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Abstract: We report a continuum theory for 2D strain gradient materials accounting for a class of
dissipation phenomena. The continuum description is constructed by means of a (reversible) placement
function and by (irreversible) damage and plastic functions. Besides, expressions of elastic and
dissipation energies have been assumed as well as the postulation of a hemi-variational principle. No
flow rules have been assumed and plastic deformation is also compatible , that means it can be derived
by a placement function. Strain gradient Partial Differential Equations (PDEs), boundary conditions
(BCs) and Karush-Kuhn-Tucker (KKT) type conditions are derived by a hemi variational principle.
PDEs and BCs govern the evolution of the placement descriptor and KKT conditions that of damage
and plastic variables. Numerical experiments for the investigated homogeneous cases do not need the
use of Finite Element simulations and have been performed to show the applicability of the model.
In particular, the induced anisotropy of the response has been investigated and the coupling between
damage and plasticity evolution has been shown.

Keywords: damage mechanics; granular microstructures; Karush-Kuhn-Tucker conditions; strain
gradient; 2D continua

http://www.aimspress.com/journal/mine
http://dx.doi.org/10.3934/mine.2023021
www.aimspress.com/mine/article/5814/special-articles
cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri


cagri




2

1. Introduction

A large amount of scientific literature deals with non-conservative physical systems, where it is
necessary to use methods that are able to handle the related dissipation phenomena [3, 16, 28, 38, 54].
In engineering applications [39, 40, 62] a wide range of materials, like steel and concrete, experience
dissipative phenomena such as damage and plasticity. That is why they are especially interesting for
the engineering community. But building accurate description of these phenomena can be very
difficult, especially for complex material systems like granular [39] or lattice-type [25, 58]
microstructure. Continuum damage [1, 8] and plasticity [4, 9, 17, 22–24, 32, 39, 40, 49, 50] modeling
have been vigorously pursued in the literature, considering the improvements based on phase field
models [10, 13, 14, 33, 35, 55] for shear bands and fracture. Multi-scale approaches [6, 27, 34, 42] , in
addition to phenomenological ones [56, 57], have been proposed. Their purpose is to link low-scale
descriptions with continuum [15, 29, 31] to include complex emerging behaviors in the continuum.
Besides, the strain gradient regularization of the elastic response [26, 30] should be considered also in
this non conservative context. In this paper we recap, in a new and better way, recently developed
continuum model for granular materials undergoing damage and plastic deformations. Damage and
plasticity are irreversible phenomena [2, 32, 49, 50]. In this model, the irreversibility is taken into
account by assuming that damage and plastic variables are non-decreasing quantities in time [59]. It
has been extensively discussed in the literature, that deformed shapes of granular materials may be
described in a continuum model by using the relative displacements of the barycenters of the grains,
regardless their deformations. Thus, in a coarse-grained description, for a material with a granular
micro-structure, the deformation energy as well as the energy dissipated due to damage and plasticity,
are expressed in terms of these relative movements. The volumetric energy of deformation, i.e., the
deformation energy per unit volume, is assumed to be the sum of deformation energies associated
with each intergranular interaction. Each grain-grain interaction is identified by the orientation of the
grain-grain direction that, in the continuum limit, are infinite in number. This approach has shown its
efficiency in describing granular systems, both at the discrete and at the continuum
levels [5, 7, 18, 37, 51, 60, 61]. We also use a variational approach [20, 21]. First of all, we define an
objective and reversible kinematic vector variable to measure the relative displacements between
grains. Thus, we decompose the objective relative displacement between the grains [39, 48] into two
components. The first one is directed along the vector connecting the grain centroids, and it is called
the normal component. The second is directed along the orthogonal direction and is called the tangent
component. These components are decomposed into elastic and plastic parts. The functionals of
elastic deformation and of dissipation energy are defined in terms of these reversible
components [52, 53] and of irreversible damage and plastic variables. Damage is defined by two
variables, i.e., the normal and the tangential damage variables, that are both a function of grain-grain
orientation. On the one part, plastic displacement does not have to be non-decreasing in time. On the
other part, it is characterized as the difference between two non-diminishing plastic variables, that are
the accumulated plastic relative displacement in tension and in compression, respectively. The
evolution of the form of the body that is obtained without external load defines in this approach the
evolution of the plastic strain. The elastic evolution of the damaged material is defined by the total
elastic strain energy. This type of energy is explained in terms of the elastic energies related to each
intergranular orientation. Therefore, dependencies are obtained for the standard elastic modules (4th
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order stiffness tensor), of the second gradient elastic modules (6th order stiffness tensor) and of the
chiral interaction modules (5th order stiffness tensor). They are functions of parameters describing the
damage-elasto-plastic state, describing micro-mechano-morphology, of each orientation. Besides,
because of plastic effects, we obtain an expression also of the pre-stress (2nd order tensor) and of the
pre-hyperstress (3rd order tensor). The hemi-variational approach [43–46] has been used to obtain
Karush-Kuhn-Tucker (KKT) kind conditions, that drive the evolution of damage and plastic
irreversible kinematic variables. According to the same derivation, also the Euler-Lagrange equations
for the progress of the reversible placement function is obtained. It is worth to be noted that, since
grain-pairs are oriented in different directions, for a given loading-sequence, they experience different
loads and hence different damage and plastic evolution. Thus, the macroscopic response will be
complex and with an intrinsically dependence upon path.

The content of this paper is organized as follows. Section 2 provides a rational recap of the model
that was introduced in papers [12,41,44,47,59]. Section 3 provides the scheme of a possible numerical
(or analytical) implementation of the model. Section 4 is devoted to the representation of the results
for the homogeneous case, where no Finite Element implementation is necessary for the illustration of
the results. Section 5 addresses a few concluding comments and future viewpoints.

2. A rational recap of the model

In this section we will recap the model that has been investigated by the authors more widely in
different papers [12, 41, 44, 47, 59].

2.1. The elastic energy per unit area

Let B be the 2D reference configuration of a strain gradient elastic body. Its elastic energy U per
unit area is assumed to take the following form

U =

∫
S1

[
1
2

kη,D
(
uel
η

)2
+

1
2

kτ,D
(
u2
τ

)]
, ∀X ∈ B (2.1)

where the elastic part uel
η of the normal displacement uη is postulated be equal to the difference of the

total normal displacement uη and its plastic part upl
η

uel
η = uη − upl

η , (2.2)

where uτ is the tangential displacement and both are defined as follows,

uη = LGi jĉiĉ j +
L2

4
Gi j,hĉiĉ jĉh, (2.3)

u2
τ = 4L2Gi jGab

(
δiaĉ jĉb − ĉiĉ jĉaĉb

)
+ 2L3Gi jGab,c

(
δiaĉ jĉbĉc − ĉiĉ jĉaĉbĉc

)
(2.4)

+
L4

4
Gi j,hGam,n

(
δiaĉ jĉhĉmĉn − ĉiĉ jĉhĉaĉbĉc

)
,

where the unit vector ĉ gives the direction of the considered grain-pair interaction and the domain S1

is the unit circle to which it belongs; the Green-Saint-Venant tensor G and its gradient are tensors of a
2nd and 3rd order,

G =
1
2

(
FT F − I

)
, ∇G = FT∇F, (2.5)
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respectively, where the deformation gradient F and its gradient are defined

F = ∇χ, ∇F = ∇
(
∇χ

)
(2.6)

in terms of the placement function χ (X, t), that is a function of the position X and of time t. In Eq (2.3)
and (2.4), L is the averaged grain-pair distance. Besides, the damaged tangent stiffness is kτ,D and the
damaged normal stiffness is kη,D. The damaged normal stiffness is assumed to be asymmetric in tension
and compression, i.e.,

kη,D = kt
η,DΘ

(
uel
η

)
+ kc

η,DΘ
(
−uel

η

)
, (2.7)

where kt
η,D is the stiffness in tension that is assumed to be smaller than the stiffness in compression

kc
η,D � kt

η,D. Besides, the dividing line between tension and compression is given by the sign of the
elastic normal displacement uel

η . Thus, the Heaviside function Θ is here used. Damage is modeled, as
we have already pointed out, with two variables, i.e., the normal damage Dη, and the tangent damage
Dτ. The damage variables Dη and Dτ have the role to reduce the damaged normal stiffness kη,D (2.7)
and the damaged tangent stiffness kτ,D, respectively,

kη,D = kη
(
1 − Dη

)
, kτ,D = kτ (1 − Dτ) , (2.8)

where the non-damaged normal stiffness kη and the non-damaged tangent stiffness kτ have been
introduced. Definitions of non-damaged tension (kt

η) and compression (kc
η) normal stiffness through

the following expressions

kt
η,D = kt

η

(
1 − Dη

)
, kc

η,D = kc
η

(
1 − Dη

)
, (2.9)

yield the analogous of (2.7) for the non-damaged normal stiffness, i.e.,

kη = kt
ηΘ

(
uel
η

)
+ kc

ηΘ
(
−uel

η

)
. (2.10)

We therefore obtain, by insertion of (2.10) into (2.8)1, the following expression for the damaged normal
stiffness

kη,D = kη
(
1 − Dη

)
= kt

η

(
1 − Dη

)
Θ

(
uel
η

)
+ kc

η

(
1 − Dη

)
Θ

(
−uel

η

)
. (2.11)

Insertion of (2.2), (2.3), (2.4) and (2.8) into (2.1) yield the elastic energy per unit area in a more
compact form as

U =
1
2
Ci jabGi jGab +Mi jabcGi jGab,c +

1
2
Di jhabcGi j,hGab,c + Pi jGi j + Qi jhGi j,h, (2.12)

where, accounting for the symmetrization induced by the symmetry of the strain tensor G, the elastic
stiffnesses C,M, D, P and Q are identified as follows

Ci jab = L2
∫
S1

kη
(
1 − Dη

)
ĉiĉ jĉaĉb (2.13)

+L2
∫
S1

kτ (1 − Dτ)
((
δiaĉ jĉb + δibĉ jĉa + δ jaĉiĉb + δ jbĉiĉa

)
− 4ĉiĉ jĉaĉb

)
Mathematics in Engineering Volume 5, Issue 1, 1–24.
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Mi jabc =
1
4

L3
∫
S1

kη
(
1 − Dη

)
ĉiĉ jĉaĉbĉc (2.14)

+
1
4

L3
∫
S1

kτ (1 − Dτ)
((
δiaĉ jĉb + δibĉ jĉa + δ jaĉiĉb + δ jbĉiĉa

)
ĉc − 4ĉiĉ jĉaĉbĉc

)
Di jhabc =

1
16

L4
∫
S1

kη
(
1 − Dη

)
ĉiĉ jĉhĉaĉbĉc (2.15)

+
1

16
L4

∫
S1

kτ (1 − Dτ)
((
δiaĉ jĉb + δibĉ jĉa + δ jaĉiĉb + δ jbĉiĉa

)
ĉhĉc − 4ĉiĉ jĉhĉaĉbĉc

)
Pi j = −L

∫
S1

kη
(
1 − Dη

)
upl
η ĉiĉ j (2.16)

Qi jh = −
1
4

L2
∫
S1

kη
(
1 − Dη

)
upl
η ĉiĉ jĉh (2.17)

According to the legacy of strain gradient continua [11,19], a consequence of the expression (2.12) for
the elastic energy per unit area is the form of both the stress tensor S and the hyper stress tensor T , i.e.,

S i j =
∂U
∂Gi j

= Pi j + Ci jabGab +Mi jabcGab,c, Ti jh =
∂U
∂Gi j,h

= Qi jh + Di jhabcGab,c +Mi jhabGab, (2.18)

where P and Q take the roles of the pre-stress and the pre-hyper stress, respectively. We oversee that (i)
the normal plastic displacement upl

η has a direct influence, as expected, from (2.16)–(2.17) on the pre-
stress and on the pre-hyper stress and (ii) damage variables Dη and Dτ has a direct influence from
(2.13)–(2.17) on all the stiffness tensors.

2.2. The dissipation energy per unit area

Damage and plastic variables are dissipative in nature and their evolution are related to the form
of the dissipation energy. The dissipation energy per unit area W is the energy dissipated because of
irreversible phenomena. An additive decomposition of the dissipation energy is assumed in terms of
WD = Wη

D + Wτ
D, the energy dissipated because of damage phenomena (where Wη

D is the part that is due
to the normal phenomena and Wτ

D is the part that is due to tangential phenomena), and Wpl, the energy
dissipated because of plasticity phenomena, i.e.,

W = WD + Wpl = Wη
D + Wτ

D + Wpl, (2.19)

Wη
D =

∫
S1

1
2

kc
η

(
Bc
η

)2
Θ

(
−uel

η

) [
−Dη +

2
π

tan
(
π

2
Dη

)]
(2.20)

+

∫
S1

1
2

kt
η

(
Bt
η

)2
Θ

(
uel
η

) [
2 +

(
Dη − 1

) (
2 − 2 log

(
1 − Dη

)
+

(
log

(
1 − Dη

))2
)]
,

Wτ
D =

∫
S1

1
2

kτ
[
B̃τ

(
uel
η

)]2 [
2 + (Dτ − 1)

(
2 − 2 log (1 − Dτ) +

(
log (1 − Dτ)

)2
)]
, (2.21)

Wpl =

∫
S1
σt
ηλ

t
η + σc

ηλ
c
η, (2.22)

where Bc
η and Bt

η are two characteristic displacements associated with normal damage dissipation in
compression and in tension, respectively. The complicated forms of the assumed dissipated energy
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in (2.20)–(2.21) are devoted to obtain, in the subsection 2.5, an exponential and/or an arctangential
damage evolution, as it will be proved in (2.42) and (2.43).

For cementitious materials it is intuitive that Bt
η � Bc

η. The reason is that, in tension, a smaller
amount of elastic normal displacement is needed to activate damage mechanisms. Besides, B̃τ

(
uel
η

)
is

the characteristic displacement associated with tangent damage dissipation. It is assumed to depend on
uel
η , i.e., on the elastic part of the normal displacement as follows,

Bτ = B̃τ

(
uel
η

)
=


Bτ0 if uel

η ≥ 0
Bτ0 − α2uel

η if 1−α1
α2

Bτ0 ≤ uel
η < 0

α1Bτ0 if uel
η < Bτ0

1−α1
α2
,

(2.23)

where Bτ0, α1 and α2 are necessary constitutive parameters needed to express the function B̃τ

(
uel
η

)
.

These parameters have the role to couple the two terms, namely the addends (2.20) and (2.21), of the
damage dissipation energy WD per unit area. It is worth to be noted that usually, for cementitious
materials and in elastic tension, the characteristic tangential displacement Bτ = Bτ0 is much lower than
the one Bτ = α1Bτ0 it is necessary in elastic compression (α1 � 1). Indeed, a smaller amount of elastic
tangential displacement is needed in elastic extension to activate tangential damage mechanisms with
respect to the tangential displacement that is needed in elastic compression. In other words, referring
to Eq (2.23), this means both that Bτ0 < Bτ0 − α2uel

η (which implies α2 > 0, as uel
η < 0 in compression)

and Bτ0 << α1Bτ0 (which implies α1 � 1).
The plastic dissipation energy function per unit area Wpl in (2.22) is assumed to linearly depend

on the plastic multipliers λt
η and λc

η that are the plastic accumulated displacement in tension and in
compression, respectively. The plastic normal displacement is defined as the following difference,

upl
η = λt

η − λ
c
η. (2.24)

We will show at the end of Subsection 2.5 that the scalars σt
η and σc

η, defined in (2.22), dictate the
yielding conditions (more specifically, they are the characteristic force that is necessary to apply to
the grain-pair to activate plastic deformation for no-damage case) of the damage-elasto-plastic grain-
pair interaction in tension and compression, respectively. It is worth to be noted that the identification
of newly introduced constitutive parameters, i.e. of L, Bt

η, Bc
η, Bτ0, α1 and α2, is necessary for the

application of the present approach for modeling the mechanical behavior or real materials such as,
e.g., concrete.

2.3. The energy functional

The energy functional is defined as the sum of the elastic and dissipation energy,

E
(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
=

∫
B

U + W, (2.25)

integrated over the 2D reference configuration B. It is a functional of the fundamental kinematical
descriptors of the model, i.e. the placement

χ (X, t) , (2.26)
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that is a function of position X and time t, and the 4 irreversible descriptors

Dη (X, ĉ, t) ,Dτ (X, ĉ, t) , λt
η (X, ĉ, t) , λc

η (X, ĉ, t) , (2.27)

that are functions not only of position X and time t but also on the orientation ĉ.
Damage (Dη and Dτ) and plastic (λt

η and λc
η) variables are defined both by two variables that are

non-decreasing in time. These inequality assumptions,

∂Dη

∂t
≥ 0,

∂Dτ

∂t
≥ 0,

∂λt
η

∂t
≥ 0,

∂λc
η

∂t
≥ 0, ∀X ∈ B, ∀ĉ ∈ S1, (2.28)

imply a generalization of standard variational principle into a so-called hemivariational principle.

2.4. The hemivariational inequality principle

Let us introduce a monotonously increasing time sequence Ti ∈ {Ti}i=0,...,M with Ti ∈ R and M ∈

N and give initial datum on each of the fundamental kinematic quantities for i = 0, i.e., for time
T0. A family of placements χ defines the motion for each time t = T0,T1, . . . ,TM. The set AMt of
kinematically admissible placements is defined for a given time t and the set AVt is defined as the
corresponding space of kinematically admissible variations, i.e., υ = δχ ∈ AVt. Admissible variations
β of the irreversible kinematic quantities

(
Dη,Dτ, λ

t
η, λ

c
η

)
must be positive, namely

β = δDη, δDτ, δλ
t
η, δλ

c
η ∈ R

+ × R+ × R+ × R+. (2.29)

By definition, the first variation δE of the energy functional (2.25) is calculated as

δE = E
(
χ + δχ,Dη + δDη,Dτ + δDτ, λ

t
η + δλt

η, λ
c
η + δλc

η

)
− E

(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
. (2.30)

Besides, the increment of (2.26-2.27), i.e. of the fundamental kinematic quantities, at t = Ti is given
by the difference between these quantities as evaluated at times t = Ti and t = Ti−1, namely(

∆χ,∆Dη,∆Dτ,∆λ
t
η,∆λ

c
η

)
Ti

=
(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
Ti
−

(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
Ti−1

. (2.31)

The same definition is utilized for the increment ∆E of the energy functional

∆E = E
(
χ + ∆χ,Dη + ∆Dη,Dτ + ∆Dτ, λ

t
η + ∆λt

η, λ
c
η + ∆λc

η

)
− E

(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
. (2.32)

Finally, as a matter of facts, the hemi-variational principle is formulated as follows

∆E ≤ δE ∀υ = δχ ∈ AVt, ∀β =
(
δDη, δDτ, δλ

t
η, δλ

c
η

)
∈ R+ × R+ × R+ × R+. (2.33)

It is worth to be noted here that introducing the three vectors

A =

(
∂E

∂χ
,
∂E

∂Dη

,
∂E

∂Dτ

,
∂E

∂λt
η

,
∂E

∂λc
η

)
, B =

(
∆χ,∆Dη,∆Dτ,∆λ

t
η,∆λ

c
η

)
, C = (υ, β) , (2.34)

where A is intended as the Frechet derivative of the energy functional, the first variation δE of the
energy functional in (2.30) and its increment ∆E in (2.32) are represented as linear functional of the
variation C and the increment B as follows,

δE = A ·C, ∆E = A · B, (2.35)
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so that the hemi-variational principle (2.33) can be formulated

A · B ≤ A · (υ, β) ∀υ ∈ AVt, ∀β ∈ R+ × R+ × R+ × R+. (2.36)

As remarked in [36], the inequality (2.33) states that the actual energy release rate is not smaller
than any possible one. Thus, it constitutes a kind of principle of maximum energy release rate.

2.5. The consequence of the hemivariational principle

First of all, the reversibility of the admissible placement variation υ = δχ ∈ AVt implies

E
(
χ + δχ,Dη,Dτ, λ

t
η, λ

c
η

)
− E

(
χ,Dη,Dτ, λ

t
η, λ

c
η

)
=
∂E

∂χ
δχ = 0, ∀υ = δχ ∈ AVt, (2.37)

that correspond to standard strain gradient elasticity equations for fixed values of irreversible kinematic
quantities

(
Dη,Dτ, λ

t
η, λ

c
η

)
. Equation (2.37) is derived simply evaluating the inequality (2.36) both for

δχ = ∆χ+δ̂χ and β =
(
∆Dη,∆Dτ,∆λ

t
η,∆λ

c
η

)
and for δχ = ∆χ−δ̂χ and β =

(
∆Dη,∆Dτ,∆λ

t
η,∆λ

c
η

)
, where

δ̂χ is another arbitrary variation that in (2.37) takes the same symbol δχ just for the sake of simplicity.
Secondly, following [47], the variational inequality (2.36) implies the following KKT conditions on
the 4 irreversible kinematic descriptors

(
Dη,Dτ, λ

t
η, λ

c
η

)
{
Dη − D̃η(uη, λt

η, λ
c
η)
}
∆Dη = 0 (2.38){

Dτ − D̃τ(uτ)
}
∆Dτ = 0 (2.39){

λt
η − λ̃

t
η(uη, λ

c
η,Dη,Dτ)

}
∆λt

η = 0 (2.40){
λc
η − λ̃

c
η(uη, λ

t
η,Dη,Dτ)

}
∆λc

η = 0, (2.41)

where the derivation of (2.38) is done simply evaluating the inequality (2.36) both for δχ = ∆χ and
β =

(
2∆Dη,∆Dτ,∆λ

t
η,∆λ

c
η

)
and for δχ = ∆χ and β =

(
0,∆Dτ,∆λ

t
η,∆λ

c
η

)
, the derivation of (2.39) is

done simply evaluating the inequality (2.36) both for δχ = ∆χ and β =
(
∆Dη, 2∆Dτ,∆λ

t
η,∆λ

c
η

)
and for

δχ = ∆χ and β =
(
∆Dη, 0,∆λt

η,∆λ
c
η

)
, the derivation of (2.40) is done simply evaluating the inequality

(2.36) both for δχ = ∆χ and β =
(
∆Dη,∆Dτ, 2∆λt

η,∆λ
c
η

)
and for δχ = ∆χ and β =

(
∆Dη,∆Dτ, 0,∆λc

η

)
and the derivation of (2.41) is done simply evaluating the inequality (2.36) both for δχ = ∆χ and
β =

(
∆Dη,∆Dτ,∆λ

t
η, 2∆λc

η

)
and for δχ = ∆χ and β =

(
∆Dη,∆Dτ,∆λ

t
η, 0

)
. In (2.38)–(2.41) the auxiliary

threshold functions D̃η(uη, λt
η, λ

c
η), D̃τ(uτ), λ̃t

η(uη, λ
c
η,Dη,Dτ) and λ̃c

η(uη, λ
t
η,Dη,Dτ) have been defined as

follows,

D̃η(uη, λt
η, λ

c
η) =


1 − exp

(
−

uη−λt
η+λ

c
η

Bt
η

)
, uel

η = uη − λt
η + λc

η > 0,

2
π

arctan
(
−

uη−λt
η+λ

c
η

Bc
η

)
, uel

η = uη − λt
η + λc

η < 0,
(2.42)

D̃τ(uτ) = 1 − exp
(
−
|uτ|
Bτ

)
, (2.43)

λ̃t
η(uη, λ

c
η,Dη,Dτ) = λc

η −
σt
η

kη
(
1 − Dη

) + uη +
kτBτ

kη
(
1 − Dη

) ∂B̃τ

∂uel
η


Dτ∫

0

[
log (1 − x)

]2 dx

 , (2.44)
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λ̃c
η(uη, λ

t
η,Dη,Dτ) = λt

η −
σc
η

kη
(
1 − Dη

) − uη −
kτBτ

kη
(
1 − Dη

) ∂B̃τ

∂uel
η


Dτ∫

0

[
log (1 − x)

]2 dx

 . (2.45)

From Eqs (2.42) and (2.43) the meaning of Bt
η, Bc

η and Bτ as characteristic displacements for the
activation of the damage phenomena is evident at least for the loading case. Besides, we observe from
(2.44) and (2.45) that with no damage, the meaning of the scalars σt

η and σc
η as those characteristic

forces that dictate the yielding conditions in tension and compression, is also explained. However, the
presence of the normal damage Dη makes higher such effective characteristic displacement that, in the
failure case (with Dη → 1), becomes infinite.

3. Implementation of the model

In this Section, the implementation of the model previously presented is divided in the following 5
steps.

1) Null initial, i.e., at time t = 0, conditions is assumed on the displacement field for all the points
of the body

u (X, t = 0) = χ (X, t = 0) − X = 0, ∀X ∈ B (3.1)

and and the same for damage and plastic irreversible descriptors both for all the points of the body
and for all the directions,Dη = D̆η (ĉ, X, t = 0) = 0, Dτ = D̆τ (ĉ, X, t = 0) = 0

λt
η = λ̆t

η (ĉ, X, t = 0) = 0, λc
η = λ̆c

η (ĉ, X, t = 0) = 0
, ∀ĉ ∈ S1 ∀X ∈ B (3.2)

2) Initial isotropy is assumed, that means that non-damaged stiffnesses kc
η, kt

η and kτ are assumed to
be initially constant ∀ĉ ∈ S1 and ∀X ∈ B

kc
η = k̃c

η (ĉ, X, t = 0) =
k̄c
η

2π
, kt

η = k̃t
η (ĉ, X, t = 0) =

k̄t
η

2π
, kτ = k̃τ (ĉ, X, t = 0) =

k̄τ
2π
, (3.3)

where k̄c
η, k̄t

η and k̄τ are the averaged non-damaged initial stiffnesses.
3) Numerical values of the parameters of the model are assumed and here are reported in Tables 1

and 2.
4) The elastic stiffness tensors (C,M,D), as well as the pre-stress and pre hyperstress tensors (P,Q)

are calculated according to Eqs (2.13)–(2.17) at time t = 0 with the initial input (3.1)–(3.3).
These ingredients with proper boundary conditions are the input for a standard variational
principle in (2.37), where the dissipation energy becomes simply an additive constant that does
not influence the minimization process. Such a minimization can be performed analytically (as
in the homogeneous cases of Section 4) or, more generally, with the use of a Finite Element
Method (FEM). Thus, we obtain the displacement field at i = 1,

u (X, t = Ti) , ∀X ∈ B. (3.4)
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5) With (3.4) we compute the new irreversible descriptors
(
Dη,Dτ, λ

t
η, λ

c
η

)
via the KKT conditions

(2.38)–(2.41) at i = 1,Dη = D̆η (ĉ, X, t = Ti) , Dτ = D̆τ (ĉ, X, t = Ti)

λt
η = λ̆t

η (ĉ, X, t = Ti) , λc
η = λ̆c

η (ĉ, X, t = Ti)
, ∀ĉ ∈ S1 ∀X ∈ B (3.5)

Thus, we iterate the points 4 and 5 for all those time sequence Ti ∈ {Ti}i=0,...,M with Ti ∈ R and
M ∈ N of the researched time history defined at the beginning of Subsection 2.4.

Table 1. Constitutive parameters values employed for homogeneous extension/compression
tests.

L[m] A[m] k̄c
η[

Kg
s2m2 ] k̄t

η[
Kg

s2m2 ] k̄τ[
Kg

s2m2 ] Bt
η[m] Bc

η[m]
0.01 0.1 2π 14 1014 10k̄c

η 2π 1013 10−8 10−7

Bτ0[m] α1[1] α2[1] σt
η[J/m3] σc

η[J/m3] . .

5 · 10−8 10 14 8.385 · 106 8.912 · 107 . .

Table 2. Parameters for external boundary conditions employed for the investigated
homogeneous tests.

αc αt

2 10−6m/s 10−7m/s

4. Homogeneous response

Constitutive parameters are depicted in Table 1. Thus, from [12, 59] we have an equivalent initial
Young modulus in compression Ec or in tension Et and Poisson ratio in compression νc or in tension
νt, that yields in compression

Ec = L2kc
η

kc
η + 4kτ

3kc
η + 4kτ

= 299GPa, νc =
kc
η − 4kτ

3kc
η + 4kτ

= 0.32 (4.1)

or in tension

Et = L2kt
η

kt
η + 4kτ

3kt
η + 4kτ

= 34.4GPa, νc =
kt
η − 4kτ

3kt
η + 4kτ

= 0.22. (4.2)

Let us solve the problem in Figure 1. The imposed displacement is

δ (t) = αt (4.3)

and, consequently, the displacement is trivially deduced in all the body,

u1 =
α

A
tX1, u2 = 0, ∀X ∈ B. (4.4)
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Thus, the strain and strain gradient are

G11 =
α

A
t +

1
2

(
α

A
t
)2
, G12 = G22 = 0, ∇G = 0, (4.5)

and the relative displacements from (2.3) and (2.4) are

uη = LG11 cos θ = L
[
α

A
t +

1
2

(
α

A
t
)2
]

cos θ, (4.6)

u2
τ = 4L2G11G11

(
cos4 θ − cos2 θ

)
=

(
L
[
α

A
t +

1
2

(
α

A
t
)2
]

sin 2θ
)2

, (4.7)

where a standard parameterization of the unit vector ĉ has been used in terms of an angle θ, i.e.,

ĉ1 = cos θ, ĉ2 = sin θ. (4.8)

The stress response is given in terms of the components of the stress tensors in (2.18),

S 11 = P11 + C1111G11, (4.9)
S 22 = P22 + C2211G11, (4.10)
S 12 = P12 + C1211G11, (4.11)
T = 0 (4.12)

that implies

S 11 = −L
∫ 2π

0

[
kη

(
1 − Dη

) (
λt
η − λ

c
η

)
cos2 θ

]
dθ (4.13)

+ G11L2
∫ 2π

0

[
kη

(
1 − Dη

)
cos4 θ + kτ (1 − Dτ)

(
4 cos2 θ − 4 cos4 θ

)]
dθ,

S 22 = −L
∫ 2π

0

[
kη

(
1 − Dη

) (
λt
η − λ

c
η

)
sin2 θ

]
dθ (4.14)

+ G11L2
∫ 2π

0

[
kη

(
1 − Dη

)
sin2 θ cos2 θ − 4kτ (1 − Dτ) cos4 θ

]
dθ,

S 12 = 0, T = 0. (4.15)

Figure 1. Schematic structure for the response to imposed displacement for tension (δ (t) >
0) or compression (δ (t) < 0) tests.
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4.1. Strain tension control

In tension
α = αt > 0 (4.16)

the normal displacement uη ≥ 0 is positive in any direction (i.e., ∀θ ∈ [0, 2π]) and therefore from (2.45)
we have

λc
η = 0. (4.17)

From (2.42) and (2.44) we have

D̃η(uη, λt
η, λ

c
η) = 1 − exp

(
−

uη − λt
η

Bt
η

)
, λ̃t

η(uη, λ
c
η,Dη,Dτ) = uη −

σt
η

kη
(
1 − Dη

) . (4.18)

At the beginning of the time history (i.e., with 0 < uη � L from (4.6)) we have from (4.18)2 that
λ̃t
η(uη, λ

c
η,Dη,Dτ) < 0 that means an analytical solution for the accumulation in tension and for the

normal damage,

λt
η = 0, Dη = 1 − exp

(
−

uη
Bt
η

)
. (4.19)

The solution (4.19) is valid only before the threshold condition (2.40) with (2.44)

λ̃t
η(uη, λ

c
η,Dη,Dτ) = uη −

σt
η

kη
(
1 − Dη

) = 0 (4.20)

is satisfied. Thus, by insertion of (4.19)2 into (4.20) we have,

(
1 − Dη

)
=

σt
η

kηuη
= exp

(
−

uη
Bt
η

)
. (4.21)

The nonlinear algebraic equation (4.21) defines a Lambert function, does not have an analytical
solution and can be solved only numerically or graphically, e.g., in Figure 2, from which it is clear,
with the constitutive parameters that we have chosen in Table 1, that the condition (4.21) is satisfied
for no values of the normal displacement uη, that implies that (4.19)1 is always valid in this
investigated case and no plastic behavior takes place. Besides, a different choice of the normal
damage characteristic displacement Bt

η would give a different result. From Figure 2 it is in fact also
shown that by assigning a value of the normal damage characteristic displacement Bt

η equal to 20
times that assigned in Table 1, there exist a value for the normal displacement uη = ǔη that satisfies
(4.21),

σt
η

kηuη
= exp

(
−

uη
Bt
η

)
, ⇒ uη = ǔη (4.22)

that implies that (4.19)1 is not valid and plasticity takes a role in this new investigated case. The
new analytical solution comes from (4.18), from which we derive the nonlinear algebraic equation for
normal damage

1 − Dη = exp

− σt
η

Bt
ηkη

(
1 − Dη

) , ⇒ Dη = Ďη, uη > ǔη (4.23)
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and for accumulation of tension

λt
η = uη −

σt
η

kη
(
1 − Ďη

) , uη > ǔη (4.24)

We observe from (4.23) that the normal damage Dη = Ďη at which the condition uη = ǔη > 0 holds is
constant with respect to the normal displacement uη and therefore with respect to time. This implies
that the accumulation in tension in (4.24) evolves linearly with the normal displacement.

Figure 2. Numerical investigation of (4.21) with parameters assigned in Table 1 and with 20
times the value of normal damage characteristic displacement Bt

η. Blue curve is the left-hand

side of (4.21), i.e.,
σt
η

kηuη
. Orange line is the right-hand side of (4.21), i.e., exp

(
−

uη
Bt
η

)
. Blue and

orange lines do not intersect and therefore there is no solution ǔ of (4.22). Green line is the

right-hand side of (4.21) with Bt
η being 20 times that represented in Table 1, i.e., exp

(
−

uη
20Bt

η

)
.

Blue and green lines do intersect and therefore there is a solution ǔ of (4.22) in this case.

The response is calculated by (4.13)–(4.15) and it is graphically represented in Figure 3. We observe
(S 11 in the left-hand side of Figure 3) that, after a first part where we have an increasing function of
time, in a second part of the response the softening induced by damage is evident and a peak reaction is
observed as well as a descending curve. A positive reaction is observed also in the orthogonal direction
(S 22 in the right-hand side of Figure 3). The behavior in the orthogonal direction is almost equivalent.
However, a second hardening stage is observed because of a non trivial evolution of the equivalent (the
response is not anymore isotropic) Poisson ratio.

Figure 3. Stress response to imposed axial displacement in tension depicted in Figure 1.
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The softening behavior is due the non homogeneous evolution of the damage variables with respect
to the grain-pair orientation ĉ ∈ S1 or, equivalently, to the angle θ ∈ [0, 2π], as it is shown in Figure 4.

Figure 4. Evolution of normal and tangent damage for the case of axial displacement in
tension imposed and depicted in Figure 1.

The anisotropic behavior is also explicated in the evolution of the ratio C2222/C1111 between the
vertical and the horizontal stiffness in Figure 5.

In the left-hand side picture of Figure 4 normal damage evolution is shown and it is evident that the
horizontal grain-pair orientation, i.e., around θ = kπ, with k ∈ Z, are the most affected by the damage
effect. In the right-hand side picture of Figure 4 tangential damage evolution is shown and it is evident
that the oblique grain-pair orientation, i.e., around θ = π/4 + kπ/2, with k ∈ Z, are the most affected by
the damage effect. It is also observed that the velocity of the damage evolution is constitutively driven
by the damage characteristic displacements Bt

η, Bc
η and Bτ. It is also worth to be noted from Figure 5

that the anisotropy between vertical and horizontal stiffness on the one hand in an elastic isotropic
simulation should be maintained at 1 for the entire history of deformation. Here, on the other hand, it
goes from 1 at t = 0 (i.e., initial isotropic behavior) to 60 at t = 20s (i.e., we have anisotropic behavior
induced by deformation).

Figure 5. Evolution of the ratio C2222/C1111, that is the ratio between the vertical and the
horizontal stiffness for the case of axial displacement in tension imposed depicted in Figure 1.
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As it is shown in Figure 2 on the one hand no plastic behavior occurs in this case. On the other
hand, increasing 20 times the normal damage characteristic displacement (Bt

η → 20Bt
η), the response

changes dramatically. In Figure 6 the stress response is shown in this second case and the softening
behavior is very much attenuated.

Figure 6. Stress response to imposed axial displacement in tension depicted in Figure 1 and
higher normal damage characteristic displacement.

In Figure 7 normal and tangent damage evolution are also different. In fact, e.g., maximum normal
damage is not any more equal to the admissible value Dη ' 1 but to the constant value Dη = Ďη ' 0.4
that was analytically calculated in (4.23).

Figure 7. Evolution of normal and tangent damage for the case of axial displacement in
tension imposed depicted in Figure 1 and higher normal damage characteristic displacement.

The non trivial plastic displacement evolution upl
η = λt

η − λ
c
η is therefore shown in Figure 8. It is

evident that the plastic displacement occurs only around the horizontal direction.
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Figure 8. Evolution of plastic displacement upl
η = λt

η−λ
c
η for the case of axial displacement in

tension imposed depicted in Figure 1 and higher normal damage characteristic displacement.

4.2. Strain compression control

In compression
α = −αc < 0. (4.25)

the relative displacement uη ≤ 0 is negative in any direction (i.e., ∀θ ∈ [0, 2π]) and therefore from
(2.44) we have

λt
η = 0. (4.26)

From (2.42) and (2.44) we have

D̃η(uη, λt
η, λ

c
η) =

2
π

arctan
(
−

uη + λc
η

Bc
η

)
, λ̃c

η(uη, λ
c
η,Dη,Dτ) = −uη −

σc
η

kη
(
1 − Dη

) . (4.27)

At the beginning of the time history (i.e., with 0 ≥ uη � −L from (4.6)) we have from (4.27)2 that
λ̃c
η(uη, λ

c
η,Dη,Dτ) < 0 that means an analytical solution for the accumulation in compression and for

the normal damage as follows,

λc
η = 0, Dη =

2
π

arctan
(
−

uη
Bc
η

)
. (4.28)

The solution (4.28) is valid only before the threshold condition (2.41) with (2.45)

λ̃c
η(uη, λ

c
η,Dη,Dτ) = −uη −

σc
η

kη
(
1 − Dη

) = 0 (4.29)

is satisfied. Thus, by insertion of (4.28)2 into (4.29) we have,

(
1 − Dη

)
=
−σc

η

kηuη
= 1 −

2
π

arctan
(
−

uη
Bc
η

)
. (4.30)
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With the constitutive parameters that we have chosen in Table 1 this condition happens at uη = ūη < 0
and therefore we have (4.28) for uη < ūη

λc
η = −uη −

σc
η

kη
(
1 − Dη

) , Dη =
2
π

arctan
(
−

uη + λc
η

Bc
η

)
. (4.31)

By insertion of ( 4.31) into (4.30) we also obtain a nonlinear algebraic equation

Dη =
2
π

arctan

 σc
η

kηBc
η

(
1 − Dη

) , ⇒ Dη = D̄η (4.32)

the solution of which gives the normal damage Dη = D̄η at which the condition uη = ūη < 0 holds
and that is constant with respect to the normal displacement uη and therefore with respect to time.
This implies that the accumulation in compression evolves linearly with the normal displacement by
insertion of (4.32) into (4.31)2,

λc
η = −uη −

σc
η

kη
(
1 − D̄η

) , uη < ūη < 0 (4.33)

This response is calculated by (4.13)–(4.15) and it is graphically represented in Figure 9. We
observe (S 11 < 0 in the left-hand side of Figure 9) that, after a first part where we have an decreasing
function of time, in a second part of the response the softening induced by damage is evident and a
peak reaction is observed as well as a slightly increasing curve. A negative reaction is observed also
in the orthogonal direction (S 22 < 0 in the right-hand side of Figure 9). The behavior in the
orthogonal direction is almost equivalent except for the slightly increasing part again because of a non
trivial evolution of the equivalent (the response is not anymore isotropic) Poisson ratio.

Figure 9. Stress response to imposed axial displacement in compression depicted in Figure 1.

The softening behavior is due the non homogeneous evolution of the damage variables with respect
to the grain-pair orientation ĉ ∈ S1 or, equivalently, to the angle θ ∈ [0, 2π], as it is shown in Figure 10.
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Figure 10. Evolution of normal and tangent damage for the case of axial displacement in
compression imposed depicted in Figure 1.

The anisotropic behavior is also explicated in the evolution of the ratio C2222/C1111 between the
vertical and the horizontal stiffness in Figure 11.

Figure 11. Evolution of the ratio C2222/C1111, that is the ratio between the vertical and the
horizontal stiffness for the case of axial displacement in compression imposed depicted in
Figure 1.

In the left-hand side picture of Figure 10 normal damage evolution is shown and it is evident that
the horizontal grain-pair orientation, i.e., around θ = kπ, with k ∈ Z, are the most affected by the
damage effect. In the right-hand side picture of Figure 10 tangential damage evolution is shown and it
is evident that the oblique grain-pair orientation, i.e., around θ = π/4 + kπ/2, with k ∈ Z, are the most
affected by the damage effect. This behavior is nevertheless obscured by the non constant dependence
of the damage tangential characteristic displacement Bτ with respect to the normal displacement in
compression that was made explicit in (2.23). We have that the higher is the compression the lower is
the damage velocity evolution. Thus, the orientation that are more in compression, i.e., θ = kπ, with
k ∈ Z, have lower damage velocity evolution with respect to the orientation that are less in compression,
i.e., θ = π/2 + kπ, with k ∈ Z, where damage have new peaks.

It is also worth to be noted from Figure 11 that the anisotropy between vertical and horizontal
stiffness on the one hand in an elastic isotropic simulation should be maintained at 1 for the entire
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history of deformation. Here, on the other hand, it goes from 1 at t = 0 (i.e., initial isotropic behavior)
to 13 at t = 20s (i.e., anisotropic behavior induced by deformation).

The non trivial plastic displacement evolution upl
η = λt

η − λ
c
η is therefore shown in Figure 12. It is

evident that the plastic displacement occurs only around the horizontal direction.

Figure 12. Evolution of plastic displacement for the case of axial displacement in
compression imposed depicted in Figure 1 and higher normal damage characteristic
displacement.

5. Conclusions

This paper recaps and updates a recently developed continuum model for granular materials in
order to handle with those important dissipative phenomena as damage and plasticity. The novelty of
such a recap is original. The reason is that here for the first time the dissipation energy and the
variational inequality are defined directly integrated over the orientation space. This makes the Euler
Lagrange equations related to the displacement field (i.e., the elastic Partial Differential Equations
PDEs and Boundary Conditions BCs) already integrated over that space. The advantage is that we
derive directly the equations that we use for the numerical integration and we do not need to make an
artificial integration after their derivation. Its application to an analytical homogeneous case is
considered. Plasticity is given by two separate kinematic descriptors (i.e., the accumulation in tension
and the accumulation in compression), that are the two plastic multipliers, for every position, time,
and grain pair orientation. A hemi-variational principle was adopted to derive the governing
equations, from which we obtain Karush-Kuhn-Tucker (KKT)-kind conditions that specify the
progression of damage and plasticity relating to each pair of grains interaction. For the case of
homogeneous deformation, an analytical solution for the displacement field is assumed and damage
and plastic evolution have been derived. It is worth to remark that for non homogeneous deformation,
the computation of non homogeneous strain can be reached, e.g., with a Finite Element method
according to the scheme developed in [47, 59], where the presence of strain gradient terms in the
PDEs related to the elastic evolution guarantees the overlook of the problem of the mesh-dependence
results. Different loading patterns are experienced by different grain-pairs that are oriented in different
directions, resulting in complex anisotropic behavior due to damage and plastic evolution.
Competition between damage and plasticity dissipative phenomena is demonstrated in these
simulations. We show that, for specific parameters, the evolution of plasticity may stop the growth of
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damage and vice versa. Besides, the presence of newly conceived constitutive parameters that are
present in the dissipation energy functional, imposes a fundamental outlook related to their
identification. In the presented model we have the inclusion of simple local plastic interactions that
contribute to a complex plastic response of the material as a whole. Finally, no additional
assumptions, out of the form of the dissipation energy and such as flow rules, are required to describe
the plastic behavior and it is worth to point out that the plastic strain is compatible with the existence
of a placement function.
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