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ABSTRACT:

Machine learning algorithms demonstrated promising results for hyperspectral semantic segmentation. However, they strongly rely
on the quality of training datasets. As far as the annotation of hyperspectral images is often expensive and time-consuming, only a
few thousand pixels can be labeled. In this context, active learning algorithms select the most informative pixels to be labeled. In
the machine learning community, recent active learning methods have overcome the performance of conventional algorithms but do
not always scale to large remote sensing images. Therefore, we introduce in this paper a preprocessing method that allows the use
of computationally intensive active learning algorithms without significant impacts on their effectiveness.

1. INTRODUCTION

Airborne hyperspectral imaging with high spectral and spatial
resolutions is well suited to map the land cover of urban areas.
Applications of land cover maps include the mitigation of urban
heat island effects (Zhou et al., 2017) or urban management
(Fox et al., 2012). Many machine learning models have been
developed to automatically segment hyperspectral images and
have demonstrated interesting results (Audebert et al., 2019).
However, the diversity of soil materials, the spectral intra-class
variabilities, the inter-class similarities, the presence of shad-
ows or of small irrelevant objects (cf fig. 1a) typically hinder
the use of machine learning models to large and complex im-
ages.

In order to further simplify the automation of land cover map-
ping with machine learning models, representative training
datasets are crucial. Therefore, building an optimal training
dataset is a critical step. Labeling hyperspectral images, though,
is often hard and expensive. Field campaigns, alongside time-
consuming photo-interpretation by experts, can be necessary.
Thus, the annotation of images is often limited to a few thou-
sand pixels.

In this context, active learning (AL) methods guide the data an-
notation, answering the following question: out of millions of
pixels, which ones to annotate to quickly improve classifica-
tion performances? Active learning methods are iterative al-
gorithms that select at each step the most informative samples
to be labeled, given an initial training dataset and a classifier
(Settles, 2012). An oracle (a user) then labels the given pixels
that are added to the training dataset. Many strategies have been
developed (Tuia et al., 2011) with various computational re-
quirements. Recently, (Sener and Savarese, 2017) tackled the
active learning problem as a coreset problem, showing very
high performance on several state-of-the-art machine learning
datasets. However, it does not scale to larger hyperspectral data-
sets such as the Houston image (Prasad et al., 2020), because of
its high memory footprint and computational burden.
∗ Corresponding author: romain.thoreau@onera.fr

Thus, we introduce in the present paper a preprocessing method
that allows the use of such computationally intensive active
learning algorithms on large hyperspectral scenes, without sig-
nificant loss of effectiveness. The paper is organized as fol-
lows. In section 2, we describe the active learning framework
and present our preprocessing method. In section 3, we present
the results of our numerical experiments. Finally, we discuss
the results and conclude in section 4.

2. METHOD

2.1 Active Learning Framework

First, we rigorously describe the active learning framework. We
denote the reflectance spectrum of one pixel by s ∈ S = [0, 1]B

and its class y ∈ {1, ..., c} where B is the number of spectral
bands and c is the number of classes. The active learning al-
gorithm is defined by a number of steps Nsteps, a budget b of
pixels to be labeled at each step and an acquisition function
a : Sb −→ R that takes as input a subset of b pixels and meas-
ures how much information its annotation brings.

The active learning process (Settles, 2012) works as follows.
From a dataset S = (si)i∈(1,...,N) of N pixels, an initial train-
ing dataset L0 = (S0, Y0) = (si, yi)i∈(1,...,N0) is manually
labeled. Then, at each step t, b unlabeled pixels {s∗1, ..., s∗b} are
queried from the current unlabeled pool Ut = S\St so that the
acquisition function a is maximized. The acquisition function
is parametrized by the labeled and unlabeled dataset, Lt and
Ut. Then, an oracle provides the true labels {y1, ..., yb}. In this
paper, we keep the acquisition function as a black box.

2.2 Data preprocessing: computational cost reduction

To deal with large datasets, we introduce a preprocessing
method that relies on the segmentation of the image in super-
pixels. The most informative superpixels are selected. Then,
a subset of randomly drawn pixels within these superpixels are
labeled and added to the training dataset. To perform the im-
age segmentation, we chose the SLIC algorithm (Achanta et al.,
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(a) RGB composition of a subset of the Houston
hyperspectral image

(b) 5000 regions

(c) 10000 regions (d) 25000 regions

Figure 1. Visualization of different SLIC segmentations (using the first three components of a PCA) on a Houston unlabeled pool

2012) because it is fast, memory efficient, shows state-of-the-art
performance and allows to control the amount of superpixels.

In the following, we present the preprocessing algorithm in de-
tail and briefly describe the SLIC algorithm.

2.2.1 Preprocessing algorithm

Our preprocessing method works as follows:

1. The dimension of the image is reduced by averaging over
every bands or by using a Principal Component Analysis
(PCA),
2. The unlabeled pool is segmented in Nregions using the SLIC
algorithm,
3. The mean spectrum of each region is computed, resulting in
an unlabeled pool Ū of size Nregions,
4. Regions containing less than Nth pixels are left out in order
to avoid outliers, resulting in Ū ′.
5. The active learning algorithm is applied on Ū ′. In order
to avoid too much redundancy, only m pixels out of the total
number of pixels in the selected clusters are labeled. They are
randomly picked.

Considering superpixels instead of pixels themselves yields to
major decreases of computational requirements. In our experi-
ments (cf. section 3), we compared the active learning perform-
ances with and without preprocessing. Moreover, this strategy
opens the door to interesting properties such as robustness to
outliers and easier visualization for the oracle.

2.2.2 SLIC algorithm (Achanta et al., 2012)

The SLIC algorithm (Simple linear iterative clustering) is based
on the k-means algorithm. k clusters are initialized so that they
spatially spread in a homogeneous way on the image. If N
is the number of pixels in the image, then the initial size of a
superpixel is S2 = N

k
. Then, each pixel is associated with the

nearest cluster in a 2S × 2S neighborhood using the euclidean
distance. For a given number of iterations, cluster centers are
updated and each pixel is reassigned to a new cluster. Usually,
few iterations are needed for the cluster centers to converge.
For more details, we refer the reader to (Achanta et al., 2012).
Compared to other superpixels generation methods, SLIC is at
the same time simple, memory efficient and fast.

3. EXPERIMENTS

The objectives of our experiments are to:

• Empirically demonstrate that the preprocessing method
dramatically reduces the active learning calculation time
without significant loss of effectiveness,

• To study the impact of the superpixels size on the active
learning performance,

• To study the impact of the dimensionality reduction tech-
nique on the active learning performance.

3.1 Dataset

We carried out experiments on the Houston dataset (Prasad et
al., 2020). It is a hyperspectral image acquired by ITRES CASI
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1500 that covers the 380-1050 nm spectral range with 48 bands
at a 1m ground sampling distance. More than four hundred
thousands pixels were labeled over 20 classes (see table 1).
However, we only kept in the initial training dataset 200 labeled
pixels per class, i.e. 4000 pixels in total, which is representative
of an operational use case. Five sets of different initial training
dataset, unlabeled pools and test datasets were selected from
disjoint regions. Here we emphasize that, in this experiment,
active learning methods are applied on unlabeled pools with
well-defined labels only. In a life-like scenario, active learning
methods could query mixed pixels (pixels at the frontier of two
materials) or pixels whose classes do not belong to the classes
of the initial training dataset.

Table 1. Classes and the numbers of labeled pixels

Class Id Class label Number of pixels
1 Healthy grass 9927
2 Stressed grass 32585
3 Artificial turf 2425
4 Evergreen trees 16419
5 Deciduous trees 9398
6 Bare earth 6846
7 Water 673
8 Residential buildings 38271
9 Non-residential buildings 221147

10 Roads 41214
11 Sidewalks 28841
12 Crosswalks 2570
13 Major thoroughfares 44956
14 Highways 9696
15 Railways 9745
16 Paved parking lots 11623
17 Unpaved parking lots 957
18 Cars 4977
19 Trains 8596
20 Stadium seats 11782

3.2 Active learning methods

Three active learning methods were studied.

Coreset (Sener and Savarese, 2017) is the method of main in-
terest because it showed impressive results (Sener and Savarese,
2017) on CIFAR (Krizhevsky et al., 2009) and SVHN (Netzer
et al., 2011) but is not usable on the Houston dataset that is ap-
proximately five times larger. Coreset has large memory and
time requirements as it computes and stores distances between
labeled and unlabeled points. It has a subroutine (a k-center
greedy algorithm) with aO(|U | ·b) time complexity (Gonzalez,
1985), where |U | is the size of the unlabeled pool. In practice,
it could not be applied within a reasonable time on the Houston
dataset with our hardware1.

In order to assess the impact of our preprocessing routine on
the performance of active learning methods, we also studied
Breaking Tie (Tong Luo et al., 2004) and BALD (Houlsby et
al., 2011) that are two state-of-the-art AL methods. Both meth-
ods can be applied without preprocessing on the Houston im-
age, which allowed us to compare the results with and without
the preprocessing.

3.3 Hyperparameters

We ran the experiments with the following hyperparameters:
Nsteps = 15, b = 250, Nth = 0 and m = 1, where we recall

1 Intel Cascade Lake CLX-6230 20c 2,1GHz and 64GB memory

that Nsteps is the number of AL steps, b is the number of quer-
ied superpixels at each step, Nth is the minimal size of a super-
pixel and m is the number of randomly queried pixels within a
superpixel. We performed 15 steps with 250-superpixels quer-
ies because it was enough for accuracy metrics to converge. As
far as there are no abnormal objects in the Houston dataset, we
left Nth to 0 but we argue that a non zero value would be in-
teresting in life-like scenarios. Moreover, we have varied the
number of superpixels within {20000, 10000, 5000}. We found
that it yielded quite spectrally homogeneous and spatially con-
sistent regions while dramatically reducing the size of the pool.
Segmentation results, with a PCA dimensionality reduction, are
shown on figures 1b, 1c and 1d, and segmentation results with a
panchromatic dimensionality reduction, is shown on figure 3b.

3.4 Metrics

At each step of the AL process (15 steps in total), we trained a
SVM classifier with a rbf kernel and kept track of three metrics:

• Overall Accuracy (OA). The number of correct predic-
tions over the total number of predictions,

• Mean Intersect Over Union (mIoU). The mean of the
IoU score over every classes. For one class, the IoU score
is defined as IoU = TP

TP+FN+FP
where TP, FN and FP

respectively denote the true positives, the false negatives
and the false positives. A 0.5 IoU score means that there
are as many good predictions as there are confusions,

• The proportion of added pixels in each class after steps
5, 10 and 15.

3.5 Results

3.5.1 Impact of the preprocessing on the computational
requirements

If the decrease of the query time for Breaking Tie and BALD
is not interesting in regard of the additional segmentation time,
major time gains are achieved for Coreset as table 2 shows.

Table 2. Approximate time requirements in minutes with our
hardware1.

Number of regions ∅ 20000 10000 5000
Segmentation time 2.5 1.2 0.7

Query time

Coreset
37 5 1
Breaking Tie

0.050 0.017 0.012 0.010
BALD

0.21 0.02 0.015 0.013

3.5.2 Impact of the preprocessing on OA and mIoU

Overall Accuracy. Figures 2, 3 and 4 show that the pre-
processing makes very little differences in terms of overall
accuracy (approximately less than 2%). For each method, the
preprocessing on the contrary slightly increases the overall
accuracy.

Mean Intersect Over Union. Figures 2, 3 and 4 also show
that the preprocessing makes very little differences in terms
of mIoU score (approximately less than 2%), especially for
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Coreset and Breaking Tie. Moreover, the preprocessing reduces
the standard deviation of the mIoU. Specifically, the larger
the superpixels (ie the fewer regions there are), the lower is
the standard deviation. The biggest gap is observed for the
BALD method between the runs without preprocessing and
with a 5000-regions preprocessing. To better understand this
difference, we inspected the IoU score per class. It appeared
that, with the preprocessing, the IoU score for Residential
buildings and Roads was respectively increased from 0.17 to
0.40 and from 0.020 to 0.16.

Proportion of added pixels. Figures 5, 6 and 7 show that
preprocessing, especially when large superpixels are used,
tends to smooth the distribution of queried pixels over the
classes. It is particularly pronounced for Coreset and for BALD
where classes 3 (Artificial turf ) and 7 (Water) are much less
queried with a 5000-regions segmentation.

3.5.3 Influence of the dimensionality reduction technique
on the segmentation

Experiments (shown on fig. 9 in Annex) demonstrate that the
dimensionality reduction technique has low influence on the
results. Using the panchromatic reduction technique yields
to more squared regions whereas PCA enforces spectrally
consistent regions.

4. DISCUSSION AND CONCLUSION
We introduced a preprocessing method that allows to use
computationally intensive active learning algorithms on very
large hyperspectral datasets without loss of effectiveness.
This allows the use of methods that would normally have
long calculation time during field campaigns, facilitating the
annotation of experts. Besides, we argue that our method could
be used on other kind of data, such as very high resolution
satellite images.

The main side effect of our method is a reduction of redundancy
alongside additional randomness. Firstly, the preprocessing
reduces redundancy, because when a superpixel is highly
informative according to the acquisition function, only few
pixels within the superpixel (one in our experiments) are
labeled. Without the preprocessing, almost every pixels within
the superpixel would be labeled. This explains why much less
pixels from classes Artificial turf and Water were queried by
the BALD method. Secondly, as the superpixels sizes increase,
their spectral heterogeneity increases and more randomness is
introduced. As a matter of fact, pixels from different classes
are more likely to belong to the same superpixel as its gets
larger. Therefore, a 5000-regions segmentation yields more
randomness than a 20000-regions segmentation. Nevertheless,
even a 5000-regions segmentation yielded very homogeneous
superpixels and the effect of this additional randomness did not
seem to be significant.

Even without setting a minimum superpixel size, we think that
our method increases the robustness to outliers. As a matter of
fact, considering individual pixels is prone to outliers selection
because they can exhibit anomalous spectral signatures that
yield high uncertainty. On the contrary, outliers spectral
signatures are mixed with in-distribution samples when we use
superpixels. This is very likely the reason why BALD with
a 5000-regions segmentation achieved better performances,
especially for classes Roads and Residential buildings, that

can include anomalous pixels (such as chimneys). BALD can
indeed be sensitive to outliers as far as it selects samples far
from training samples in the data space (Houlsby et al., 2011).

In further work, we could use superpixels to easily incorpor-
ate spatial and geometric features. Instead of randomly se-
lect pixels within a superpixel, we could select the pixel at the
center of the superpixel to decrease the risk of drawing mixed
pixels. We could also run an additional active learning step on
the pixels of the selected superpixels and combine different AL
methods.
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(a) OA (b) mIoU

Figure 2. Accuracy metrics over the Coreset process. coreset corresponds to the run without the data preprocessing. coreset 20000,
coreset 10000 and coreset 5000 correspond respectively to the runs with a 20000, 10000 and 5000-regions preprocessing.

(a) OA (b) mIoU

Figure 3. Accuracy metrics over the Breaking Tie process. breaking tie corresponds to the run without the data preprocessing.
breaking tie 20000, breaking tie 10000 and breaking tie 5000 correspond respectively to the runs with a 20000, 10000 and

5000-regions preprocessing.

(a) OA (b) mIoU

Figure 4. Accuracy metrics over the BALD process. bald corresponds to the run without the data preprocessing. bald 20000,
bald 10000 and bald 5000 correspond respectively to the runs with a 20000, 10000 and 5000-regions preprocessing.
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(a) 20000-regions preprocessing (b) 5000-regions preprocessing

Figure 5. Proportion of added pixels for Coreset at steps 5, 10 and 15.

(a) No preprocessing (b) 5000-regions preprocessing

Figure 6. Proportion of added pixels for Breaking Tie at steps 5, 10 and 15.

(a) No preprocessing (b) 5000-regions preprocessing

Figure 7. Proportion of added pixels for BALD at steps 5, 10 and 15.
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5. APPENDIX

(a) SLIC segmentation - PCA dimensionality reduction -
5000 regions

(b) SLIC segmentation - panchromatic dimensionality
reduction - 5000 regions

Figure 8. Difference between the segmentation obtained after PCA and panchromatic dimensionality reduction

(a) Coreset - OA (b) Coreset - mIoU

(c) Breaking Tie - OA (d) Breaking Tie - mIoU

(e) BALD - OA (f) BALD - mIoU

Figure 9. Accuracy metrics with a 5000-regions segmentation. Red curves correspond to the ”panchromatic” segmentation” while the
blue curves correspond to the ”PCA” segmentation.
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