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Abstract: In this paper, we investigate the asymptotic properties of Le Cam’s one-step
estimator for weak Fractionally AutoRegressive Integrated Moving-Average (FARIMA)
models. For these models, noises are uncorrelated but neither necessarily independent nor
martingale differences errors. We show under some regularity assumptions that the one-
step estimator is strongly consistent and asymptotically normal with the same asymptotic
variance as the least squares estimator. We show through simulations that the proposed
estimator reduces computational time compared with the least squares estimator. An
application for providing remotely computed indicators for time series is proposed.
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1. Introduction

Time series often exhibit linear and/or nonlinear dependence. When large correlations for small
lags are detected, short memory processes can suffice to model the dependence structure of the
series. The ARMA processes (see for example Box and Jenkins [1970] and Francq and Zakoïan
[1998]) or VARMA for the multivariate framework (see Lütkepohl [2007] and Boubacar Maï-
nassara [2009]) are examples of short memory processes.

However, in many scientific disciplines and many applied fields, including hydrology, climatol-
ogy, economics, finance and computer science, the autocorrelations of some time series decrease
very slowly. This phenomenon may be due to several factors, in particular nonstationarity and/or
long-range dependence.
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A large audience of mathematicians has been attracted by long memory processes and their
various applications (see for instance Mandelbrot [1965], Mandelbrot and Van Ness [1968] and
Mandelbrot and Wallis [1969a,b,c]), Granger in economics (Granger and Joyeux [1980]), Do-
brushin in physics (Dobrushin and Major [1979]) and, even earlier, Hurst in hydrology (Hurst
[1951]). Long-range dependent processes constitute currently one of the popular areas of sta-
tistical research and occupy a central place in the time series literature (see Granger and Joyeux
[1980], Hosking [1981], Fox and Taqqu [1986], Dahlhaus [1989], Palma [2007], Beran et al.
[2013], Boubacar Maïnassara et al. [2021b], among others).

The fractional autoregressive integrated moving-average (FARIMA, for short) model is widely
used to model the long memory phenomenon. This model was first introduced by Granger and
Joyeux [1980] and then generalized to take into account short-term fluctuations in time series
by Hosking [1981]. FARIMA models therefore have the advantage of jointly modeling the long
memory behavior of time series and their short-term dynamics through a fractional integra-
tion parameter d and autoregressive and moving-average parameters respectively. Their fame is
partly due to their structure similar to the one of standard ARIMA models in which the differ-
entiation exponent d is an integer. FARIMA models are generally used with strong assumptions
on the noise that limit their generality. We call strong FARIMA the standard models in which
the error term is assumed to be an independent and identically distributed sequence (iid for
short), and we speak about weak FARIMA models when the errors are uncorrelated but neither
necessarily independent nor martingale differences. It is common in the time series literature
to talk about the subclass of semi-strong FARIMA models when the associated innovation
process is a semi-strong white noise, that is a stationary martingale difference. An example of
semi-strong white noise is the generalized autoregressive conditional heteroscedastic (GARCH)
model (see Francq and Zakoïan [2010]). The distinction between strong, semi-strong or weak
FARIMA models is therefore only a matter of noise assumptions with the following inclusions:

{strong FARIMA} ⊂ {semi-strong FARIMA} ⊂ {weak FARIMA} .

The independence of the noise in strong FARIMA models is often considered to be very
restrictive for many time series with general nonlinear dependencies1. Weak FARIMA models
correct this problem by allowing the noise to contain very general nonlinear dependencies of often
unidentified structures. They therefore have the great advantage of providing linear modeling
to nonlinear processes.

The asymptotic theory of estimation is mainly limited to strong and semi-strong FARIMA
models. Whittle’s estimator (see Whittle [1953]) is commonly used to estimate the parameters
of FARIMA models (see for example Fox and Taqqu [1986], Dahlhaus [1989], Giraitis and
Surgailis [1990] and Taqqu and Teverovsky [1997]). The study of the asymptotic properties of
this estimator is developed in the case where the errors are assumed to be independent and
identically distributed and in the framework where the noise is considered to be a martingale

1See for instance Tong [1990], Francq and Zakoïan [1998], Francq et al. [2005], Bauwens et al. [2006],
Fan and Yao [2008], Francq and Zakoïan [2010], Boubacar Maïnassara [2011], Boubacar Maïnassara and
Francq [2011], Shao [2011], Boubacar Maïnassara et al. [2012], Shao [2012], Boubacar Maïnassara [2014] and
Boubacar Maïnassara and Saussereau [2018] for some references on nonlinear time series models.
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difference (see Beran [1995], Baillie et al. [1996], Ling and Li [1997], Hauser and Kunst [1998],
Palma [2007], Beran et al. [2013], among others). All this work is limited to the case where
the nonlinear dependency is absent or with a well-identified structure. For example, in financial
time series modeling, in order to capture conditional heteroscedasticity, it is common that
innovations in FARIMA models are assumed to have a GARCH structure (see for example
Baillie et al. [1996], Hauser and Kunst [1998]).
For weak FARIMA models, the asymptotic normality has been obtained for Whittle’s estimator
(Shao [2010, 2012]) and the LSE (Boubacar Maïnassara et al. [2021b]). In this paper, we
propose a new calibration of weak FARIMA models based on Le Cam’s one-step approach (see
Le Cam [1956]). In Le Cam’s one-step procedure, an initial guess estimator is corrected by a
single step of Newton gradient descent method on loglikelihood function. We adapt in this work
the Le Cam one-step procedure. Firstly, we propose the LSE on subsample as an initial estimator.
Secondly, since we do not specify the distribution of the weak white noise, the single Newton
step is done on the least squares functional. This estimator greatly reduces the computation
time and preserves the same asymptotic properties as the LSE. One-step procedure has shown
its efficiency in terms of computation time and precision for diffusion processes Gloter and
Yoshida [2021], Kamatani and Uchida [2015], ergodic Markov chains Kutoyants and Motrunich
[2016], fractional Gaussian noise observed at high frequency Brouste et al. [2020] or stable
noise Brouste and Masuda [2018] and inhomogeneous Poisson processes Dabye et al. [2018].

The paper is organized as follows. In Section 2, we introduce the model and the notations
used in the sequel and we give the asymptotic properties of Le Cam’s one-step estimator of the
parameters of weak FARIMA models. In Section 3, we provide some numerical illustrations to
show the performance of the proposed estimator on finite sample sizes. All the technical proofs
are gathered in Section 4.

2. Le Cam’s one-step estimation of weak FARIMA models

In this section we present the parametrization that is used in the sequel and we study the asymp-
totic properties of the Le Cam one-step estimator of long memory FARIMA processes induced
by uncorrelated but not independent error terms. We also recall the results on the asymptotic
behavior of the least squares estimator of weak FARIMA models obtained by Boubacar Maï-
nassara et al. [2021b]. This estimator will be used as the initial estimator in Le Cam’s one-step
procedure.

2.1. Statement of the problem and notations

Let (Xt)t∈Z be a long memory second-order stationary process satisfying a weak FARIMA(p, d0, q)
representation of the form

a(L)(1− L)d0Xt = b(L)εt , (1)

where d0 ∈ (0, 1/2) is the long memory parameter, (εt)t∈Z is a sequence of uncorrelated random
variables defined on some probability space (Ω , T ,P) with zero mean and common variance σ2

ε ,
L stands for the back-shift operator and a(L) = 1−

∑p
i=1 ai L

i , respectively b(L) = 1−
∑q

i=1 bi L
i ,
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is the autoregressive, respectively the moving-average, operator. These operators represent the
short memory part of the model and are supposed to have all their roots outside the unit disk
with no zero in common to ensure the invertibility of the model and the unique identifiability
of the parameters.
The fractional difference operator (1− L)d0 is defined, using the generalized binomial series, by

(1− L)d0 =
∑
j≥0

αj(d0)L
j ,

where for all j ≥ 0, αj(d0) = Γ (j − d0)/ {Γ (j + 1)Γ (−d0)} and Γ (·) is the Gamma func-
tion. It can be readily shown, see for example Beran et al. [2013], that for large j , αj(d0) ∼
j−d0−1/Γ (−d0) . It is therefore clear that the fractional difference operator impacts the speed
of convergence to 0 of the coefficients in the AR(∞) and MA(∞) representations of Model
(1) compared with standard short-memory ARMA models where this operator is absent. This
loss of speed, compared to the exponential one of ARMA models, implies that the series of
autocovariances of the process (Xt)t∈Z defined in (1) is not absolutely summable.
Let Θ∗ be the parameter space

Θ∗ =
{
θ = (θ1, θ2, . . . , θp+q) ∈ Rp+q; aθ(z) = 1−

p∑
i=1

θi z
i and bθ(z) = 1−

q∑
j=1

θp+j z
j

have all their zeros outside the unit disk
}
.

Denote by Θ the Cartesian product Θ∗×(0, 1/2). Note that the unknown parameter of interest
θ0 = (a1, a2, . . . , ap, b1, b2, . . . , bq, d0)

′ belongs to the parameter space Θ.
For all θ = (θ1, θ2, . . . , θp+q, d)′ ∈ Θ, we define (εt(θ))t∈Z as the second-order stationary
process which is the solution of

εt(θ) =
∑
j≥0

αj(d)Xt−j −
p∑

i=1

θi

∑
j≥0

αj(d)Xt−i−j +

q∑
j=1

θp+jεt−j(θ). (2)

Observe that, for all t ∈ Z, εt(θ0) = εt a.s. Given a realization X1, . . . ,Xn of length n, εt(θ)
can be approximated, for 0 < t ≤ n, by ε̃t(θ) defined recursively by

ε̃t(θ) =
t−1∑
j=0

αj(d)Xt−j −
p∑

i=1

θi

t−i−1∑
j=0

αj(d)Xt−i−j +

q∑
j=1

θp+j ε̃t−j(θ), (3)

with ε̃t(θ) = Xt = 0 if t ≤ 0.
As shown in Proposition 2 (see Section 4), these initial values are asymptotically negligible

and in particular it holds that εt(θ)− ε̃t(θ)→ 0 almost-surely as t →∞ uniformly in θ. Thus
the choice of the initial values has no influence on the asymptotic properties of the model
parameters estimator.
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Let Θ∗κ denote the compact set

Θ∗κ =
{
θ ∈ Rp+q; the roots of the polynomials aθ(z) and bθ(z) have modulus ≥ 1 + κ

}
.

We define the set Θκ as the Cartesian product Θ∗κ × [d1, d2], where κ is a positive constant
chosen such that θ0 belongs to Θκ and where [d1, d2] ⊂ (0, 1/2).

For n ≥ 1 and θ ∈ Θ, consider the function

Qn(θ) =
1

n

n∑
t=1

ε̃2t (θ), (4)

where (ε̃t(θ))t∈Z is given in (3). The Le Cam one-step estimator is defined, almost-surely, by

θn = θ∗n −
{

∂2

∂θ∂θ′
Qn (θ

∗
n)

}−1
∂

∂θ
Qn (θ

∗
n) , (5)

where θ∗n is the least squares estimator of parameter θ0 calculated over the first m = [nδ], with
1/2 < δ ≤ 1, observations X1, . . . ,Xm, i.e.

θ∗n = argmin
θ∈Θκ

Qm(θ), where Qm(θ) =
1

[nδ]

[nδ]∑
t=1

ε̃2t (θ). (6)

We will also propose alternative estimators where the matrix ∂2Qn(θ
∗
n)/∂θ∂θ

′ takes another
forms (see Remark 1 and Subsection 2.3).

2.2. Asymptotic properties

The asymptotic properties of the least squares estimator of the parameters of weak FARIMA
models have been established by Boubacar Maïnassara et al. [2021b]. The authors have showed,
under some regularity assumptions on the noise, the consistency and the asymptotic normality
of the least squares estimator. In this subsection, we study the asymptotic behavior of the
Le Cam one-step estimator θn. We show, under the same assumptions, that the estimator θn

converges not only in probability but almost-surely to the true parameter θ0 and also satisfies
a central limit theorem with a similar limit variance.

To ensure the strong consistency of the Le Cam one-step estimator θn, we assume that the
innovation process in (1) satisfies the following condition:

(A1): The process (εt)t∈Z is strictly stationary and ergodic.

Our first main result is stated in the following theorem.
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Theorem 1. (Strong consistency). Assume that (Xt)t∈Z satisfies (1). Let (θn)n≥1 be the
sequence of Le Cam’s one-step estimators defined by (5). Under Assumption (A1), we have

θn
a.s.−−−→

n→∞
θ0.

The proof of this theorem is given in Section 4.

For the asymptotic normality of the Le Cam one-step estimator, additional assumptions are
required. It is necessary to assume that θ0 is not on the boundary of the parameter space Θκ.

(A2): We have θ0 ∈
◦

Θκ, where
◦

Θκ denotes the interior of Θκ.

The stationary process (εt)t∈Z is not supposed to be an independent sequence. So one needs
to control its dependency by means of its strong mixing coefficients {αε(h)}h≥0 defined by

αε (h) = sup
A∈F t

−∞,B∈F∞t+h

|P (A ∩ B)− P(A)P(B)| ,

where F t
−∞ = σ(εu, u ≤ t) and F∞t+h = σ(εu, u ≥ t + h).

We shall need an integrability assumption on the moments of the noise (εt)t∈Z and a summa-
bility condition on the strong mixing coefficients {αε(h)}h≥0.

(A3): There exists an integer τ such that for some ν ∈ (0, 1], we have E|εt |τ+ν < ∞ and∑∞
h=0(h + 1)k−2 {αε(h)}

ν
k+ν <∞ for k = 1, . . . , τ .

In order to state our asymptotic normality result, we define the function

On(θ) =
1

n

n∑
t=1

ε2t (θ),

where the sequence (εt(θ))t∈Z is given by (2), and we consider the following information matrices

I (θ) = lim
n→∞

V ar

{√
n
∂

∂θ
On(θ)

}
and J(θ) = lim

n→∞

[
∂2

∂θi∂θj
On(θ)

]
a.s.

The existence of these matrices and the invertibility of J(θ0) are proved in Lemmas 16 and 18
in Boubacar Maïnassara et al. [2021b] for weak FARIMA.

Our second main result is given in the next theorem.

Theorem 2. (Asymptotic normality). Assume that (Xt)t∈Z satisfies (1). Under (A1), (A2)
and (A3) with τ = 4, the sequence {

√
n(θn−θ0)}n≥1 has a limiting centered normal distribution

with covariance matrix Ω := J−1(θ0)I (θ0)J
−1(θ0).
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The detailed proof of this result is postponed to Section 4.

Remark 1. The quantity ∂2Qn(θ
∗
n)/∂θ∂θ

′ in the definition of Le Cam’s one-step estimator (5)
can be replaced by J(θ∗n) since the matrix J(θ0) has an explicit expression in the framework of
FARIMA models (see Subsection 2.3).
It can also be replaced by

Ĵn(θ
∗
n) =

2

n

n∑
t=1

{
∂

∂θ
ε̃t (θ

∗
n)

}{
∂

∂θ′
ε̃t (θ

∗
n)

}
.

This is due to the fact that Ĵn(·) satisfies a stochastic Lipschitz condition similar to the one
in Proposition 1 and that Ĵn(θ

∗
n) converges almost-surely to J(θ0) (see Lemma 1). The ergodic

theorem and the uncorrelatedness of (εt)t∈Z are behind the intuition of the construction of the
estimator Ĵn(θ

∗
n). More precisely, observe that under (A1), the matrix J(θ0) can be rewritten

as

J(θ0) = lim
n→∞

{
2

n

n∑
t=1

∂

∂θ
εt(θ0)

∂

∂θ′
εt(θ0) +

2

n

n∑
t=1

εt(θ0)
∂2

∂θ∂θ′
εt(θ0)

}

= 2E
[
∂

∂θ
εt(θ0)

∂

∂θ′
εt(θ0)

]
+ 2E

[
εt(θ0)

∂2

∂θ∂θ′
εt(θ0)

]
= 2E

[
∂

∂θ
εt(θ0)

∂

∂θ′
εt(θ0)

]
a.s. (7)

Remark 2. Under (A1), (A2) and (A3) with τ = 4, it can be shown (see Boubacar Maï-
nassara et al. [2021b], Lemma 18) that the sequence (E

[
H1(θ0)H

′

1+k(θ0)
]
)k∈Z where, for

all t ∈ Z, Ht(θ) = 2εt(θ)
∂
∂θ
εt(θ) = (2εt(θ)

∂
∂θ1
εt(θ), . . . , 2εt(θ)

∂
∂θp+q+1

εt(θ))
′, is absolutely

summable. Therefore, from the stationarity of the centered process (Ht(θ0))t∈Z, we have

I (θ0) = lim
n→∞

Var

(
1√
n

n∑
t=1

Ht(θ0)

)

= lim
n→∞

1

n

n∑
t=1

n∑
s=1

Cov (Ht(θ0),Hs(θ0))

= lim
n→∞

1

n

n−1∑
k=1−n

(n − |k |)Cov (H1(θ0),H1+k(θ0))

=
∞∑

k=−∞

E
[

H1(θ0)H
′

1+k(θ0)
]
.

When the noise (εt)t∈Z is assumed to be an iid sequence, one can use the orthogonality of εt
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with any linear combination of (εs)s≤t−1 in particular ∂εt(θ0)/∂θ (see Subsection 4.1) to obtain

I (θ0) = E
[

H1(θ0)H
′

1(θ0)
]
+ 2

∞∑
k=1

E
[

H1(θ0)H
′

1+k(θ0)
]

= 4E
[
ε21
∂

∂θ
ε1(θ0)

∂

∂θ′
ε1(θ0)

]
+ 4

∞∑
k=1

E
[
ε1
∂

∂θ
ε1(θ0)ε1+k

∂

∂θ′
ε1+k(θ0)

]
= 2σ2

ε J(θ0).

Thus, the asymptotic covariance matrix in the strong FARIMA case is reduced to ΩS :=
2σ2

ε J−1(θ0). Generally, when the noise is not an independent sequence, this simplification can
not be made and we have I (θ0) 6= 2σ2

ε J(θ0). The true asymptotic covariance matrix Ω =
J−1(θ0)I (θ0)J

−1(θ0) obtained in the weak FARIMA framework can be very different from ΩS .

A key point allowing to establish the limit distribution of the one-step estimator of the pa-
rameters of the weak FARIMA model (1) is the fact that θ ∈ Θκ −→ ∂2Qn(θ)/∂θ∂θ

′ ∈
R(p+q+1)×(p+q+1) is a stochastic Lipschitz function.

Proposition 1. Assume that (Xt)t∈Z satisfies (1). For any i , j ∈ {1, . . . , p + q + 1} and all
θ(1), θ(2) ∈ Θκ, one has∣∣∣∣ ∂2

∂θi∂θj
Qn

(
θ(1)
)
− ∂2

∂θi∂θj
Qn

(
θ(2)
)∣∣∣∣ ≤ ∆n

∥∥θ(1) − θ(2)∥∥ ,
where ∆n is bounded in probability.

The proof of this proposition is detailed in Section 4.

2.3. Explicit computations of J(θ)

The particular structure of FARIMA models allows an explicit calculation of the matrix J(θ0).
Thus, the use of the closed form of the limit matrix J(θ0) in (5) instead of the second derivative
of the function Qn(·) further improves the computational performance of Le Cam’s one-step
estimator while maintaining the same asymptotic properties. The matrix J(θ) clearly depends
on the derivative of the process (εt(θ))t∈Z. This derivative can be expressed as an infinite
linear combination of the past and present values of the true noise (εt)t∈Z, which subsequently
gives rise to a simple calculation of J(θ) by exclusively exploiting the uncorrelatedness of the
innovations process (εt)t∈Z. Let us be more precise. Observe that from Equations (7) and (22),
one has

J(θ) = 2σ2
ε

∑
i≥1


.
λ
2

i ,1 (θ)
.
λi ,1 (θ)

.
λi ,2 (θ) · · ·

.
λi ,1 (θ)

.
λi ,p+q+1 (θ)

.
λi ,2 (θ)

.
λi ,1 (θ)

.
λ
2

i ,2 (θ) · · ·
.
λi ,2 (θ)

.
λi ,p+q+1 (θ)

...
...

...
...

.
λi ,p+q+1 (θ)

.
λi ,1 (θ)

.
λi ,p+q+1 (θ)

.
λi ,2 (θ) · · ·

.
λ
2

i ,p+q+1 (θ)

 .
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Furthermore, for 1 ≤ k ≤ p + q +1, the sequence
.
λk(θ) = (

.
λi ,k(θ))i≥1 in Equation (22) is the

sequence of the coefficients in the power series of

∂

∂θk

(
b−1θ (z)aθ(z)(1− z)d−d0a−1θ0 (z)bθ0(z)

)
.

Thus,
.
λi ,k (θ0) is the i−th coefficient taken in θ = θ0. There are three cases.

� k = 1, . . . , p:
Since

∂

∂θk

(
b−1θ (z)aθ(z)(1− z)d−d0a−1θ0 (z)bθ0(z)

)
= −b−1θ (z)zk(1− z)d−d0a−1θ0 (z)bθ0(z),

we deduce that
.
λi ,k (θ0) is the i−th coefficient of −zka−1θ0 (z).

� k = p + 1, . . . , p + q:
We have
∂

∂θk

(
b−1θ (z)aθ(z)(1− z)d−d0a−1θ0 (z)bθ0(z)

)
=

(
∂

∂θk
b−1θ (z)

)
aθ(z)(1−z)d−d0a−1θ0 (z)bθ0(z)

and consequently
.
λi ,k (θ0) is the i−th coefficient of ( ∂

∂θk
b−1θ0 (z))bθ0(z).

� k = p + q + 1:
In this case, θk = d and so we have

∂

∂θk

(
b−1θ (z)aθ(z)(1− z)d−d0a−1θ0 (z)bθ0(z)

)
= b−1θ (z)aθ(z)ln(1−z)(1−z)d−d0a−1θ0 (z)bθ0(z)

which implies that
.
λi ,k (θ0) is the i−th coefficient of ln(1− z) which is equal to −1/i .

Example 1. In this example, we illustrate the previous calculations in the case of weak
FARIMA(1, d , 1) model (i.e. when p = q = 1 in (1) and (2)). This model is widely used
in practice. Since the modulus of the autoregressive parameter a0 and the moving-average
parameter b0 are assumed to be strictly less than 1, one can easily obtain that a−1(z) =
(1− a0z)−1 =

∑
i≥0 ai

0z i and similarly b−1(z) =
∑

i≥0 bi
0z i . So, it can be shown that

∂

∂θ
εt(θ0) =


∂
∂a
εt(θ0)

∂
∂b
εt(θ0)

∂
∂d
εt(θ0)

 = −
∑
i≥1

 ai−1
0

−bi−1
0
1
i

 εt−i

and consequently, we deduce that

J(θ0) = 2σ2
ε

 1/(1− a2
0) −1/(1− a0b0) − ln(1− a0)/a0

−1/(1− a0b0) 1/(1− b2
0) ln(1− b0)/b0

− ln(1− a0)/a0 ln(1− b0)/b0 π2/6

 .

This explicit expression can be used in the one-step procedure to speed it up.
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3. Numerical illustrations

We investigate in this section the behavior of the one-step estimator on finite sample sizes
through Monte Carlo experiments. The numerical illustrations of this section are made with the
open source statistical software R (R Core Team [2021]).

3.1. Simulation studies

The behavior of Le Cam’s one-step estimator is numerically studied for FARIMA(1, d , 1) model
of the form

(1− L)d(Xt − aXt−1) = εt − bεt−1, (8)

where the unknown parameter (a, b, d)′ takes different values. We start by comparing the
asymptotic properties of the one-step estimator and the LSE in both strong and weak frame-
works. For this, firstly we consider that the innovation process (εt)t∈Z in (8) is an iid centered
Gaussian process with common variance 1 (which corresponds to the strong FARIMA case) and
secondly that it is defined by

εt = η2t ηt−1, (9)

where (ηt)t∈Z is a sequence of iid centered Gaussian random variables with variance 1. Note
that the innovation process in (9) is a weak white noise which is not a martingale difference.

The Figure 1 compares the empirical distribution of the LSE and the Le Cam one-step estima-
tor of the memory parameter d in the strong case (first column) and the weak case (second
column). We simulated M = 2, 000 independent trajectories of size n = 5, 000 of Model (8)
with (a, b, d)′ = (0.2, 0.5, 0.3)′ endowed first by the strong Gaussian noise and then by the
weak noise (9). We considered that δ = 0.9. Let us recall that the fraction δ defines the size
of the sample on which the initial estimator is calculated.

The LSE calculated on the fraction δ of the data (see the two middle graphs) is computed faster
than the LSE on the whole sample but is naturally less efficient. We can observe the similarity
of the empirical distributions of the one-step estimator and the LSE on the whole sample. This
perfectly illustrates the theoretical results presented in Subsection 2.2.

In Figure 2, we present the empirical distribution of the Le Cam one-step estimator of the
memory parameter for different values of the parameters in (8) induced by the noise (9) with
n = 5, 000 over the 2,000 replications. This graph highlights the adequacy of the empirical re-
sults (distributions over a finite sample size) and the theoretical results obtained in Theorem 2,
even when the parameter is close to the boundary of the parameter space.

Finally, we compare in Figure 3 the computation time (in seconds), with respect to the sample
size, of the LSE and the one-step estimator of all the parameters, with two different fractions
(δ = 0.7 and δ = 0.9) and (a, b, d)′ = (0.2, 0.5, 0.3)′. For each size n, we simulated 10
replications to calculate the estimators. We observe that the one-step estimator outperforms
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the LSE in terms of computation time. It should also be noted that taking a small fraction δ
further reduces the calculation time.

Fig 1. Histograms for the M = 2, 000 Monte Carlo simulations of the rescaled statistical error of the LSE
(first line), the LSE calculated on the fraction δ = 0.9 of the data (second line) and one-step estimator (last
line) of the memory parameter for Model (8) with (a, b, d)′ = (0.2, 0.5, 0.3)′ and n = 5, 000. Superimposed
red and blue lines are the theoretical centered Gaussian asymptotic distributions of the LSE and the subLSE,
respectively.
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Fig 2. Empirical distribution over M = 2, 000 simulations of the rescaled statistical error of the one-step
estimator of the memory parameter for FARIMA(1, d , 1) model induced by the weak white noise (9) with
n = 5, 000 and different values of the parameters.
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Fig 3. Comparison of the computation times with respect to the sample size of the LSE and the one-step
estimator of the parameters of Model (8) induced by Noise (9) with (a, b, d)′ = (0.2, 0.5, 0.3)′. For each size
n, 10 replications are generated.

3.2. Illustrative example

We consider in this example the daily log returns of the Standard & Poor’s 500 index (S&P 500,
for short). The log returns (or simply returns) are defined by rt = 100 log(pt/pt−1) where pt is
the price index of the S&P 500 at time t. The observations of the S&P 500 index cover the
period from January 3, 1950 to February 14, 2019. The length of the series is n = 17, 391. The
data can be downloaded with the R package quantmod.

The phenomenon of long memory has been widely studied for financial series. Ding et al.
[1993] have shown that the positive powers of the absolute value of returns have more per-
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sistence than the returns themselves. We choose here the case of squared returns. The mean
and the standard deviation of (r 2t )t≥1 are 0, 9347 and 5, 0036. As in Ling [2003], we consider
the centered series (Xt)t≥1 of the squared returns, that is, Xt = r 2t − 0, 9347.The sample auto-
correlations of the series (Xt)t≥1 (see Figure 5) decrease very slowly and are approximated by
the function in blue (which is not integrable on R). This suggests that this series has a long
memory.
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Fig 4. Returns of the S&P 500 index from January
3, 1950 to February 14, 2019.
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Fig 5. Sample autocorrelations of squared returns of
the S&P 500 stock market index. The curve in blue
is that of x → 0.26/x0.49.

It has been statistically validated in our previous work (see Boubacar Maïnassara et al.
[2021a]) that the time series (Xt)t≥1 could be adjusted by a weak FARIMA(1, d , 1) model.
It is worth emphasizing that the strong FARIMA fitting with the same orders is rejected for
this series. The calibration of such models with the LSE is time consuming. Consequently, we
propose a remote solution (API REST with the HTTP protocol) to provide fast and similar
estimates with the same asymptotic properties as the LSE. In R, we can access to this API
with the httr package using the POST command and format our data into JSON (package
jsonlite). We can find an example of a program at the address https://www.effi-stats.
fr/files/API_wFARIMA.R.

4. Proofs

Before starting the proofs of our main results, we introduce in the next subsection some nec-
essary results on estimations of the coefficients of formal power series that will arise in our

https://www.effi-stats.fr/files/API_wFARIMA.R
https://www.effi-stats.fr/files/API_wFARIMA.R


S. Ben Hariz, A. Brouste, Y. Esstafa and M. Soltane/ One-step estimation of weak FARIMA models 15

study.
In all our proofs, K is a positive constant that may vary from line to line.

4.1. Preliminary results

We begin by recalling the following properties on power series. If for |z | ≤ R , the power series
f (z) =

∑
i≥0 ai z

i and g(z) =
∑

i≥0 bi z
i are well defined, then (f g)(z) =

∑
i≥0 ci z

i is also well
defined for |z | ≤ R with the sequence (ci)i≥0 which is given by c = a ∗ b where ∗ denotes the
convolution product between a and b defined by ci =

∑i
k=0 akbi−k =

∑i
k=0 ai−kbk .

Now we come back to the power series that arise in our context. Remind that for the true
value of the parameter,

aθ0(L)(1− L)d0Xt = bθ0(L)εt . (10)

Thanks to the assumptions on the moving average polynomials bθ and the autoregressive poly-
nomials aθ, the power series a−1θ and b−1θ are well defined.

Thus the functions εt(θ) defined in (2) can be written as

εt(θ) = b−1θ (L)aθ(L)(1− L)d Xt (11)

= b−1θ (L)aθ(L)(1− L)d−d0a−1θ0 (L)bθ0(L)εt (12)

and if we denote γ(θ) = (γi(θ))i≥0 the sequence of coefficients of the power series b−1θ (z)aθ(z)(1−
z)d , we may write for all t ∈ Z,

εt(θ) =
∑
i≥0

γi(θ)Xt−i . (13)

In the same way, by (11) we have

Xt = (1− L)−d a−1θ (L)bθ(L)εt(θ)

and if we denote η(θ) = (ηi(θ))i≥0 the coefficients of the power series (1 − z)−d a−1θ (z)bθ(z)
one has

Xt =
∑
i≥0

ηi(θ)εt−i(θ). (14)

We strength the fact that γ0(θ) = η0(θ) = 1 for all θ.
For large j , Hallin et al. [1999] have shown that uniformly in θ the sequences γ(θ) and η(θ)

satisfy
∂kγj(θ)

∂θi1 · · · ∂θik

= O
(

j−1−d {log(j)}k
)
, for k = 0, 1, 2, 3, (15)

and
∂kηj(θ)

∂θi1 · · · ∂θik

= O
(

j−1+d {log(j)}k
)
, for k = 0, 1, 2, 3. (16)
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One difficulty that has to be addressed is that (13) includes the infinite past (Xt−i)i≥0 whereas
only a finite number of observations (Xt)1≤t≤n are available to compute the estimators defined
in (5). The simplest solution is truncation which amounts to setting all unobserved values equal
to zero. Thus, for all θ ∈ Θ and 1 ≤ t ≤ n one defines

ε̃t(θ) =
t−1∑
i=0

γi(θ)Xt−i =
∑
i≥0

γt
i (θ)Xt−i , (17)

where the truncated sequence γt(θ) = (γt
i (θ))i≥0 is defined by

γt
i (θ) =

{
γi(θ) if 0 ≤ i ≤ t − 1 ,

0 otherwise.

In the following proposition, we show that the difference between εt(θ) and ε̃t(θ) converges
almost-surely to 0 as t →∞ and this uniformly in θ. This proposition shows that the conver-
gence of the least squares estimator θ∗n in (6) studied in Boubacar Maïnassara et al. [2021b]
is not only in probability but it is almost-sure when d0 ∈ (0, 1/2). This last confirmation can
be easily demonstrated by following line by line the proof of Theorem 1 in Francq and Zakoïan
[1998].

Proposition 2. Let (Xt)t∈Z be the second-order stationary process given by (1). Under the
standard assumptions of invertibility and identifiability on the autoregressive polynomial a and
the moving-average polynomial b, we have almost-surely

lim
t→∞

sup
θ∈Θδ

|εt(θ)− ε̃t(θ)| = 0. (18)

Proof. From (13) and (17), it can be readily shown that for all θ ∈ Θδ and any t ∈ Z,

εt(θ)− ε̃t(θ) =
∑
j≥0

γj(θ)Xt−j −
t−1∑
j=0

γj(θ)Xt−j =
∑
j≥t

γj(θ)Xt−j =
∑
k≥0

γt+k(θ)X−k .

Recall that for any sequence (Yn)n≥0 of random variables it holds that

Yn
a.s.−→

n→∞
Y ⇔ sup

k≥n
|Yk − Y | P−→

n→∞
0.

Hence supθ∈Θδ
|εt(θ)− ε̃t(θ)| converges almost-surely to 0 as soon as

sup
k≥t

sup
θ∈Θδ

|εk(θ)− ε̃k(θ)|
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converges in probability to 0. In view of (15), one has for all β > 0 and for large t,

P
(
sup
k≥t

sup
θ∈Θδ

|εk(θ)− ε̃k(θ)| > β

)
= P

(
sup
k≥t

sup
θ∈Θδ

∣∣∣∣∣∑
j≥0

γk+j(θ)X−j

∣∣∣∣∣ > β

)

≤ P

(∑
j≥0

sup
k≥t

sup
θ∈Θδ

|γk+j(θ)| |X−j | > β

)

≤ K

β

(
sup
t∈Z

E |Xt |
)∑

j≥0

(
1

t + j

)1+d1

≤ KVar(X1)

βd1
(t − 1)−d1 −→

t→∞
0,

which completes the proof of the convergence in (18).

Remark 3. Since, for large j , ∂γj(θ)/∂θk1 = O(j−1−d log(j)) and ∂2γj(θ)/∂θk1θk2 = O(j−1−d{log(j)}2),
this last proposition remains valid for the first and second derivatives of εt(θ). Following the
same arguments developed in the proof of Proposition 2, we have, almost-surely and for any
i , j ∈ {1, . . . , p + q + 1},

lim
t→∞

sup
θ∈Θδ

∣∣∣∣∂εt(θ)

∂θi
− ∂ε̃t(θ)

∂θi

∣∣∣∣ = 0

and

lim
t→∞

sup
θ∈Θδ

∣∣∣∣∂2εt(θ)

∂θi∂θj
− ∂2ε̃t(θ)

∂θi∂θj

∣∣∣∣ = 0.

Since our assumptions are made on the noise in (1), it will be useful to express the random
variables εt(θ) and its partial derivatives with respect to θ, as a function of (εt−i)i≥0.

From (12), there exists a sequence λ(θ) = (λi(θ))i≥0 such that

εt(θ) =
∞∑

i=0

λi (θ) εt−i (19)

where λ(θ) is given by the sequence of the coefficients of the power series b−1θ (z)aθ(z)(1 −
z)d−d0a−1θ0 (z)bθ0(z). Consequently λ(θ) = γ(θ) ∗ η(θ0) or, equivalently,

λi(θ) =
i∑

j=0

γj(θ)ηi−j(θ0). (20)

As in Hualde and Robinson [2011], it can be shown using Stirling’s approximation that there
exists a positive constant K such that

sup
θ∈Θδ

|λi(θ)| ≤ K sup
d∈[d1,d2]

i−1−(d−d0) ≤ K i−1−(d1−d0) . (21)
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Equation (19) and Inequality (21) imply that for all θ ∈ Θ the random variable εt(θ) belongs
to L2, that the sequence (εt(θ))t∈Z is an ergodic sequence and that for all t ∈ Z the function
εt(·) is a continuous function. We proceed in the same way as regard to the derivatives of
εt(θ). More precisely, for any θ ∈ Θ, t ∈ Z and 1 ≤ k , l ≤ p + q + 1 there exists sequences
.
λk(θ) = (

.
λi ,k(θ))i≥1 and

..
λk,l(θ) = (

..
λi ,k,l(θ))i≥1 such that

∂εt(θ)

∂θk
=
∞∑

i=1

.
λi ,k (θ) εt−i (22)

∂2εt(θ)

∂θk∂θl
=
∞∑

i=1

..
λi ,k,l (θ) εt−i . (23)

Of course it holds that
.
λk(θ) =

∂γ(θ)
∂θk
∗ η(θ0) and

..
λk,l(θ) =

∂2γ(θ)
∂θk∂θl

∗ η(θ0).
Similarly, we have

ε̃t(θ) =
∞∑

i=0

λt
i (θ) εt−i , (24)

∂ε̃t(θ)

∂θk
=
∞∑

i=1

.
λ

t

i ,k (θ) εt−i , (25)

∂2ε̃t(θ)

∂θk∂θl
=
∞∑

i=1

..
λ

t

i ,k,l (θ) εt−i , (26)

where λt(θ) = γt(θ) ∗ η(θ0),
.
λ

t

k(θ) =
∂γt(θ)
∂θk
∗ η(θ0) and

..
λ

t

k,l(θ) =
∂2γt(θ)
∂θk∂θl

∗ η(θ0).

4.2. Proof of Theorem 1

We use (5) and a Taylor expansion of the function ∂Qn(·)/∂θ around θ0 to obtain

θn − θ0 = (θ∗n − θ0)−
{

∂2

∂θ∂θ′
Qn (θ

∗
n)

}−1{
∂

∂θ
Qn (θ0) +

[
∂2

∂θi∂θj
Qn

(
θ̃n,i ,j

)]
(θ∗n − θ0)

}
,

(27)

where the θ̃n,i ,j ’s are between θ∗n and θ0. In the two following lemmas, we show respectively the
almost-sure convergence of ∂2Qn(θ

∗
n)/∂θ∂θ

′ to J(θ0) and that of ∂Qn(θ0)/∂θ to 0.

Lemma 1. Under the assumptions of Theorem 1, we have almost-surely

lim
n→∞

∂2

∂θ∂θ′
Qn (θ

∗
n) = J(θ0).

Proof. For any θ ∈ Θ, let

Jn(θ) =
∂2

∂θ∂θ′
Qn (θ) =

2

n

n∑
t=1

{
∂

∂θ
ε̃t (θ)

}{
∂

∂θ′
ε̃t (θ)

}
+

2

n

n∑
t=1

ε̃t(θ)
∂2

∂θ∂θ′
ε̃t(θ),
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and

J∗n (θ) =
∂2

∂θ∂θ′
On (θ) =

2

n

n∑
t=1

{
∂

∂θ
εt (θ)

}{
∂

∂θ′
εt (θ)

}
+

2

n

n∑
t=1

εt(θ)
∂2

∂θ∂θ′
εt(θ).

It is clear that for any i , j ∈ {1, . . . , p + q + 1},∣∣∣∣ ∂2

∂θi∂θj
Qn (θ

∗
n)− J(θ0)(i , j)

∣∣∣∣ ≤ |Jn(θ
∗
n)(i , j)− J∗n (θ

∗
n)(i , j)|

+ |J∗n (θ∗n)(i , j)− J∗n (θ0)(i , j)|+ |J∗n (θ0)(i , j)− J(θ0)(i , j)| .
(28)

So it is enough to show that the three terms in the right hand side of (28) converge almost-
surely to 0 when n tends to infinity. The random variable εt is uncorrelated with ∂εt(θ0)/∂θ and
∂2εt(θ0)/∂θ∂θ (this is due to (22) and (23) and the non correlation of the innovation process
(εt)t∈Z). Thus, by the ergodicity of process (εt)t∈Z assumed in (A1), we have

J∗n (θ0)
a.s.−→

n→∞
2E
[
∂

∂θ
εt(θ0)

∂

∂θ′
εt(θ0)

]
= J(θ0).

Let us now show that the term |J∗n (θ∗n)(i , j)− J∗n (θ0)(i , j)| converges almost-surely to 0.
In view of (13) and (15), one successively has

sup
θ∈Θδ

∥∥∥∥ ∂∂θ
(
∂

∂θi
εt(θ)

∂

∂θj
εt(θ)

)∥∥∥∥
= sup

θ∈Θδ

∥∥∥∥∥ ∂∂θ
{(∑

k1≥1

∂

∂θi
γk1(θ)Xt−k1

)(∑
k2≥1

∂

∂θj
γk2(θ)Xt−k2

)}∥∥∥∥∥
= sup

θ∈Θδ

∥∥∥∥∥ ∂∂θ
( ∑

k1,k2≥1

∂

∂θi
γk1(θ)

∂

∂θj
γk2(θ)Xt−k1Xt−k2

)∥∥∥∥∥
≤ sup

θ∈Θδ

∥∥∥∥∥ ∑
k1,k2≥1

(
∂

∂θ

∂

∂θi
γk1(θ)

)
∂

∂θj
γk2(θ)Xt−k1Xt−k2

∥∥∥∥∥
+ sup

θ∈Θδ

∥∥∥∥∥ ∑
k1,k2≥1

∂

∂θi
γk1(θ)

(
∂

∂θ

∂

∂θj
γk2(θ)

)
Xt−k1Xt−k2

∥∥∥∥∥
≤
∑

k1,k2≥1

sup
θ∈Θδ

∥∥∥∥ ∂∂θ ∂

∂θi
γk1(θ)

∥∥∥∥ sup
θ∈Θδ

∥∥∥∥ ∂

∂θj
γk2(θ)

∥∥∥∥ |Xt−k1| |Xt−k2|

+
∑

k1,k2≥1

sup
θ∈Θδ

∥∥∥∥ ∂

∂θi
γk1(θ)

∥∥∥∥ sup
θ∈Θδ

∥∥∥∥ ∂∂θ ∂

∂θj
γk2(θ)

∥∥∥∥ |Xt−k1| |Xt−k2|

≤ K
∑

k1,k2≥1

(log(k1))
2 k−1−d1

1 log(k2)k
−1−d1
2 |Xt−k1| |Xt−k2|

+ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 (log(k2))

2 k−1−d1
2 |Xt−k1| |Xt−k2| .
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Consequently, we obtain

Eθ0
[
sup
θ∈Θδ

∥∥∥∥ ∂∂θ
(
∂

∂θi
εt(θ)

∂

∂θj
εt(θ)

)∥∥∥∥] ≤ K
∑

k1,k2≥1

(log(k1))
2 k−1−d1

1 log(k2)k
−1−d1
2 sup

t∈Z
Eθ0 |Xt |2

+ K
∑

k1,k2≥1

log(k1)k
−1−d1
1 (log(k2))

2 k−1−d1
2 sup

t∈Z
Eθ0 |Xt |2

≤ K . (29)

Following the same approach used in (29), we have

Eθ0
[
sup
θ∈Θδ

∥∥∥∥ ∂∂θ
{
εt(θ)

∂2

∂θi∂θj
εt(θ)

}∥∥∥∥] <∞. (30)

A Taylor expansion implies that there exists a random variable θ∗∗n between θ∗n and θ0 such that

|J∗n (θ∗n)(i , j)− J∗n (θ0)(i , j)| =
∣∣∣∣ ∂∂θJ∗n (θ

∗∗
n )(i , j) · (θ∗n − θ0)

∣∣∣∣
≤ sup

θ∈Θδ

∥∥∥∥ ∂∂θJ∗n (θ)(i , j)

∥∥∥∥ ‖θ∗n − θ0‖
≤ 2

n

n∑
t=1

sup
θ∈Θδ

∥∥∥∥ ∂∂θ
(
∂

∂θi
εt(θ)

∂

∂θj
εt(θ)

)∥∥∥∥ ‖θ∗n − θ0‖
+

2

n

n∑
t=1

sup
θ∈Θδ

∥∥∥∥ ∂∂θ
{
εt(θ)

∂2

∂θi∂θj
εt(θ)

}∥∥∥∥ ‖θ∗n − θ0‖ .
Proposition 2 (which implies the almost-sure convergence of the LSE θ∗n to θ0), the ergodic
theorem and Equations (29) and (30) imply that limn→∞ |J∗n (θ∗n)(i , j)− J∗n (θ0)(i , j)| = 0 a.s.

To prove the almost-sure convergence of the first term of the right hand side of (28) it
suffices to show that

1

n

n∑
t=1

sup
θ∈Θδ

∣∣∣∣ ∂∂θi
εt(θ)

∂

∂θj
εt(θ)−

∂

∂θi
ε̃t(θ)

∂

∂θj
ε̃t(θ)

∣∣∣∣
and

1

n

n∑
t=1

sup
θ∈Θδ

∣∣∣∣εt(θ)
∂2

∂θi∂θj
εt(θ)− ε̃t(θ)

∂2

∂θi∂θj
ε̃t(θ)

∣∣∣∣



S. Ben Hariz, A. Brouste, Y. Esstafa and M. Soltane/ One-step estimation of weak FARIMA models 21

converge almost-surely to 0. On one hand, we have

1

n

n∑
t=1

sup
θ∈Θδ

∣∣∣∣ ∂∂θi
εt(θ)

∂

∂θj
εt(θ)−

∂

∂θi
ε̃t(θ)

∂

∂θj
ε̃t(θ)

∣∣∣∣
≤ 1

n

n∑
t=1

{
sup
θ∈Θδ

∣∣∣∣ ∂∂θi
εt(θ)−

∂

∂θi
ε̃t(θ)

∣∣∣∣ sup
θ∈Θδ

∣∣∣∣ ∂∂θj
εt(θ)

∣∣∣∣
+ sup

θ∈Θδ

∣∣∣∣ ∂∂θi
ε̃t(θ)

∣∣∣∣ sup
θ∈Θδ

∣∣∣∣ ∂∂θj
ε̃t(θ)−

∂

∂θj
εt(θ)

∣∣∣∣}

≤

(
1

n

n∑
t=1

(
sup
θ∈Θδ

∣∣∣∣ ∂∂θi
εt(θ)−

∂

∂θi
ε̃t(θ)

∣∣∣∣)2
)1/2(

1

n

n∑
t=1

(
sup
θ∈Θδ

∣∣∣∣ ∂∂θj
εt(θ)

∣∣∣∣)2
)1/2

+

(
1

n

n∑
t=1

(
sup
θ∈Θδ

∣∣∣∣ ∂∂θi
ε̃t(θ)

∣∣∣∣)2
)1/2(

1

n

n∑
t=1

(
sup
θ∈Θδ

∣∣∣∣ ∂∂θj
ε̃t(θ)−

∂

∂θj
εt(θ)

∣∣∣∣)2
)1/2

.

From (13) and (15), it follows that

Eθ0

[(
sup
θ∈Θδ

∣∣∣∣ ∂∂θj
εt(θ)

∣∣∣∣)2
]
≤ sup

t∈Z
Eθ0 |Xt |2

(∑
k1≥1

log(k1)k
−1−d1
1

)2

<∞.

Similar calculations can be done to obtain

Eθ0

[(
sup
θ∈Θδ

∣∣∣∣ ∂∂θi
ε̃t(θ)

∣∣∣∣)2
]
<∞.

Cesàro’s Lemma, Remark 3 and the ergodic theorem yield

1

n

n∑
t=1

sup
θ∈Θδ

∣∣∣∣ ∂∂θi
εt(θ)

∂

∂θj
εt(θ)−

∂

∂θi
ε̃t(θ)

∂

∂θj
ε̃t(θ)

∣∣∣∣ a.s.−→
n→∞

0.

On the other hand, one similarly may prove that

1

n

n∑
t=1

sup
θ∈Θδ

∣∣∣∣εt(θ)
∂2

∂θi∂θj
εt(θ)− ε̃t(θ)

∂2

∂θi∂θj
ε̃t(θ)

∣∣∣∣ a.s.−→
n→∞

0.

Thus

sup
θ∈Θδ

‖Jn(θ)− J∗n (θ)‖
a.s.−→

n→∞
0

and the lemma is proved.

Lemma 2. Under the assumptions of Theorem 1, we have almost-surely

lim
n→∞

∂

∂θ
Qn (θ0) = 0.
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Proof. Observe first that, for any i ∈ {1, . . . , p + q + 1},

∂

∂θi
Qn (θ0) =

2

n

n∑
t=1

(
ε̃t(θ0)

∂ε̃t(θ0)

∂θi
− εt

∂εt(θ0)

∂θi

)
+

2

n

n∑
t=1

εt
∂εt(θ0)

∂θi
. (31)

Since εt and ∂εt(θ0)/∂θi are uncorrelated, the ergodic theorem in (A1) implies that the second
term in the right hand side of (31) converges almost-surely to 0 as n→∞.
Note now that

ε̃t(θ0)
∂ε̃t(θ0)

∂θi
− εt

∂εt(θ0)

∂θi
= (ε̃t(θ0)− εt)

∂ε̃t(θ0)

∂θi
+ εt

(
∂ε̃t(θ0)

∂θi
− ∂εt(θ0)

∂θi

)
.

We use, as in the proof of Lemma 1, Proposition 2 and Remark 3 to complete the proof of the
lemma.

The proof of the theorem follows from Proposition 2, Lemma 16 of [Boubacar Maïnassara
et al., 2021b] and Lemmas 1 and 2.

4.3. Proof of Theorem 2

In view of (5) and by a Taylor expansion of the function ∂Qn(·)/∂θ around θ0, we have

√
n
(
θn − θ0

)
=
√

n (θ∗n − θ0)−
√

n

{
∂2

∂θ∂θ′
Qn (θ

∗
n)

}−1{
∂

∂θ
Qn (θ0) +

[
∂2

∂θi∂θj
Qn

(
θ̃n,i ,j

)]
(θ∗n − θ0)

}
,

where the θ̃n,i ,j ’s are between θ∗n and θ0. Hence, it follows that

√
n
(
θn − θ0

)
=

{
∂2

∂θ∂θ′
Qn (θ

∗
n)

}−1
nδ/2

{
∂2

∂θ∂θ′
Qn (θ

∗
n)−

[
∂2

∂θi∂θj
Qn

(
θ̃n,i ,j

)]}
nδ/2 (θ∗n − θ0) n1/2−δ

−
{

∂2

∂θ∂θ′
Qn (θ

∗
n)

}−1√
n
∂

∂θ
Qn (θ0) .

We use Lemmas 16-19 of Boubacar Maïnassara et al. [2021b], Proposition 1 and Slutsky’s
theorem to complete the proof.

4.4. Proof of Proposition 1

For any θ(1), θ(2) ∈ Θ, the mean value theorem gives

∂2

∂θi∂θj
Qn

(
θ(1)
)
− ∂2

∂θi∂θj
Qn

(
θ(2)
)
=

∂3

∂θ∂θi∂θj
Qn

(
(1− c)θ(1) + cθ(2)

)
·
{
θ(1) − θ(2)

}
,

for some c between 0 and 1.
In view of (4) and for all θ ∈ Θ, a simple calculation of derivative leads to

∂3

∂θi∂θj∂θk
Qn (θ) = T1,n(θ) + T2,n(θ) + T3,n(θ) + T4,n(θ),
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where

T1,n(θ) =
2

n

n∑
t=1

∂2ε̃t(θ)

∂θi∂θj

∂ε̃t(θ)

∂θk
,

T2,n(θ) =
2

n

n∑
t=1

∂ε̃t(θ)

∂θj

∂2ε̃t(θ)

∂θi∂θk
,

T3,n(θ) =
2

n

n∑
t=1

∂ε̃t(θ)

∂θi

∂2ε̃t(θ)

∂θj∂θk
,

and

T4,n(θ) =
2

n

n∑
t=1

ε̃t(θ)
∂3ε̃t(θ)

∂θi∂θj∂θk
.

We use Equations (17) and (15) to obtain

E
[
sup
θ∈Θκ

|T1,n(θ)|
]
≤ 2

n

n∑
t=1

E
[
sup
θ∈Θκ

∣∣∣∣∂2ε̃t(θ)

∂θi∂θj

∣∣∣∣ sup
θ∈Θκ

∣∣∣∣∂ε̃t(θ)

∂θk

∣∣∣∣]

=
2

n

n∑
t=1

E

[
sup
θ∈Θκ

∣∣∣∣∣
∞∑
`=1

∂2γt
`(θ)

∂θi∂θj
Xt−`

∣∣∣∣∣ supθ∈Θκ

∣∣∣∣∣
∞∑
`=1

∂γt
`(θ)

∂θk
Xt−`

∣∣∣∣∣
]

≤ 2

n

n∑
t=1

t−1∑
`1,`2=1

sup
θ∈Θκ

∣∣∣∣∂2γ`1(θ)∂θi∂θj

∣∣∣∣ sup
θ∈Θκ

∣∣∣∣∂γ`2(θ)∂θk

∣∣∣∣E [|Xt−`1Xt−`2|]

≤ 2 sup
t∈Z

E
[
X 2

t

]( ∞∑
`=1

`−1−d1 {log(`)}2
)(

∞∑
`=1

`−1−d1 log(`)

)
<∞.

Thanks to Markov’s inequality, we deduce that

sup
θ∈Θκ

|T1,n(θ)| = OP(1).

Similar calculation can be done to show that T2,n(θ), T3,n(θ) and T4,n(θ) are bounded in
probability uniformly in θ. It follows then that

sup
θ∈Θκ

∥∥∥∥ ∂3

∂θ∂θi∂θj
Qn (θ)

∥∥∥∥ = OP(1).

This is enough to complete the proof.
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