Honglu Sun 
email: honglu.sun@ls2n.fr
  
Maxime Folschette 
  
Morgan Magnin 
  
Limit cycle analysis of a class of hybrid gene regulatory networks ⋆

Keywords: Hybrid modeling, Celerity, Transition matrix, Limit cycle, Gene regulatory networks, Poincaré map

Many gene regulatory networks have periodic behavior, for instance the cell cycle or the circadian clock. Therefore, the study of formal methods to analyze limit cycles in mathematical models of gene regulatory networks is of interest. In this work, we study a pre-existing hybrid modeling framework (HGRN) which extends René Thomas' widespread discrete modeling. We propose a new formal method to find all limit cycles that are simple and deterministic, and analyze their stability, that is, the ability of the model to converge back to the cycle after a small perturbation. Up to now, only limit cycles in two dimensions (with two genes) have been studied; our work fills this gap by proposing a generic approach applicable in higher dimensions. For this, the hybrid states are abstracted to consider only their borders, in order to enumerate all simple abstract cycles containing possible concrete trajectories. Then, a Poincaré map is used, based on the notion of transition matrix of the concrete continuous dynamics inside these abstract paths. We successfully applied this method on existing models: three HGRNs of negative feedback loops with 3 components, and a HGRN of the cell cycle with 5 components.

Introduction

Using mathematical models to study the dynamics of gene regulatory networks is fundamental because of the complex nature of biological systems. Two widely used formalisms are discrete models (like Boolean networks [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF]) and continuous models (differential equations [START_REF] Barik | A model of yeast cell-cycle regulation based on multisite phosphorylation[END_REF], stochoastic models [START_REF] Karlebach | Modelling and analysis of gene regulatory networks[END_REF]). The dynamics of discrete models are easy to analyze but sometimes not precise enough (for example, it is hard to identify damped oscillation in discrete models). Continuous models are more precise but their dynamics are sometimes hard to analyze. To make a bridge between discrete and continuous models, hybrid models were proposed [START_REF] Sriram | Discrete delay model for the mammalian circadian clock[END_REF][START_REF] Comet | Simplified models for the mammalian circadian clock[END_REF][START_REF] Comet | A formal model for gene regulatory networks with time delays[END_REF]: they can be seen as a simplification of the continuous models or an extension of the discrete model. These hybrid models contain both continuous and discrete components.

In this work, we study a class of hybrid models: hybrid gene regulatory networks (HGRN) [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF][START_REF] Cornillon | Hybrid gene networks: a new framework and a software environment[END_REF] which is an extension of Thomas' discrete modeling framework [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF][START_REF] Thomas | Regulatory networks seen as asynchronous automata: a logical description[END_REF]. HGRNs have been used to model the circadian clock [START_REF] Cornillon | Hybrid gene networks: a new framework and a software environment[END_REF] and the cell cycle [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF]. In HGRNs, the state space is separated into several discrete states, as for discrete models, and in each discrete state, the temporal derivative of the system is described by a constant vector making the system evolve continuously over time, as for differential equations. The most important property of HGRNs is that the sliding mode is allowed, which means that when a trajectory reaches a black wall (a boundary of the discrete state which cannot be crossed by trajectories) it is forced to move along the black wall.

Previous studies of HGRNs mostly focused on parameters identification [START_REF] Behaegel | Constraint identification using modified hoare logic on hybrid models of gene networks[END_REF]. Another important aspect is the dynamical analysis of HGRNs, such as the location of the attractors and their nature (fixed point, limit cycle, etc.). Dynamical properties can be used for model verification and for the discovery of new possible biological behaviors. For now, few results about analysis of HGRNs have been published. We can mainly cite [START_REF] Cornillon | Hybrid gene networks: a new framework and a software environment[END_REF] which discussed necessary and sufficient conditions of the existence of a limit cycle of a HGRN in two dimensions, that is, containing two genes. In higher dimensions, limit cycles of HGRNs are more complex. However, no result about the analysis of limit cycles of HGRNs in N dimensions has been published yet, although many genetic oscillators contain several genes. In this work, we seek to fill this gap by studying limit cycles of HGRNs in N dimensions. The main contribution of this work is a new formal method to find all simple limit cycles that do not visit several times the same discrete state in one loop, in a HGRN of N dimensions, and to analyze their stability. The limitations are: we do not consider trajectories that reach several borders simultaneously, which is a very particular case, and we do not consider trajectories containing states which can potentially reach several discrete states and would introduce non-determinism.

The main idea of this new method is based on the notion of Poincaré map. The Poincaré map was initially proposed to study periodic orbits of nonlinear dynamical system and has also been used later to study limit cycles of hybrid systems [START_REF] Belgacem | Control of negative feedback loops in genetic networks[END_REF][START_REF] Firippi | Topology-induced dynamics in a network of synthetic oscillators with piecewise affine approximation[END_REF]. The Poincaré map describes the intersection of a periodic orbit of the system with a lower dimension subspace which is called the Poincaré section. In other words, the Poincaré map allows to witness the shift made by an oscillatory trajectory in a chosen hyperplane of the state space. Thus, by using a Poincaré map, the study of the limit cycle in the original system is transformed into the study of the related fixed point in another system in lower dimensions. One major problem of the application of the Poincaré map to study limit cycles of hybrid systems is that the computation of the Poincaré map can be difficult and the shape of a Poincaré map can be complex, making it hard to analyze. In HGRNs, the shape of the Poincaré map is a simple affine map, but its calculation is still complex because of the existence of sliding modes (two different trajectories that cross the same sequence of discrete states have different Poincaré maps if they have different sliding modes). It is the major difficulty of this method, and to deal with this problem, a new abstraction based on the new concept of discrete domain is proposed. Relying on such discrete domains, we also (re)define the notions of discrete trajectory, transition matrix and compatible zone to calculate the Poincaré map. After the Poincaré map is obtained, the fixed point of the Poincaré map is computed to find the limit cycle and an eigenanalysis is applied to analyze the stability of the limit cycle found.

Most of the works about dynamical analyses of hybrid systems focus on reachability analyses [START_REF] Doyen | Verification of hybrid systems[END_REF]. Among these analysis methods, our method is most similar to the discrete abstraction method [START_REF] Alur | Discrete abstractions of hybrid systems[END_REF][START_REF] Alur | Counter-example guided predicate abstraction of hybrid systems[END_REF] of which the main purpose is to obtain a finite state transition system from a hybrid automaton. The study of periodic orbits in hybrid system is also a lively field: we can cite, for example, works [START_REF] Clark | A poincaré-bendixson theorem for hybrid dynamical systems on directed graphs[END_REF][START_REF] Simic | Hybrid limit cycles and hybrid poincaré-bendixson[END_REF][START_REF] Clark | A poincaré-bendixson theorem for hybrid systems[END_REF] based on the Poincaré-Bendixson theorem for systems in two dimensions, and works [START_REF] Hiskens | Stability of hybrid system limit cycles: Application to the compass gait biped robot[END_REF][START_REF] Hiskens | Stability of limit cycles in hybrid systems[END_REF][START_REF] Znegui | Design of an explicit expression of the poincaré map for the passive dynamic walking of the compass-gait biped model[END_REF][START_REF] Flieller | Computation and stability of limit cycles in hybrid systems[END_REF][START_REF] Girard | Computation and stability analysis of limit cycles in piecewise linear hybrid systems[END_REF] based on the Poincaré map for hybrid systems in N dimensions.

Even though few works exist about limit cycles analysis in HGRNs, limit cycles were studied in other hybrid models of gene regulatory networks. Most of these works are also based on the Poincaré map. In [START_REF] Belgacem | Control of negative feedback loops in genetic networks[END_REF][START_REF] Firippi | Topology-induced dynamics in a network of synthetic oscillators with piecewise affine approximation[END_REF], the Poincaré map is used to study the limit cycle of simple piecewise affine systems in two dimensions. In these works, since the system is planar, it is easy to compute and analyze the Poincaré map. In [START_REF] Mestl | Chaos in high-dimensional neural and gene networks[END_REF][START_REF] Edwards | Analysis of continuous-time switching networks[END_REF][START_REF] Edwards | A calculus for relating the dynamics and structure of complex biological networks[END_REF], methods are proposed to find and analyze limit cycles in higher dimensions of piecewise affine system with a uniform decay rate. The hypothesis of a uniform decay rate in these works makes it always possible to calculate a Poincaré map because they have a simple shape. However, for a general piecewise affine system, it is difficult to prove theoretically the existence of limit cycle except for some particular examples such as negative loops [START_REF] Farcot | Periodic solutions of piecewise affine gene network models with non uniform decay rates: the case of a negative feedback loop[END_REF][START_REF] Chaves | Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria[END_REF].

Compared to previous works about limit cycles in hybrid system, our work has two major novelties: (1) We consider limit cycles with sliding modes, and (2) We use an abstraction method in order to find cycles of discrete regions, which might contain limit cycles (in other words, cycles of discrete regions which contain at least one continuous trajectory).

It is worth mentioning that our work is similar to [START_REF] Mestl | Chaos in high-dimensional neural and gene networks[END_REF][START_REF] Edwards | Analysis of continuous-time switching networks[END_REF][START_REF] Edwards | A calculus for relating the dynamics and structure of complex biological networks[END_REF]. These works use similar methods based on the Poincaré map but apply it to a different kind of hybrid framework, in which temporal derivatives are affine functions in each discrete region, while in HGRNs they are constants. Following these works, [START_REF] Glass | Hybrid models of genetic networks: Mathematical challenges and biological relevance[END_REF] proposes a framework that is close to ours, in which temporal derivatives are constants in each discrete region, but is not focused on enumerating limit cycles. Our work also uses a similar approach than [START_REF] Behaegel | Constraint identification using modified hoare logic on hybrid models of gene networks[END_REF] to compute trajectories based on constraints, which constitutes one of the steps our method.

There are other works which are based on piecewise constant derivative systems, which are similar to HGRNs, but study different problems, for example, the decidability of the reachability problem [START_REF] Asarin | Reachability analysis of dynamical systems having piecewise-constant derivatives[END_REF][START_REF] Asarin | Low dimensional hybrid systems-decidable, undecidable, don't know[END_REF], the stability of fixed point [START_REF] Prabhakar | Abstraction based model-checking of stability of hybrid systems[END_REF].

This paper is organized as follows. In Section 2, we define HGRNs. In Section 3, we use a simple example to describe our method to find and analyze limit cycles of HGRNs. In Section 4, we apply the method on three HGRNs of negative feedback loops in 3 dimensions and a HGRN of the cell cycle in 5 dimensions. And finally in Section 5, we make a conclusion by discussing the merits and limit of this method and our future work.

Hybrid gene regulatory networks

This section defines Hybrid Gene Regulatory Networks (HGRNs). Compared to the original paper regarding HGRNs [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF], we introduce here some new notions about HGRNs, including (closed) trajectory and (input/output/attractive/neutral) boundary.

Consider a gene regulatory network with N genes, the i th gene has n i + 1 discrete levels which are represented by integers: {0, 1, 2, ..., n i }. A discrete state s is obtained by attributing a valuation for each gene among its discrete levels. We denote d s the integer vector which describes the discrete levels of all genes in s in order; in the following, for simplicity, we also call d s a discrete state. The set of all discrete states is In HGRNs, a hybrid state is used to fully describe the state of the system: it contains the discrete state in which the system currently is, and a fractional part that represents the (normalized) position of each variable inside this discrete state.

E d = d s ∈ N N | ∀i ∈ {1, 2, ..., N } , d i s ∈ {0,
Definition 2 (Hybrid state of HGRN). A hybrid state of a HGRN is a couple h = (π, d s ) containing a fractional part π, which is a real vector [0, 1] N , and a discrete state d s in E d . E h is the set of all hybrid states.

In the following, we will use simply state to denote a hybrid state. Based on this notion of state, a trajectory and a boundary are defined as follow.

Definition 3 (Trajectory).

A trajectory τ is a function from a time interval [0, t 0 ] to E τ = E h ∪ E sh , where t 0 ∈ R + ∪ {∞}, E h is the set of all states, and E sh is the set of all finite sequences of states (

E sh = (h 0 , h 1 , ..., h m ) ∈ (E h ) m+1 | m ∈ N ).
A trajectory represents a simulation of the system over time. Consider a trajectory τ on [0, t 0 ]. For any t ∈ [0, t 0 ], if τ (t) ∈ E sh , this means that there is a sequence of instant transitions at t; otherwise, if τ (t) ∈ E h , then the trajectory in t is made of a regular point. A trajectory

τ defined on [0, ∞[ is called a closed trajectory if ∃T > 0, ∀t ∈ [0, ∞[, τ (t) = τ (t + T ). The smallest T is the period of τ .
Definition 4 (Boundary). A boundary in a discrete state d s is a set of states defined by e(i, π 0 , d s ) = (π, d s ) ∈ E h | π i = π 0 , , where i ∈ {1, 2, ..., N } , d s ∈ E d and π 0 ∈ {0, 1}. The boundary e(i, π 0 , d s ) is inside the discrete state d s . In the rest of this paper, we simply use e to represent a boundary.

A toy example of HGRN, not based on any real-world biological system, is shown in Fig 1 . This example is related to a negative feedback loop with two genes: A (first dimension) and B (second dimension), where A activates B and B inhibits A. Each gene has two discrete levels, so there are four discrete states in this system. In the right part of the figure representing the model's dynamics, black arrows represent the celerities of each discrete state and red arrows represent a possible trajectory of this system, which happens to be a closed trajectory.

The state h M = ((π 1 M , 1) T , (1, 1) T ) of point M belongs to the upper boundary e 1 in the second dimension of the discrete state (1, 1) T . Since there is no other discrete state on the other side of e 1 , the trajectory from h M cannot cross e 1 and has to slide along e 1 . Boundaries like e 1 , which can be reached by trajectories but cannot be crossed, are defined as attractive boundaries. If there was another discrete state on the other side of e 1 , in which the celerity is negative in the second dimension (towards the boundary), then the trajectory from h M could still not cross it, and in this case e 1 would also be an attractive boundary.

The state h P = ((π 1 P , 0) T , (0, 1) T ) of point P belongs to the lower boundary e 2 in the second dimension of the discrete state (0, 1) T . The trajectory from h P will reach instantly h Q = ((π 1 Q , 1) T , (0, 0) T ), which belongs to the upper boundary e 3 in the second dimension of (0, 0) T , because the celerities on both sides allow this (instant) discrete transition. e 2 is defined as an output boundary of (0, 1) T and e 3 is defined as an input boundary of (0, 0) T .

When a trajectory reaches several output boundaries at same time, a priori, it is non-deterministic because it can cross any of them. In this work, Constraint 1 is proposed to make HGRNs deterministic in any state. This is convenient for simulation purposes.

Formal details about the simulation of general HGRNs are presented as follows. Consider a state h = (π, d s ) and a trajectory τ which reaches h at t > 0.

-If h does not belong to any boundary, then dτ (t) dt = c s (the temporal derivative of a hybrid state h = (π, d s ) is defined as dh dt = dπ dt ).

-If h only belongs to one boundary e, let us consider that e is the upper boundary in i th dimension (the result is easily adapted when e is the lower boundary). In case d i s is not the maximal discrete level of i th gene, the discrete state on the other side of e is noted as d r , where andd 

d k s = d k r for all k ̸ = i,
i s + 1 = d i r .
There are four possible cases: • If c i s < 0, then the trajectory from the current state will enter the interior of the current discrete state. e called an input boundary of d s .

dτ (t + ) dt = c s , dτ (t -) dt = c r and τ (t) = ((π ′ , d r ), (π, d s ))
, where π ′k = π k for all k ̸ = i, and π ′i = 0, which means that there is an instant transition from (π ′ , d r ) to (π, d s ) at t.

• If c i s = 0, then the trajectory from the current state will slide along the boundary e, which is then called a neutral boundary

of d s . dτ (t + ) dt = dτ (t -) dt = c s and τ (t) = (π, d s ). • If c i s > 0,
and either d i s is the maximal discrete level of the i th gene, or d i s is not the maximal discrete level of the i th gene but the i th component of c r is negative, then the trajectory from the current state will slide along the boundary e, which is called an attractive boundary of d s . If τ reaches e at t, then:

dτ (t + ) dt k = c k s for all k ̸ = i, dτ (t + ) dt i = 0, dτ (t -) dt = c s and τ (t) = (π, d s ). If τ reaches e at t 0 < t, then: dτ (t) dt k = c k s for all k ̸ = i, dτ (t) dt i = 0, and τ (t) = (π, d s ). • If c i s > 0, d i s
is not the maximal discrete level of the i th gene, and the i th component of c r is positive, then the trajectory from the current state will cross instantly the boundary e and enter the discrete state d r . e is called an output boundary of d s .

dτ (t + ) dt = c r , dτ (t -) dt = c s and τ (t) = ((π, d s ), (π ′ , d r ))
, where π ′k = π k for all if k ̸ = i, and π ′i = 0.

-If h belongs to several boundaries, then the previous cases can be mixed:

• If in these boundaries there is no output boundary, then the trajectory from the current state will exit all input boundaries and slide along all attractive or neutral boundaries. • If in these boundaries there is only one output boundary, then the trajectory from the current state will cross this output boundary. • If in these boundaries there are several output boundaries, then the trajectory from the current state will cross one of them following Constraint 1.

Constraint 1 If a state of an HGRN is on several output boundaries of dimensions dim 1 , dim 2 , ..., dim m , where dim i is the gene number, such that dim 1 < dim 2 < ... < dim m , then from this state the trajectory will only cross the output boundary of dimension dim 1 (the dimension of lowest value).

An attractive boundary can also be considered as a black wall which is a boundary that attracts neighbor trajectories and cannot be crossed. In general hybrid systems, the behavior on black wall is not easy to define because the derivatives might be different on the different sides of a black wall. In HGRNs, by using hybrid states, a black wall is separated into two boundaries, therefore the system can have different derivatives on the different sides of the wall. There exist other methods to define behaviors of the system on a black wall [START_REF] Gouzé | A class of piecewise linear differential equations arising in biological models[END_REF][START_REF] Plahte | Analysis and generic properties of gene regulatory networks with graded response functions[END_REF].

Limit cycle analysis

This section presents new methods to find closed trajectories (potential limit cycles) (Section 3.1) and to analyze their stability (Section 3.2).

In this paper, we make two assumptions about limit cycles in HGRNs.

A B CA CB 0 0 0.6 -0.7 0 1 -0.7 -0.9 1 0 0.7 0.8 1 1 -0.6 0.9 Assumption 2 For any instant transition on the closed trajectory (from state h i to state h j ), there is at most one output boundary to which h j belongs.

For Assumption 1, in real-life systems, it is indeed very unlikely for parameters to be that constrained due to measurement noise. Assumption 2 can be satisfied if we assume that a threshold of one gene only influences at most one another gene. A counter example for Assumption 1 is: ((0.3, 0.7) T , (a, b) T ) -→ ((1, 1) T , (a, b) T ), for any values of a and b, which is a non instant transition reaching two new boundaries at the same time. A counter example for Assumption 2 is: ((1, 1, 1) T , (a, b, c) T ) -→ ((0, 1, 1) T , (a + 1, b, c) T ), for any values of a, b and c, where the upper boundaries in the second and third dimensions of (a + 1, b, c) T are output boundaries.

Identification of closed trajectories

In this section, we describe our method to find closed trajectory using the example in Fig 1 . This method has three steps which are described in order.

(1) Abstract the HGRN with discrete domains First, the HGRN is transformed into a graph of discrete domains. A discrete domain is a new concept proposed in this work which is defined as follows.

Definition 5 (Discrete domain). A discrete domain D(d s , S -, S + ) is a set of states inside one discrete state d s , defined by:

D(d s , S -, S + ) = {(π, d s ) | ∀i ∈ {1, 2, ..., N }, π i ∈    {1} if i ∈ S + {0} if i ∈ S - ]0, 1[ if i ̸ ∈ S -∪ S + }
where S + and S -are power sets of {1, 2, ..., N } such that S + ∩ S -= ∅ and S + ∪ S -̸ = ∅. In fact, S + (S -) represents the dimensions in which the upper (lower) boundaries are reached by any state h ∈ D(d s , S -, S + ). In the rest of this paper, we simply use D to represent a discrete domain when there is no ambiguity.

In the rest of this paper, as a notation, we add exponents to the vector representation of a discrete state to indicate which upper (lower) boundaries are reached. For instance, (1, 1 + ) T denotes the discrete domain inside discrete state (1, 1) where the upper boundary is reached for the second dimension and no boundary is reached for the first dimension, that is:

D((1, 1) T , ∅, {2}) = (π, (1, 1) T ) | π 1 ∈ ]0, 1[ ∧ π 2 = 1
Actually, the discrete state (1, 1) T contains 8 discrete domains: -There are instant transitions from D i to D j , which means that trajectories from D i will cross a boundary and instantly reach D j ; see for example (0 + , 0) T and (1 -, 0) T in Fig 2 A. -Only considering the sign of celerities, it is possible that there is a trajectory which begins from D i and reaches D j without going through another boundary; see for example (0, 0 + ) T and (0 + , 0) T in Fig 2 A: since the celerity of (0, 0) T is positive in the first dimension and negative in the second, it is possible that there is trajectory from (0, 0 + ) T which reaches (0 + , 0) T . We exclude cases where two new boundaries are reached at the same time; for instance, there is no edge between (0, 0 + ) T and (0 + , 0 -) T .

A B

(2) Find the closed discrete trajectories Based on the graph of discrete domains, we consider a sequence of discrete domains T = (D 0 , D 1 , ...D p ) which is a walk in the graph of discrete domains.

A trajectory is said to be inside such a sequence of discrete domains if it begins from the first discrete domain and reaches by order all discrete domains in the sequence. Based on this, we define two new notions on such a sequence: the transition matrix, which allows to compute the final state of a trajectory inside a given sequence of discrete domains, when it exists, and the compatible zone, which is the set of initial states so that such a trajectory exists.

Definition 6 (Transition matrix). Consider two different discrete domains D i and D j such that there exists a sequence of discrete domains T from D i to D j . If there exists a state h i = (π i , d si ) in D i so that from h i there is a trajectory τ (defined on [0, t 0 ]) which is inside T and reaches D j on h j = (π j , d sj ) at t 0 , then there exists a transition matrix M which describes the relation between π i and π j , that is: 

π j = s -1 (M s(π i )),
+ , 0) T , (1 -, 0) T ) is   1 0 -1 0 1 0 0 0 1   .
Definition 7 (Compatible zone). Consider a sequence of discrete domains T = (D 0 , D 1 , D 2 , ..., D m ). The compatible zone S is the maximal subset of D 0 such that any trajectory starting from S contains a sub-trajectory that is inside T . More formally, for any state h ∈ S, if τ is the trajectory defined on [0, ∞] and beginning from h, then there exists t 0 such that the restriction of τ on [0, t 0 ] is a trajectory inside T . Proof. Proof of sufficient condition: We can easily see that if h = (π, d s0 ) belongs to the compatible zone S of T = (D 0 , D 1 , D 2 , ..., D m ), then ∀i ∈ {1, 2, ..., m}, h also belongs to the compatible zone of (D 0 , D 1 , D 2 , ..., D i ), so (s -1 (M (D0,D1,...,Di) s(π)), d si ) ∈ D i .

The compatible zone

Proof of necessary condition: By induction. Consider a sequence of discrete domains of length 2: (D 0 , D 1 ), (s -1 (M (D0,D1) s(π)), d s1 ) ∈ D 1 means that, when the trajectory from h reaches the new boundary D 1 in all dimensions in which an attractive boundary is not reached and which are not part of the boundaries related to D 1 , the fractional parts are all strictly between 0 and 1, so h belongs to the compatible zone of (D 0 , D 1 ). Now suppose that it is true for any sequence of discrete domains of length k + 1, and consider a sequence of discrete domains of length k + 2: (D 0 , D 1 , D 2 , ..., D k+1 ). Since it is true for a sequence of discrete domains of length k + 1, h belongs to the compatible zone of (D 0 , D 1 , D 2 , ..., D k ), so the trajectory from h will stay inside (D 0 , D 1 , D 2 , ..., D k ) and will reach

D k at h k = (s -1 (M (D0,D1,...,D k ) s(π)), d s k ). Let h k = (π k , d s k ). We can easily see that s -1 (M (D0,D1,...,D k+1 ) s(π)) = s -1 (M (D k ,D k+1 ) s(π k )). So we have (s -1 (M (D k ,D k+1 ) s(π k )), d s k+1 ) ∈ D k+1 .
Similarly to the case of length 2, h k belongs to the sable zone of (D k , D k+1 ). Therefore, h belongs to the compatible zone of

(D 0 , D 1 , D 2 , ..., D k+1 ). ⊓ ⊔ A sequence of discrete domains T is called a discrete trajectory if the com- patible zone of T is not empty. A discrete trajectory T = (D 1 , D 2 , ...D m ) is said closed if D 1 = D m .
In order to find closed discrete trajectories, we use a depth first algorithm. For this, we rely on the notion of Poincaré section which, in our case, is a boundary of dimension N -1 that a given closed trajectory always crosses. We first choose one or several input boundaries of discrete states as Poincaré sections by studying the cycles in the transition graph of discrete states, and then on each discrete domain on the Poincaré section, we apply this depth first algorithm. In each step of this depth first algorithm the compatible zone is calculated and the search will continue if the compatible zone is not empty. This algorithm finds all discrete trajectories which begin from a discrete domain and return to the initial discrete state without crossing the same discrete state more than once. An execution of this algorithm on discrete domain (0, 0 + ) T is illustrated in Fig 3 .  Among these discrete trajectories, we can easily find the closed ones.

Consider the HGRN in Fig 1 , we can easily see that there is only one cycle of discrete states in this system, which is:

(0, 0) T - → (1, 0) T - → (1, 1) T - → (0, 1) T - → ( 
0, 0) T Therefore, for this system, we only need one Poincaré section and any boundary in this cycle can take this role. Let us choose for instance the input boundary of discrete state (0, 0) T from (0, 1) T as Poincaré section, that is, the union of the three discrete domains (0 -, 0 + ) T , (0, 0 + ) T and (0 + , 0 + ) T . We thus apply the depth first algorithm on each of these three discrete domains. As a result, we can find 5 discrete trajectories which begin from the Poincaré section and returns to the initial discrete state:

1 : (0 -, 0 + ) T - → (0, 0 -) T - → (0 + , 0 -) T - → (1 -, 0 -) T - → (1, 0 + ) T - → (1, 1 -) T - →
Fig. 3: Illustration of the depth first algorithm on discrete domain (0, 0

+ ) T (1, 1 + ) T - → (1 -, 1 + ) T - → (0 + , 1 + ) T - → (0, 1 -) T - → (0, 0 + ) T 2 : (0, 0 + ) T - → (0 + , 0) T - → (1 -, 0) T - → (1, 0 + ) T - → (1, 1 -) T - → (1 -, 1) T - → (0 + , 1) T - → (0, 1 -) T - → (0, 0 + ) T 3 : (0, 0 + ) T - → (0 + , 0) T - → (1 -, 0) T - → (1, 0 + ) T - → (1, 1 -) T - → (1, 1 + ) T - → (1 -, 1 + ) T - → (0 + , 1 + ) T - → (0, 1 -) T - → (0, 0 + ) T 4 : (0, 0 + ) T - → (0, 0 -) T - → (0 + , 0 -) T - → (1 -, 0 -) T - → (1, 0 + ) T - → (1, 1 -) T - → (1, 1 + ) T - → (1 -, 1 + ) T - → (0 + , 1 + ) T - → (0, 1 -) T - → (0, 0 + ) T 5 : (0 + , 0 + ) T - → (1 -, 0 + ) T - → (1 -, 1 -) T - → (0 + , 1 -) T - → (0 + , 0 +
) T Examples of trajectories inside each of these 5 discrete trajectories are shown in Fig 2 B. We note that there always exists at least one trajectory inside a discrete trajectory since, by definition, its compatible zone is not empty. Among the 5 discrete trajectories above, only the first one is not closed.

(3) Find a closed trajectory inside each closed discrete trajectory Consider a closed discrete trajectory T = (D 0 , D 1 , ...D m , D 0 ). A closed trajectory inside T is a looping trajectory inside T , that is, a trajectory which begins from a state h ∈ D 0 , reaches by order all discrete domains of T and finally reaches back state h. To check if there is a closed trajectory inside T = (D 0 , D 1 , ...D m , D 0 ), we only need to verify the two following properties:

-∃(π 0 , d s0 ) ∈ D 0 such that s -1 (M T s(π 0 )) = π 0 , and -(π 0 , d s0 ) belongs to the compatible zone of T .

Then (π 0 , d s0 ) is called a fixed point of T .

Under Assumption 1, any closed trajectory which crosses the Poincaré section must be inside one of the closed discrete trajectories found by the depth first algorithm. Meanwhile, if a closed trajectory reaches more than one new boundary at the same time, then it is not inside any closed discrete trajectories found by the algorithm. (π, (0, 0) T ) | π 2 = 1, π 1 ∈]0.1428, 0.3469[ . Actually, there is another closed trajectory inside the fifth closed discrete trajectory; it is the trajectory labeled "5" in Fig 2 B. This trajectory only contains instant transitions (transition crossing a boundary), so all states in this trajectory are related to the same point in the euclidean space. It could be called a Zeno fixed point. Our analysis method of limit cycles does not consider this type of closed trajectory.

Among the five closed discrete trajectories in the HGRN in

By using the method above, it is possible to find some isolated closed trajectories (closed trajectories which can not be reached or converged to by any trajectory) which are not limit cycles. They can be identified by the analysis method proposed in the next section.

Stability analysis

Before introducing our stability analysis method of limit cycles in HGRNs, firstly we define the stability of limit cycles in HGRNs.

Definition 8 (Neighborhood in the same discrete state). The neighborhood in the same discrete state of a state h = (π 0 , d s ) T is a set of states defined as: N d (h, r) = (π, d s ) | d(π, π 0 ) < r, π ∈ [0, 1] N , with r > 0 the radius of this neighborhood, and d the maximum norm between vectors: d(π, π 0 ) = max i∈{1,2,...,N } | π i -π i 0 |. Definition 9 (Stability of limit cycles in HGRNs). A limit cycle C τ is stable if, for any state h on C τ , there exists a neighborhood in the same discrete state of radius r such that any trajectory τ 0 that begins from this neighborhood N d (h, r) satisfies: lim t→∞ (Dis min (τ 0 (t), C τ )) = 0 where Dis min (h ′ , C τ ) is defined as Dis min (h ′ , C τ ) = min h0∈Cτ d(x(h ′ ), x(h 0 )), with h ′ ∈ E h , x(h ′ ) the sum (dimension by dimension) of the fractional part and the discrete state of state h ′ , and d the maximum norm.

It is noteworthy that in most cases, a value of t high enough is sufficient to obtain Dis min (τ 0 (t), C τ ) = 0, without needing a limit computation.

In the following, we call neighborhood of a trajectory a union of neighborhood in the same discrete state of all the states in this trajectory. A limit cycle is said to respect the continuity of neighborhood if there exists a neighborhood of this cycle that is small enough so that all trajectories starting from this neighborhood remain in this neighborhood. When a limit cycle does not have continuity of neighborhood, some trajectories in the neighborhood may undergo a "disruption" by touching another boundary and thus follow another sequence of discrete states. Without Assumption 1 and Assumption 2, some neighborhoods of a limit cycle might not respect this continuity, no matter how small they are. For example, consider a limit cycle that contains a state ((1, 1) T , (a, b) T ), for given values of a and b, where the upper boundaries in the first and second dimensions are both output boundaries. According to Constraint 1, the trajectory from this state crosses the boundary in the first dimension at first. However, in the neighborhood of ((1, 1) T , (a, b) T ), no matter how small it is, we can always find a state which reaches the boundary in the second dimension at first, and as it will reach a different discrete state, it might never return to the neighborhood of the limit cycle. We claim that Assumption 1 and Assumption 2 together are sufficient conditions for the continuity of neighborhood of any limit cycle in HGRNs, although we do not show a proof of this. In the following, the continuity of neighborhood is thus assumed for any limit cycle. Now we present the method to analyze the stability of limit cycle. Consider a closed trajectory τ inside the closed discrete trajectory T = (D 1 , D 2 , ...D m , D 1 ). τ begins from h = (π, d s1 ) ∈ D 1 . By definition of a closed trajectory, we have:

π = s -1 (M T s(π)) (1) 
For π, there might be some dimensions in which the values are 0 or 1 because in these dimensions the upper or lower boundaries are reached. If we only consider the dimensions in which the boundaries are not reached, Equation 1 becomes:

x = Ax + b (2) 
where x is a reduction of π which only contains the dimensions in which the boundaries are not reached. The matrix A is called the reduction matrix of T and vector b is called the constant vector of T . The stability analysis method of the limit cycle is based Theorem 2.

Theorem 2. Consider a limit cycle τ inside the closed discrete trajectory T = (D 1 , D 2 , ...D m , D 1 ), and λ 1 , λ 2 , ..., λ p the eigenvalues of the reduction matrix A of T . If max i∈{1,2,...,p} | λ i | < 1 then τ is stable, otherwise τ is not stable.

Proof. For this proof, we define the neighborhood in the same discrete domain of a state h = (π 0 , d s0 ) T as the set of states:

N D (h, r) = {(π, d s0 ) | d(π, π 0 ) < r ∧ (π, d s0 ) ∈ D 0 }
, where D 0 is the discrete domain which includes h. Consider a closed trajectory C τ that exists inside a closed discrete trajectory T . The intersection of C τ with the Poincaré section e is h 0 = (π 0 , d s0 ). The Poincaré map in the compatible zone of T is noted as x k+1 = Ax k + b, where x is the reduction of the fractional part considering only the dimensions in which the boundaries are not reached (the reduction of π 0 is x 0 ). The stability of the fixed point(s) of the system x k+1 = Ax k + b depends on the eigenvalues of A.

If the absolute values of all eigenvalues of A are less than 1, then x 0 is asymptotically stable for the system x k+1 = Ax k +b. And since the neighborhood of C τ is continuous, we can find a neighborhood in the same discrete domain of h 0 : N D (h 0 , r 0 ), such that any trajectory τ from N D (h 0 , r 0 ) stays inside the neighborhood of C τ and converges asymptotically to or reaches C τ . Also, based on the fact that the neighborhood of C τ is continuous, for any state h ′ on C τ , we can find a neighborhood in the same discrete state of h ′ : N d (h ′ , r), such that any trajectory from N d (h ′ , r) reaches N D (h 0 , r 0 ). Thus, for any trajectory τ from N d (h ′ , r), we have: lim t→∞ Dis min (τ (t), C τ ) = 0, which proves that C τ is a stable limit cycle.

If the maximum absolute value of all eigenvalues of A equals to or is greater than 1, then x 0 is marginally stable or unstable for system x k+1 = Ax k + b; in both cases we cannot guarantee that any trajectory from a small neighborhood in the same discrete domain of h 0 converges to or reaches C τ . Therefore, C τ is not stable.

⊓ ⊔

For the HGRN in Fig 1, the reduction matrix of the third closed discrete trajectory is 0 , so the closed trajectory inside this closed discrete trajectory is a stable limit cycle. Consider for example the fourth trajectory in Fig 2 B which is a trajectory from the neighborhood of the limit cycle: we can see it finally reaches the limit cycle. In fact, in this HGRN the basin of attraction of this limit cycle is the set of all states of the system.

In fact, if all eigenvalues of A are equal to 1, then the relevant closed trajectory is an isolated closed trajectory, that is, a closed trajectory that can not be reached or converged to by any trajectory, which is not a limit cycle.

Application

In this section, we apply our proposed limit cycle analysis method on three HGRNs of negative feedback loop in 3 dimensions and one HGRN of cell cycle in 5 dimensions. The negative feedback loop in 3 dimensions can be used to describe real biological oscillators, for example the p53 system [START_REF] Geva-Zatorsky | Oscillations and variability in the p53 system[END_REF]. The signs of the celerities in these three HGRNs are determined by the influence graph (positive for an activation and negative for an inhibition) and their absolute values of celerities are randomly selected. The parameters of the HGRN in 5 dimensions are generated randomly respecting the constraints in Table 3 of [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF]. The influence graphs of both systems can be found in Fig 4 . Details about implementation can be found at https://doi.org/10.5281/zenodo.6524936.

HGRNs of negative feedback loop in 3 dimensions

The parameters of these three HGRNs of negative feedback loop in 3 dimensions are shown in Table 1. The signs of celerities in these three models are the same so they have the same graph of discrete states. There is only one cycle of discrete states in each of these systems, which is:

(1, 1, 1) T - → (0, 1, 1) T - → (0, 1, 0) T - → (0, 0, 0) T - → (1, 0, 0) T - → (1, 0, 1) T - → (1, 1, 1)
T Therefore, for these three models, we choose the input boundary e of (0, 0, 0) T in the cycle as the Poincaré section. Simulations depicting the convergence to the Fig. 4: Left: Influence graph of a negative feedback loop with 3 genes, used to build three models given in Table 1. Right: Influence graph of a cell cycle model with 5 genes from [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF]; the multiplex (m) expresses constrains on the joint activation of En and Ep on B. A B C CA CB CC 0 0 0 1 -0.6 -0.7 0 0 1 1 0.7 -0.9 0 1 0 -0.8 -0.8 -0.7 0 1 1 -0.8 0.6 -0.9 1 0 0 0.7 -0.6 0.6 1 0 1 0.7 0.7 0.5 1 1 0 -0.9 -0.8 0.6 1 1 1 -0.9 0.6 0.5 A B C CA CB CC 0 0 0 3 -0.6 -0.7 0 0 1 3 0.7 -2.9 0 1 0 -2.8 -0.8 -0.7 0 1 1 -2.8 0.6 -2.9 1 0 0 2.7 -0.6 2.6 1 0 1 2.7 0.7 0.5 1 1 0 -2.9 -0.8 2.6 1 1 1 -2.9 0.6 0.5 A B C CA CB CC 0 0 0 3 -0.6 -0.7 0 0 1 3 0.7 -2.9 0 1 0 -0.8 -0.8 -0.7 0 1 1 -0.8 0.6 -2.9 1 0 0 0.7 -0.6 2.6 1 0 1 0.7 0.7 0.5 1 1 0 -2.9 -0.8 2.6 1 1 1 -2.9 0.6 0.5 stable cycle or to the fixed point (see below) in these three HGRNs are shown in Fig 5 .   In the first HGRN, by using our limit cycle analysis method, we find one stable limit cycle and one closed trajectory which only contains instant transitions (that we call a fixed point). Regarding the stable limit cycle, the fixed point of this limit cycle in discrete domain (0 -, 0 + , 0) T is ((0, 1, 0.125) T , (0, 0, 0) T ), the transition matrix is

    0 0 0 0 0 0 0 1 0 0 0 0.125 0 0 0 1     , the compatible zone is (π, (0, 0, 0) T ) | π 1 = 0, π 2 = 1, π 3 
∈]0, 0.7[ and the reduction matrix is 0 , therefore trajectories from the neighborhood of this limit cycle will reach this limit cycle very quickly (less than one turn if the neighborhood is small enough). In this HGRN we can also prove that all trajectories will reach this limit cycle except trajectories which can reach the fixed point of the system. All discrete trajectories which begin from the Poincaré section and return to the Poincaré section in this HGRN are shown in Fig 6 A. Since in this HGRN there is only one cycle of discrete states which is also a global attractor, any trajectory from the Poincaré section must return to the Poincaré section and it must begin from the compatible zone or the boundary of the compatible zone of one of the discrete trajectories in Fig 6 A. We see that all discrete trajectories which are not closed will finally reach closed discrete trajectories [START_REF] Plahte | Analysis and generic properties of gene regulatory networks with graded response functions[END_REF][START_REF] Prabhakar | Abstraction based model-checking of stability of hybrid systems[END_REF][START_REF] Simic | Hybrid limit cycles and hybrid poincaré-bendixson[END_REF][START_REF] Chaves | Exact control of genetic networks in a qualitative framework: the bistable switch example[END_REF][START_REF] Chaves | Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria[END_REF]. Discrete trajectories 31, 32 and 33 have the same transition matrix and their reduction matrix is 0 so any trajectory from (0 -, 0 + , 0) T will reach the limit cycle. For the discrete trajectory 10, the two eigenvalues of the reduction matrix are 7.0306 and 0.0368, so trajectories inside discrete trajectory 10 will finally leave the compatible zone and reach (0 -, 0 + , 0) T . From here, we can see that any trajectories from the Poincaré section will reach the limit cycle except the trajectories inside discrete trajectory 9 which are related to a fixed point. As any trajectory in this system will finally reach this Poincaré section, all trajectories will reach this limit cycle except trajectories which can reach the fixed point.

For the second HGRN, by using our method, we can also find one stable limit cycle and one fixed point. Unlike the first HGRN, trajectories from the neighborhood of the limit cycle converge asymptotically to the limit cycle: The limit cycle is inside the discrete trajectory which begins from (0 -, 0 + , 0) T and the reduction matrix of the limit cycle is 0.0298 . We can also prove that all trajectories will converge to this limit cycle except trajectories which can reach the fixed point by using the same method as for the first HGRN.

Contrary to the first and the second HGRN, we cannot find a limit cycle in the third HGRN but only a fixed point which is related to the discrete trajectory 2 in Fig 6 C. By analyzing the eigenvalues and the fixed points of discrete trajectories 3 and 4, we can prove that all trajectories in this system will converge to the fixed point. 

HGRN of cell cycle in 5 dimensions

For the HGRN in 5 dimensions, the transition graph of discrete states is more complex. By using a depth first algorithm, we find that there are 1104 cycles of discrete states in which 930 cycles contain the discrete transition (0, 1, 0, 1, 0) T -→ (0, 1, 0, 1, 1) T , 94 cycles contain (0, 0, 0, 1, 1) T -→ (0, 1, 0, 1, 1) T and all the rest contain (0, 0, 1, 1, 0) T -→ (0, 0, 0, 1, 0) T . Therefore, for this model, we use the three input boundaries crossed by these transition as Poincaré sections, and perform as many analyses. Our method exhibits one stable limit cycle and one unstable limit cycle. The stable one is the same one studied in [START_REF] Behaegel | A hybrid model of cell cycle in mammals[END_REF] to calculate the constraints of parameters. The simulations of both cycles are shown in Fig 7 A and B. We need to mention that for now we have not identified any biological behavior related to this unstable limit cycle yet.

For the stable limit cycle of cell cycle model, the fixed point of this limit cycle in the discrete domain (0, 1 + , 0, 1 + , 1 -) T is ((0.3714, 1, 0.8581, 1, 0) T , (0, 1, 0, 1, 1) T ), and the reduction matrix is 0 0 0 0 .

For the unstable limit cycle of cell cycle model, the fixed point of this limit cycle in the discrete domain (0, 0, 0 + , 1, 0 -) T is ((0.6375, 0.2552, 1, 0.3472, 0) T , (0, 0, 0, 1, 0) T ), and the reduction matrix A This current naive implementation in Python reaches its limits w.r.t. execution time when the size of the system increases: finding the limit cycles above takes less than one minute for the HGRNs in 3 dimensions, and 8 hours for Fig. 7: Simulation of the two limit cycles found in the HGRN of 5 dimensions. A: Stable limit cycle. B: Unstable limit cycle.

the HGRN in 5 dimensions3 . In future works, we plan to make adjustments to improve the implementation performance.

Conclusion

In this work, we proposed a formal method to find all limit cycles of HGRNs with some minor restrictions, mainly to remove non-deterministic behaviors and complex loops, and to analyze their stability. To our knowledge, this method is the first one to find and analyze limit cycles of HGRNs in N dimensions. We showed the merits of this method on random generated HGRNs of a negative feedback loop with 3 components and a HGRN of the cell cycle with 5 components taken from the literature.

As stated above, a first limitation of this method is that we do not handle non-determinism, and we might thus miss some complex closed trajectories, consisting of a composition of several loops using states with a non-deterministic future. Considering closed trajectories inside more complex attractors by assessing non-determinism is thus an interesting continuation. Another limitation in the application of this method is that we first need to construct a HGRN of a specific gene regulatory network; however, the observation of real biological systems is limited and it is not always possible to determine all parameters. In some cases, some parameters can only be described by constraints, or remain unknown. Thus, considering extensions of this method that are parameterized or that take into account a set of constraints on parameters is also of interest.

Finally, in future works, we will also focus on the application of this method on the problem of the control of gene regulatory networks. Similar works have been done with other classes of hybrid models, for instance [START_REF] Belgacem | Control of negative feedback loops in genetic networks[END_REF] for the control of oscillations and [START_REF] Chaves | Exact control of genetic networks in a qualitative framework: the bistable switch example[END_REF] for the control of bistable switches.
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 1 Fig. 1: Example of HGRN in 2 dimensions. Left: Influence graph (negative feedback loop with 2 genes). Middle: Example of corresponding parameters (celerities). Right: Corresponding example of dynamics; abscissa represents gene A and ordinate represents gene B.

Fig. 2 :

 2 Fig. 2: A: Graph of discrete domains of the HGRN of Fig 1. B: Examples of trajectories inside different discrete trajectories.

  where s is a function that adds an extra dimension and the value in the extra dimension is always 1: s((a 1 , a 2 , ..., a N ) T ) = (a 1 , a 2 , ..., a N , 1) T . The transition matrix M only depends on T .Considering the HGRN in Fig1, the transition matrix of ((0, 0 + ) T , (0 + , 0) T ) transition matrix of ((0

  S of a sequence of discrete domains T = (D 0 , D 1 , D 2 , ..., D m ) can be expressed with linear inequalities: S = (π, d s0 ) T | (π, d s0 ) ∈ D 0 ∧ Aπ < b where A is a square matrix and b a vector. The idea to calculate compatible zone is based on Theorem 1. Theorem 1. A state h = (π, d s0 ) belongs to the compatible zone S of T = (D 0 , D 1 , D 2 , ..., D m ) if and only if (π, d s0 ) ∈ D 0 , (s -1 (M (D0,D1) s(π)), d s1 ) ∈ D 1 , (s -1 (M (D0,D1,D2) s(π)), d s2 ) ∈ D 2 , ...., (s -1 (M (D0,D1,...,Dm-1) s(π)), d sm-1 ) ∈ D m-1 and (s -1 (M (D0,D1,...,Dm) s(π)), d sm ) ∈ D m , where M (D0,D1,...,Di) is the transition matrix of (D 0 , D 1 , ..., D i ) and D i is inside discrete state d si (i ∈ {0, 1, ..., m}).



  Fig 1, we find only one closed trajectory of interest, inside the third closed discrete trajectory; it is the trajectory labeled "3" in Fig 2 B. For this closed trajectory, π 0 = (0.222, 1) T , M = , and the compatible zone is

Table 1 :

 1 Parameters of the three HGRNs of negative feedback loop in 3 dimensions. Left: First model. Middle: Second model. Right: third model.

Fig. 5 :

 5 Fig. 5: Illustration of stable limit cycles and stable fixed point in HGRNs in 3 dimensions. A: Stable limit cycle in the first HGRN. B: Stable limit cycle in the second HGRN. C: Stable fixed point in the third HGRN.

Fig. 6 :

 6 Fig. 6: Abstracted representations of the chosen Poincaré sections in the HGRNs in 3 dimensions, illustrating all possible discrete trajectories which start from and return to this Poincaré section. The blue dots represent the discrete domains and each arrow depicts one or several different discrete trajectories (each following a unique sequence of discrete domains). A: First HGRN. B: Second HGRN. C: Third HGRN.

  • 10 3 0 1.37489884 • 10 -13 -5.25996267 • 10 2 0 -1.45993292 • 10 -14 -7.15619779 • 10 2 0 -1.98624389 • 10 -14   . The eigenvalues of A are 0, 4.95359512 • 10 3 and 3.15544362 • 10 -30 , making it unstable.

  1, ..., n i } , where d i s is the i th component of d s . Based on the notion of discrete state, HGRNs are defined as follows: Definition 1 (Hybrid gene regulatory network (HGRN)). A hybrid gene regulatory network (HGRN) is noted H= (E d , c). E d is the set of all discrete states. c is a function from E d to R N . For each d s ∈ E d , c(s), also noted c s , is called the celerity of discrete state d s and describes the temporal derivative of the system in d s .
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