the selection of empirical values
discussed in [25] for SLD does not apply to PLEIADES-type
images.

For function φ2−1
s , the calibration quality is almost identical

for PCG and SLD (with a deviation of at most 0.04 dB in terms
of PSNR), regardless of the value of σo. The same observation
holds for φ2−0

s when the variance of the offsets is small (σo ≤
1). However, for large values of σo, minimizing J with PCG
becomes troublesome and provides poor calibration results, as
it tends to get stuck in local minima. On the contrary, SAD
remains robust in all cases. Moreover, SAD is approximately
four times faster than PCG in the tested cases, while being
approximately two to three times slower than SLD.

Additionally, for large values of σo, affine correction using
SAD provides better results than gain correction using SLD.
Obviously, this result is expected since the latter does not
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Test image A Test image B
(a) Reference (b) Simulated (g) Reference (h) Simulated

(c) SLD with φ2−1
s (d) SLD with φ2−0

s (i) SLD with φ2−1
s (j) SLD with φ2−0

s

(e) SAD with φ2−1
s (f) SAD with φ2−0

s (k) SAD with φ2−1
s (l) SAD with φ2−0

s

Fig. 1: Calibration results on PLEIADES-type simulated images of size 4000 × 2000. 200 × 200 snapshots of: (a), (g) the
reference images, (b), (h) simulated images with the striping effect (with σg = 2 × 10−3 and σo = 29), (c), (i) and (d), (j):
calibrated images using SLD for φ2−1

s and φ2−0
s , respectively, (e), (k) and (f), (l): same with SAD.

account for offsets. However, for σo � 1 (i.e., when the offsets
can be considered negligible), the new SAD method still pro-
vides as reliable calibrations as SLD [25], which stresses the
efficiency of the proposed hyper-parameter proposed below.

Fig. 1 provides a visual comparison of the calibration results
between SLD and SAD (second and third rows, respectively)
for both test images A and B and potential functions φ2−1

s and
φ2−0
s . SLD clearly fails to remove the stripes on test image B,

whatever the potential function. The correction with SLD is
more effective on test image A, but residual stripes can still be
observed when zooming in on the circled areas. On the other
hand, SAD provides very satisfactory results since the striping
effect is no more visible, regardless of the potential function.

D. Hyper-parameter tuning

In order to achieve unsupervised calibration of the image,
the hyper-parameters T and s of the SAD method need to
be tuned. In a simulated context, where one has access to
the ground truth, it is possible to acquire some empirical

knowledge about the optimal parameter values given some real
dataw. The training strategy adopted here consisted of making
use of a database of 60 PLEIADES-type images to perform
an empirical analysis of the optimal hyper-parameters T̂ and
ŝ in the sense of the reached PSNR, over a predefined grid of
(T, s) values. From the obtained empirical results, we could
deduce the following empirical rules:

• For φ2−1
s , set s2 = 0.1, which is a very low value, rela-

tively to the amplitude of the images coded in [0, 4095],
which amounts to select a version of φ2−1

s that is closed
to φ1(x) = |x|. On the other hand, set T = (cδws)

−1,
where cδw is the curvature at the origin of the log-
histogram of the column-wise gradient image:

δw = {δwr,c = wr,c − wr,c+1, (r, c) ∈ ΓR × ΓC−1} .

• For φ2−0
s , set s2 = σδw and

T = log

(
2

cδwσδw

)
,
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Test image A Test image B
φ2−1
s φ2−0

s φ2−1
s φ2−0

s

PS
N

R
(d

B
)

C
T

(s
)

σo σo σo σo

Fig. 2: Calibration results on PLEIADES-type simulated images of size 4000× 2000. First row: PSNR of the calibrated image
w.r.t. σo. Second row: time in seconds for each algorithm to converge.

where σδw is the empirical standard deviation of δw.
Fig. 3 summarizes the results of the experiment for both

potential functions. For each image, the PSNR evaluated after
an unsupervised calibration (using the empirical rules above)
is plotted against the PSNR evaluated after a supervised
calibration (best result obtained using grid-search). For φ2−0

s ,
all the points lie around the diagonal line, meaning that the
calibration results are almost identical with a degradation
of approximately 1 dB, at most. The same observations pre-
dominantly hold for φ2−1

s , with a few exceptions for which
the mismatch is larger. Note that in some cases, supervision
provided poorer results, which is due to the fact a relatively
coarse grid of (T, s) values was used.

E. Noise robustness analysis

In practice, in addition to the striping effect, the observed
images can be affected by noise. Hereafter, we provide a ro-
bustness analysis of SAD, assuming that a standard denoising
procedure can be achieved posterior to calibration.

As long as the noise is considered additive, we do not expect
it to strongly degrade the precision of statistical calibration.
In particular, for high resolution images with a large number
of rows, one can still get robust estimation of the calibration
parameter from averaged data over subsets of rows, as the
affine model (1) remains valid:

1

L

L−1∑
`=0

zr+`,c = gc
1

L

L−1∑
`=0

wr+`,c − oc (17)

Our objective here is to evaluate the effect of noise on the
estimation of gain and offset calibration parameters, without
considering any denoising process, apart from the averaging
step (17). Thus, we propose to compare the results after a

calibration using parameters estimated from noisy images with
an optimal calibration of the noisy images using ground-truth
parameter values. We conducted an experiment over a database
of 30 PLEIADES-type simulated images, with additive, zero-
mean, independent noise distributed according to a Gaussian
distribution:

nr,c ∼ N (0, awr,c + b),

where a = 0.007 and b = 0.2, are instrument dependent
values, that were estimated during the prelaunch calibration
phase. Fig. 4 summarizes the comparison in terms of PSNR
values. When calibration parameters are deduced from the
noisy images, we have empirically set L = 20. We notice
that almost all the points lie slightly underneath the diagonal
line, with a deviation around 1.5 dB at most, which shows the
robustness of the calibration in a noisy setting.

F. Real data experiment

In a complementary way to the previous numerical val-
idations, we have performed a calibration experiment on a
real data set. For this purpose, we have used a 3000 × 3000
SPOT4 (Satellite Pour l’Observation de la Terre) image. Fig. 5
provides a 200 × 200 snapshot of a real image along with
the calibration results provided by SAD and SLD. It is worth
mentioning that for SAD, hyper-parameters (T, s) were set
in an unsupervised way using the proposed empirical rules
in § III-D. Whereas for SLD, the parameters were chosen
based on the empirical discussion provided in [25, §VI-A].
Furthermore, parameters σg and σo were set empirically by
an expert. The ground truth is not know, but the improvement
given by SAD over SLD is obvious for φ2−1

s . Such an
improvement can also be observed for φ2−0

s by zooming on
the circled area as it appears that there are still stripes for SLD.
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Fig. 3: Hyper-parameter tuning experiment for (a) φ2−1 and
(b) φ2−0. Comparison of the PSNR evaluated after unsuper-
vised calibration using empirical rules (y-axis), with PSNR
evaluated after supervised calibration using grid-search (x-
axis). The dashed line represents a degradation of 1 dB.

Such results stress both the efficiency of the proposed method
and the robustness of our hyper-parameter tuning rules.

IV. ACCOUNTING FOR ATYPICAL COLUMNS

In cases where the behavior of some detectors has become
pathological, images must be calibrated despite the fact that
they present some atypical columns, corresponding to de-
tectors with gain and offset values much further away from
the reference than the standard deviation. The proposed SAD
method can be easily adapted to account for such atypical
columns. Fig. 6(b) depicts a simulated example of an image
incorporating atypical columns. Even if atypical columns
represent a small proportion of the image, they can strongly
perturb the whole calibration process, if not taken care of.
Hereafter, we show that the proposed method allows us to
handle such outliers in a simple way.

A first possibility could be to simply remove these columns.
However, this is a suboptimal solution since it would distort
the distance between pixels, with an uncontrolled impact on
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Fig. 4: PSNR obtained after calibrating the noisy images using
the proposed method, compared to the PSNR obtained after
perfect calibration. The dashed line represents a degradation
of 1 dB.

the Markov probability density (2). In order to take into
account that atypical columns have been produced by detectors
for which the gain and the offset take arbitrarily values, we
simply consider that the standard deviations of the calibration
parameters are very large for the set E of atypical columns:

∀c ∈ E, gc ∼ N (1, η2
g), oc ∼ N (0, η2

o),

with ηg � σg and ηo � σo, while the prior given by (5)
remains valid for regular columns. Note that this only impacts
the penalization term Q of the objective function, the atypical
parameters being less regularized than the others. For the sake
of simplicity, we will consider the limit case where η2

g →∞
and η2

o →∞, i.e., atypical parameters will not be penalized at
all. Finally, we consider that the gain normalization constraint
must be restricted to the set of regular detectors.

It is straightforward to adapt the IRLS algorithm of Sec-
tion III-B to the new situation. Indeed, Eqs (13)-(16) remain
valid, provided that quantities Q, e, and C are replaced by
Q̃ = UQ, ẽ = Ue, and C̃, respectively, with U = diag{u},
u = (uc)ΓC

,

uc =

{
0 if c ∈ E,
1 if c /∈ E,

C̃ being the number of regular columns. Note that such
modifications have a negligible impact on the computation
cost. We will refer to the resulting version of SAD as SAD-
AC.

Fig. 6 illustrates the calibration results for a test image
simulated with two adjacent atypical columns. Let us stress
that the striping effect affects the whole image, which is hardly
visible because of the atypical columns. Regardless of the
potential function, the simulation results of Table I show that
SAD-AC substantially improves the performance of calibration
both in terms of PSNR and SSIM. However, Table I also shows
that SAD-AC requires more iterations than SAD. According
to our tests, this is due to the under regularization of the
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(a) Corrupted Image (b) SLD with φ2−1
s (c) SLD with φ2−0

s

(d) SAD with φ2−1
s (e) SAD with φ2−0

s

Fig. 5: Calibration results on a SPOT4 real image of size 3000×3000. 200×200 snapshots of: (a) SPOT4 image with vertical
striping, (b) and (c): calibrated images using SLD for φ2−1

s and φ2−0
s , respectively, (d) and (e): same with SAD.

atypical calibration parameters. Indeed, after the 20th iteration,
the remaining ones only apply to atypical columns and the
neighboring ones. Therefore, it would be possible to restrict
the additional updates to a reduced set of colums, and thus to
strongly limit the extra computing time.

TABLE I: Calibration results for the simulated PLEIADES
images of Fig. 6 with atypical columns using SAD, and the
adapted method for atypical columns SAD-AC.

φs Method PSNRdB SSIM Nit CT (s)

φ2−1
s

SAD 69.7054 0.996 12 6.9700
SAD-AC 82.2139 0.9994 21 12.5500

φ2−0
s

SAD 64.0101 0.9948 18 9.1200
SAD-AC 83.4399 0.9996 82 41.7900

V. MULTISPECTRAL IMAGE CALIBRATION

While dealing with a multispectral image of P spectral
bands, a naive approach would be to consider a calibration
of each band independently. Indeed, it is more efficient to
calibrate these bands simultaneously, considering that they
are observing the same scene, and to exploit the correlation
between the bands. In the following, we show how the
framework based on the simplified cost function (9) can be

easily extended to the multispectral case, with almost no extra
computing cost compared to a band-wise calibration.

A. Multispectral image model and prior

Considering a multispectral image with P bands z =
{zr,c}Γ, zr,c = (zpr,c)p∈ΓP

, ΓP = {1, . . . , P}, we propose
to extend the Markov field model (2), assuming that the
homogeneous areas of the image are homogeneous in each
spectral band and that the edges share the same locations2. To
this end, we propose to the following joint probability density:

f(z) ∝ exp

− 1

T

∑
(r,c)∼(r′,c′)

φs(‖zr,c − zr′,c′‖)


where ‖ζ‖ =

√
(ζ1)2 + (ζ2)2 + · · ·+ (ζP )2 is the Euclidean

norm along the spectral dimension.
We keep the same priors for the parameters of each spectral

band, and we assume that they are mutually independent from
one band to the other:

gpc ∼ N
(
1, (σpg)2

)
, opc ∼ N

(
0, (σpo)2

)
,

2Of course, if a geometric registration step is necessary, it should be done
in a way preserving the striping effect. In particular, linear interpolation must
be avoided.
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(a) Reference (c) SAD with φ2−1
s (e) SAD with φ2−0

s

(b) Simulated (d) SAD-AC with φ2−1
s (f) SAD-AC with φ2−0

s

Fig. 6: Simulated PLEIADES-type test image B of size 4000 × 2000 with atypical columns. A 200 × 200 Snapshot of: (a)
real image, (b) simulated image with two outliers columns, (c) & (e) calibration with the standard SAD method, (d) & (f)
calibration with SAD-AC.
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Fig. 7: Multispectral PLEIADES-type images of size 10000 × 2500: 200 × 200 snapshots of the four spectral bands of test
images C and D

where gpc (resp. opc ) is a gain (resp., offset) parameter associ-
ated to column c and spectral band p. This also implies that
the constraints are defined on each spectral band separately:
∀p, 1

C

∑
c g

p
c = 1.

B. Optimization

Let g = (gpc )ΓC×ΓP
and o = (opc)ΓC×ΓP

. The MAP
estimator of (g,o) is the minimizer of the following cost
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function:

K(g,o) =
1

T

∑
r,c

φs (‖δr,c‖) +
∑
c,p

(
λpg(g

p
c − 1)2 + λpo(o

p
c)

2
)

(18)

with λpg = 1
2(σp

g )2
, λpo = 1

2(σp
o)2

, and

‖δr,c‖2 =
∑
p

(
gpcw

p
r,c − g

p
c+1w

p
r,c+1 − opc + opc+1

)2
,

under the P constraints:

∀p ∈ ΓP ,
1

C

∑
c

gpc = 1.

Introducing vectors xt
p =

[
gp1 , . . . , g

p
C , o

p
1, . . . , o

p
C

]t
and

x =
[
xt

1, . . . , x
t
P

]t
, the cost function (18) can be written:

K(x) =
1

T

∑
r,c

φs(‖δr,c‖) + xtQx− 2qtx (19)

where Q is a 2PC × 2PC diagonal matrix, and q a column
vector of length 2PC:

Q = diag {Q1, . . . , QP } , (20)

Qp = diag
{
λpg, . . . , λ

p
g, λ

p
o, . . . , λ

p
o

}
(21)

q =
[
λ1
ge

t, . . . , λPg e
t
]t
. (22)

On the other hand, each linear constraint reads etxp = C. As
shown in Appendix C, constrained minimization of (19) can
be obtained using a constrained IRLS algorithm according to
the following scheme:

x(k+1)
p =

C
(
B

(k)
p

)−1

e

et
(
B

(k)
p

)−1

e
, ∀p ∈ ΓP ,

where

B(k)
p = Qp +

1

T

R∑
r=1

Vp
rL

(k)
r (Vp

r)
t (23)

is the matrix associated to the pth spectral band, with

L(k)
r = diag

φ
′
s

(∥∥δ(k)
r,c

∥∥)
2
∥∥δ(k)

r,c

∥∥

c∈ΓC−1

.

From a computational perspective, the difference between
the multispectral version of SAD (SAD-MS) and standard
SAD lies only in the Majorize step of the algorithm (con-
struction of matrix B), while the Minimize step is done
independently on each spectral band in both algorithms, using
the same analytical expression. Incidentally, let us remark that
a multispectral version of SLD would be easy to develop on
the very same basis.

C. Simulation results

The calibration results based on the multispectral model are
illustrated on the two PLEIADES-type simulated images (test
images C and D) of Fig. 7 with four spectral bands each (Blue,
Green, Red and NIR).

The results, summarized in Table II, can be compared to
a simple independent calibration of the four different bands
using the standard SAD method. On the one hand, they show
that SAD-MS leads to a better calibration of test image C,
both in terms of PSNR and SSIM, regardless of the potential
function φs, and that the computing cost is almost identical
for SAD and SAD-MS. On the other hand, for test image D,
SAD-MS improves the calibration of the three first bands in
terms of PSNR only in the case of φ2−1

s , while standard SAD
does uniformly better in the case of φ2−0

s .

TABLE II: Calibration results of test images C and D using
SAD and SAD-MS. To reduce the computation cost, an
averaging of the data over subsets of L = 20 rows has been
performed, as in Subsection. III-E.

Image φs Method Band PSNRdB SSIM Nit CT (s)

C

φ2−1
s

SAD-MS

Blue 64.74 0.99940

14 5.57
Green 63.12 0.99939
Red 61.98 0.99944
NIR 59.41 0.99951

SAD

Blue 62.72 0.99871 28 1.98
Green 61.43 0.99863 30 1.99
Red 60.28 0.99878 25 1.71
NIR 57.80 0.99829 28 1.86

φ2−0
s

SAD-MS

Blue 65.88 0.99955

24 8.52
Green 64.76 0.99949
Red 63.18 0.99950
NIR 62.14 0.99952

SAD

Blue 65.07 0.99945 22 1.41
Green 63.47 0.99929 28 1.58
Red 61.41 0.99918 19 1.21
NIR 60.42 0.99932 21 1.16

D

φ2−1
s

SAD-MS

Blue 67.94 0.99927

17 28.49
Green 67.67 0.99920
Red 68.35 0.99894
NIR 51.47 0.99398

SAD

Blue 66.10 0.99824 22 7.48
Green 65.72 0.99801 23 7.87
Red 66.82 0.99775 23 7.80
NIR 57.09 0.99236 35 13.93

φ2−0
s

SAD-MS

Blue 68.53 0.99955

38 57.04
Green 68.15 0.99944
Red 69.85 0.99918
NIR 56.23 0.99509

SAD

Blue 69.51 0.99949 43 15.92
Green 68.26 0.99934 49 18.27
Red 69.87 0.99923 21 6.82
NIR 57.95 0.99434 146 46.33

In order to analyze these results further, let us evaluate the
correlation between the spectral bands using their empirical
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correlation. More precisely, let us introduce the normalized
correlation coefficient between column-wise gradient images:

Cδz(p, q) =

∑
r,c

(
δzpr,c − δz

p
)(
δzqr,c − δz

q
)

√∑
r,c

(
δzpr,c − δz

p
)2∑

r,c

(
δzqr,c − δz

q
)2

where ∀p ∈ ΓP

δzp =
{
δzpr,c = zpr,c − z

p
r,c+1, (r, c) ∈ ΓR × ΓC−1

}
,

δz
p

=
1

R(C − 1)

∑
r,c

δzpr,c

In practice we cannot compute coefficients Cδz(p, q), but only
their equivalent Cδw(p, q) computed from observed images.
However, it can be shown that if the calibration parameters
are uncorrelated from one spectral band to the other, and are
of the same mean, then Cδz(p, q) ≈ Cδw(p, q).

The correlation coefficients of the two tested images are
given in Table III. For test image C, the four spectral bands
are highly correlated. For test image D, bands Blue, Green and
Red are highly correlated, while band NIR has low correlation
coefficients with the other bands.

TABLE III: Normalized correlation coefficients of the spectral
bands of test images C and D, computed with the real images
z and the observed ones w.

Test image C
Cδz Cδw

B G R NIR
B 1 0.954 0.883 0.665
G 1 0.911 0.718
R 1 0.736

NIR 1

B G R NIR
B 1 0.862 0.807 0.606
G 1 0.848 0.657
R 1 0.686

NIR 1

Test image D
Cδz Cδw

B G R NIR
B 1 0.908 0.882 0.318
G 1 0.890 0.474
R 1 0.298

NIR 1

B G R NIR
B 1 0.752 0.759 0.277
G 1 0.810 0.434
R 1 0.283

NIR 1

Consequently, we recommend to compute correlation coef-
ficients between bands Cδw(p, q), prior to calibration, in order
to determine which groups of bands could benefit from a joint
calibration using SAD-MS.

Finally, let us mention that it is very difficult to evaluate
the improvement brought by SAD-MS over SAD by visual
inspection of the corrected image. This is because the intrinsic
efficiency of SAD being already high, stripes are neither
visible in the images corrected by SAD or by SAD-MS.

VI. CONCLUSION

This paper introduced a new unsupervised calibration
method, based on an affine detector response, for statistical
destriping of pushbroom-type images. An efficient constrained
IRLS algorithm was derived, which allows one to perform
fast calibration of high resolution, large size images. In the
case where the detector offsets are significant, the new method
based on an affine detector response is shown to provide signif-
icantly better calibration results than a previous method based

on a linear model. Furthermore, when the detector offsets can
be considered negligible, both methods provide comparable
calibration results. Moreover, the additional computing load
of the new version remains moderate. In addition, we have
proposed heuristic formulas for hyper-parameter tuning from
the observed image only, which allows us to propose an
unsupervised calibration method. The robustness to noise
was empirically demonstrated over a database of simulated
PLEIADES-type images.

Two types of extension were further considered. The first
one handles the possible presence of pathological detectors
producing atypical columns. Another extension to the mul-
tispectral case was introduced, so that joint calibration of
multiple spectral bands can be obtained. In practice, the
application of the latter is only beneficial to groups of spectral
bands with a significant level of structural correlation. We
introduced a simple way to determine such groups prior to
the calibration step.

At least two types of perspectives remain to be investi-
gated. The first one would consist in adapting the proposed
calibration method to acquisition structures that differ from
pushbroom linear arrays of detectors. For instance, whiskb-
room instruments make use of a reduced set of detectors, and
they generate stripes with a periodic assignment between the
detectors and the acquired lines. The proposed method could
be modified to take such a geometry into account.

On the other hand, an extension from the multispectral
case to hyperspectral instruments is an important perspective.
A first possibility would be to still measure the correlation
between bands and to consider groups of bands accordingly.
Another possibility would be to correlate neighboring bands in
a systematic way thanks to a Markov chain model, up to suited
modifications of the proposed method. In both cases, special
attention will be needed to the computing effort, given the
potentially huge size of hyperspectral cubes. In this regard,
let us stress that the proposed method already exploits the
structured sparse character of the calibration problem through
the block-tridiagonal structure of matrices, which naturally
offers good possibilities of parallel implementations. The latter
should be further examined to limit the computing time of an
extension to the calibration of hyperspectral instruments.

APPENDIX

A. Constrained IRLS Algorithm

To construct a quadratic majorizing approximation of the
cost function (11), we adopt the so-called half-quadratic
framework, akin to [25], [27], [31]. In particular, under specific
conditions on φs(x), there exists a function ψ(t) such that

φs(x) = inf
t
φ∗s(x, t) (24)

where
φ∗s(x, t) = x2t+ ψ(t). (25)

Moreover, as a function of t, φ∗s(x, t) is convex for any value
of x, and its minimizer t∗ reads

arg min
t

φ∗s(x, t) =
φ′s(x)

2x
, (26)
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where φ′s stands for the first derivative of φs.
As a consequence of (24)-(26), we can build a quadratic

majorizing approximation of (11) at any point x(0) as

L
(
x,x(0)

)
= Q(x)+

1

T

∑
r,c

(
t(0)
r,c ([Vt

rx]c)
2 + ψ(tr,c)

)
(27)

where

t(0)
r,c = arg min

t
φ∗s

([
Vt
rx

(0)
]
c
, t
)

=
φ′s(
[
Vt
rx

(0)
]
c
)

2
[
Vt
rx

(0)
]
c

.

Furthermore, it is straightforward to check that L(x,x(0)) also
reads:

L(x,x(0)) = xtB(0)x− 2λge
tx+

1

T

∑
r,c

ψ(t(0)
r,c )

where

B(0) = Q +
1

T

∑
r

VrL
(0)
r Vt

r,

L(0)
r = diag

{
t(0)
r,c

}
c∈ΓC−1

.

As a consequence, the unconstrained minimizer of L(x,x(0))

w.r.t. x reads λg
(
B(0)

)−1
e. Unconstrained IRLS algorithms

make use of the latter expression to update the current point
x(0).

Here, our goal is to take the constraint etx = C into account
in the IRLS framework. Our proposition is simply to leave the
quadratic majorizer (27) unchanged, and to replace its uncon-
strained minimization by a constrained version. Minimization
of a quadratic objective function under a linear constraint is a
mathematically simple problem. Let the Lagrangian be defined
as

L(x,x(0), µ) = L(x,x(0))− µ(etx− C)

where µ is the Lagrange multiplier. Cancelling the derivative
w.r.t. x yields:

x(µ) =
(
λg +

µ

2

) (
B(0)

)−1
e. (28)

Then, it is possible to determine the Lagrange parameter value
µ∗ so that etx(µ∗) = C holds:

µ∗ =
2C

et(B(0))−1e
− 2λg,

so we get the following expression for the constrained IRLS
update:

x(1) = arg min
x

L(x, µ∗) =
C(B(0))−1e

et(B(0))−1e
. (29)

B. Sparse implementation

Given the sparse structure of matrices Vr, matrix

B = Q +
1

T

∑
r

VrLrV
t
r

can be efficiently encoded as follows. Indeed, matrix B is
block-tridiagonal, and we can define each block separately:

B =

[
M1 M2

Mt
2 M3

]
,

where M1, M2 and M3 are tridiagonal matrices, M1 and M3

being also symmetric.
Let us denote � the element-wise vector multiplication, and

tr = [tr,1, tr,2, . . . , tr,C−1],

t+r = [tr,1, tr,2, . . . , tr,C−1, 0],

tr+ = [0, tr,1, . . . , tr,C−2, tr,C−1],

wr = [wr,1, wr,2, . . . , wr,C−1, wr,C ],

w−r = [wr,2, wr,3, wr,4, . . . , wr,C ],

wr− = [wr,1, wr,2, wr,3, . . . , wr,C−1].

Then we have

M1 =
1

T
diag0

{∑
r

(wr �wr)� (t+r + tr−) + λg

}
− 1

T
diag1

{∑
r

(wr− �w−r � tr)
}
,

− 1

T
diag−1

{∑
r

(wr− �w−r � tr)
}
,

M3 =
1

T
diag0

{∑
r

(t+r + tr+) + λo

}
− 1

T
diag1

{∑
r

tr

}
,

− 1

T
diag−1

{∑
r

tr

}
,

M2 =− 1

T
diag0

{∑
r

wr � (t+r + tr+)

}
,

+
1

T
diag1

{∑
r

wr− � tr
}

+
1

T
diag−1

{∑
r

w−r � tr
}
.

C. Constrained multispectral algorithm

In the multispectral case, (27) becomes

L
(
x,x(0)

)
= xtQx− 2qtx+

∑
r,c

(
t(0)
r,c ‖δr,c‖

2
+ ψ

(
t(0)
r,c

))
= xtB

(0)
x− 2qtx+

∑
r,c

ψ
(
t(0)
r,c

)
where

t(0)
r,c =

φ′s
(∥∥δ(0)

r,c

∥∥)
2
∥∥δ(0)

r,c

∥∥
and B

(0)
is a 2PC × 2PC block-diagonal matrix defined as:

B
(0)

= diag
{
B

(0)
1 , . . . , B

(0)
P

}
,

each B
(0)
p corresponding to the p-th spectral band defined in

(23).
As mentioned before, each of the P spectral channels

induces an equality constraint

etxp = et
px = C,
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where ep is a 2PC × 1 vector composed of P vectors of size
2C×1, all of which being zero vectors except the p-th, which
is equal to e. Again, let us write the augmented Lagrangian:

L(x,x(0),µ) = L
(
x,x(0)

)
−

P∑
p

µp
(
et
px− C

)
(30)

with µp the Lagrange parameters. By cancelling the derivative
of the Lagrangian w.r.t. x, we get:

2B
(0)
x− 2q −

P∑
p=1

µpep = 0 (31)

where

q =

P∑
p=1

λpgep

according to (22). Finally, (31) is yields:

∀p ∈ ΓP , xp(µp) =
(
λpg +

µp
2

) (
B(0)
p

)−1
e

which generalizes (28). Once again, it is possible to determine
the Lagrange parameter values µ∗p so that etxp(µ

∗) = C,
and we get the following expression for the constrained IRLS
update in the multispectral case:

∀p ∈ ΓP , x(1)
p =

C
(
B

(0)
p

)−1

e

et
(
B

(0)
p

)−1

e
.

REFERENCES

[1] Y. Chang, M. Chen, L. Yan, X.-L. Zhao, Y. Li, and S. Zhong, “Toward
universal stripe removal via wavelet-based deep convolutional neural net-
work,” IEEE Transactions on Geoscience and Remote Sensing, vol. 58,
no. 4, pp. 2880–2897, Dec. 2020.

[2] J.-J. Pan and C.-I. Chang, “Destriping of landsat MSS images by filtering
techniques,” Photogrammetric engineering and remote sensing, vol. 58,
pp. 1417–1417, Oct. 1992.

[3] B. Zhao, B. He, and Y. Cong, “Destriping method using lifting wavelet
transform of remote sensing image,” in 2010 International Conference
on Computer, Mechatronics, Control and Electronic Engineering, vol. 6.
IEEE, Aug. 2010, pp. 110–113.

[4] B. Munch, P. Trtik, F. Marone, and M. Stampanoni, “Stripe and
ring artifact removal with combined wavelet-Fourier filtering,” Optics
Express, vol. 17, no. 10, p. 8567, May 2009.

[5] R. E. Crippen, “A simple spatial filtering routine for the cosmetic
removal of scan-line noise from Landsat TM P-tape imagery,” Pho-
togrammetric Engineering, p. 5, Mar. 1989.

[6] D. L. Helder, “A technique for the reduction of banding in Landsat the-
matic mapper images,” Photogrammetric Engineering, vol. 58, no. 10,
pp. 1425–1431, Oct. 1992.

[7] J. Simpson, “Improved destriping of GOES images using finite impulse
response filters,” Remote Sensing of Environment, vol. 52, no. 1, pp.
15–35, Apr. 1995.

[8] X. Liu, X. Lu, H. Shen, Q. Yuan, Y. Jiao, and L. Zhang, “Stripe noise
separation and removal in remote sensing images by consideration of
the global sparsity and local variational properties,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 54, no. 5, pp. 3049–3060, Jan.
2016.

[9] Y. Chen, T.-Z. Huang, X.-L. Zhao, L.-J. Deng, and J. Huang, “Stripe
noise removal of remote sensing images by total variation regularization
and group sparsity constraint,” Remote Sensing, vol. 9, no. 6, p. 559,
Jun. 2017.

[10] H. Zhang, W. He, L. Zhang, H. Shen, and Q. Yuan, “Hyperspectral
image restoration using low-rank matrix recovery,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 52, no. 8, pp. 4729–4743, Aug.
2014.

[11] Y. Chang, L. Yan, T. Wu, and S. Zhong, “Remote sensing image
stripe noise removal: From image decomposition perspective,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 54, no. 12, pp.
7018–7031, Dec. 2016.

[12] W. Cao, Y. Chang, G. Han, and J. Li, “Destriping remote sensing
image via low-rank approximation and nonlocal total variation,” IEEE
Geoscience and Remote Sensing Letters, vol. 15, no. 6, pp. 848–852,
Mar. 2018.

[13] M. Bouali and S. Ladjal, “Toward optimal destriping of modis data using
a unidirectional variational model,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 49, no. 8, pp. 2924–2935, Apr. 2011.

[14] Y. Chang, H. Fang, L. Yan, and H. Liu, “Robust destriping method
with unidirectional total variation and framelet regularization,” Optics
Express, vol. 21, no. 20, pp. 23 307–23 323, Oct. 2013.

[15] X. Liu, H. Shen, Q. Yuan, X. Lu, and C. Zhou, “A universal destriping
framework combining 1-D and 2-D variational optimization methods,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 2,
pp. 808–822, Feb. 2018.

[16] X. Kuang, X. Sui, Q. Chen, and G. Gu, “Single infrared image stripe
noise removal using deep convolutional networks,” IEEE Photonics
Journal, vol. 9, no. 4, pp. 1–13, Aug. 2017.

[17] Y. Chang, L. Yan, H. Fang, S. Zhong, and W. Liao, “HSI-DeNet:
Hyperspectral image restoration via convolutional neural network,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 57, no. 2, pp.
667–682, Feb. 2019.

[18] Y. Chen, T.-Z. Huang, and X.-L. Zhao, “Destriping of multispectral
remote sensing image using low-rank tensor decomposition,” IEEE
Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, vol. 11, no. 12, pp. 4950–4967, Dec. 2018.

[19] V. Algazi and G. E. Ford, “Radiometric equalization of nonperiodic
striping in satellite data,” Computer Graphics and Image Processing,
vol. 16, no. 3, pp. 287–295, Jul. 1981.

[20] B. Cao, Y. Du, D. Xu, H. Li, and Q. Liu, “An improved histogram
matching algorithm for the removal of striping noise in optical remote
sensing imagery,” Optik, vol. 126, no. 23, pp. 4723–4730, Dec. 2015.

[21] G. Corsini, M. Diani, and T. Walzel, “Striping removal in MOS-B data,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 38, no. 3,
pp. 1439–1446, May 2000.

[22] F. L. Gadallah, F. Csillag, and E. J. M. Smith, “Destriping multisensor
imagery with moment matching,” International Journal of Remote
Sensing, vol. 21, no. 12, pp. 2505–2511, Jan. 2000.

[23] B. K. Horn and R. J. Woodham, “Destriping LANDSAT MSS images
by histogram modification,” Computer Graphics and Image Processing,
vol. 10, no. 1, pp. 69–83, May 1979.

[24] P. Rakwatin, W. Takeuchi, and Y. Yasuoka, “Stripe noise reduction in
MODIS data by combining histogram matching with facet filter,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 45, no. 6, pp.
1844–1856, Jun. 2007.

[25] H. Carfantan and J. Idier, “Statistical linear destriping of satellite-based
pushbroom-type images,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 48, no. 4, pp. 1860–1871, Apr. 2010.

[26] V. Martin, G. Blanchet, P. Kubik, S. Lacherade, C. Latry, L. Lebegue,
F. Lenoir, and F. Porez-Nadal, “PLEIADES-HR 1A&1B image quality
commissioning: innovative radiometric calibration methods and results,”
in Earth Observing Systems XVIII, vol. 886610. San Diego, CA, USA:
SPIE, Sep. 2013, pp. 304 – 314.

[27] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, “Deter-
ministic edge-preserving regularization in computed imaging,” IEEE
Transactions on Image Processing, vol. 6, no. 2, pp. 298–311, Feb.
1997.

[28] R. Fletcher, Practical Methods of Optimization, 2nd ed. New York,
NY, USA: John Wiley & Sons, 1987.

[29] D. R. Hunter and K. Lange, “A tutorial on MM algorithms,” The
American Statistician, vol. 58, no. 1, pp. 30–37, Feb. 2004.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: from error visibility to structural similarity,” IEEE
transactions on image processing, vol. 13, no. 4, pp. 600–612, Apr.
2004.

[31] J. Idier, “Convex half-quadratic criteria and interacting auxiliary vari-
ables for image restoration,” IEEE Transactions on Image Processing,
vol. 10, no. 7, pp. 1001–1009, Jul. 2001.


