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Complexity of some arc-partition problems for digraphs∗

J. Bang-Jensen† S. Bessy‡ D. Gonçalves§ L. Picasarri-Arrieta¶

June 13, 2022

Abstract

We study the complexity of deciding whether a given digraph D = (V, A) admits a par-
tition (A1, A2) of its arc set such that each of the corresponding digraphs D1 = (V, A1) and
D2 = (V, A2) satisfy some given prescribed property. We mainly focus on the following 15
properties: being bipartite, being connected, being strongly connected, being acyclic (span-
ning or not necessarily spanning), containing an in-branching, containing an out-branching,
having some in-degree (or out-degree) conditions, satisfying some conditions on the number of
arcs, being balanced (connected or not) or being a cycle. Combined with previous research,
our work leads to a complete classification (in terms of being polynomial or NP-complete) of
the complexity of 120 arc-partitioning problems on digraphs.

Keywords: Digraphs, arc-partitions, NP-complete, polynomial algorithm, branchings, strong
subdigraphs, cycle factor, acyclic digraph

1 Introduction

There are many papers in the literature dealing with the following type of problem: for given
(di)graph properties Q1, Q2 a (Q1, Q2)-partition of a digraph D = (V,A) is a vertex partition
V = V1 ∪ V2 such that the digraph D[Vi] induced by Vi has property Qi. For literature see [5, 7]
and the references therein. Important examples of such vertex partition problems are the feedback
vertex set problem, where we ask for a partition (V1, V2) such that D[V1] is acyclic and |V2| ≤ k for
some prescribed k, and the dichromatic number of a digraph. A digraph has dichromatic number
2 if and only if it has a vertex partition (V1, V2) such that D[Vi] is acyclic for i = 1, 2. Both
problems are known to be NP-complete [19, 13]. In [5, 7] a complete complexity characterization
was given for the 120 vertex-partition problems where we seek a partition (V1, V2) of V (D) such
that Di = D[Vi] has property Qi and Q1, Q2 both belong to the following set of properties: {being
strongly connected, being connected, having minimum out-degree at least 1, having minimum in-
degree at least 1, having minimum semi-degree at least 1, having minimum degree at least 1, having
an out-branching, having an in-branching}.

No similar extensive study of arc-partition problems seems to have be made so this is the
purpose of the present paper. For two (di)graph properties P1 and P2, we define the (P1, P2)-arc-
partition problem as the problem of partitioning the arcs of D in two subsets A1 and A2 such
that the digraph D1 = (V,A1) has property P1 and the digraph D2 = (V,A2) has property P2.
Although no exhaustive study seems to exist so far, there are many natural (P1, P2)-arc-partition
problems, and there exist some well-known research on special cases of it. For instance, the (having
an out-branching, having an out-branching)-arc-partition problem is known to be polynomial [16],
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where an out-branching (resp. in-branching) is the orientation of a spanning tree where every vertex
has in-degree at most one (resp. out-degree at most one). As another example, the (being strongly
connected, being strongly connected)-arc-partition problem was shown to be NP-complete [11]. The
purpose of this paper is to address the complexity of the 120 (P1, P2)-arc-partition problems when
P1 and P2 belong to the following 15 properties:

- bipartite : Being bipartite,

- connected : The underlying graph is connected,

- strong : Being strongly connected,

- acyclic : Being acyclic,

- acyclic spanning : Being acyclic and each vertex is spanned (minimum degree at least 1).

- having B+ : Containing an out-branching rooted in some vertex

- having B− : Containing an in-branching rooted in some vertex

- cycle factor : Each vertex has in-degree and out-degree exactly 1,

- δ− ≥ k : Each vertex has in-degree at least k,

- δ+ ≥ k : Each vertex has out-degree at least k,

- ≥ k arcs : Having at least k arcs,

- ≤ k arcs : Having at most k arcs,

- balanced : d+(v) = d−(v) for every vertex v,

- eulerian : Being balanced and strongly connected,

- cycle : Being an oriented cycle (with possibly some vertices not spanned).

In the following, we determine, or recall results on, the complexity of the corresponding 120
algorithmic problems. For each of these problems their status with respect to NP-completeness
is established. We point out that some of our NP-completeness proofs uses polynomial so-called
Turing (one to many) reductions from a known NP-complete problem to our present problem. For
those problems we have not been able to find a polynomial Karp (many to one) reduction (compare
with [17, p. 113, 118-120]). All the problems for which we use Turing reductions to show their
hardness are in NP so they are at least as hard as any other problem in NP.

See Tables 1-3 for an overview of the complexities. The notation in the tables is as follows:
We use P for polynomially solvable problems and NP-c for problems that are NP-complete and
finally we denote by NP-cT problems that are NP-complete with respect to Turing reductions. In
each entry of the tables we refer to either a subsection where the result is proved, to a Theorem
in a section or to a result from the literature. As we already mentioned, some of the problems
have already been studied in the literature and their complexity is known. We review those in
in Section 2. Then Section 3 is devoted to the description of polynomial-time algorithms, and
it is organized according to the techniques used therein (e.g. reduction to a max-flow, or to a
matroid intersection instance). Section 4 contains proofs for the NP-complete problems that were
not already in the literature. Then we conclude in Section 5 with some open problems.

Bipartite Connected Strong Acyclic Acyclic spanning Having B+ Having B−

Bipartite NP-c (4.3.1) P (3.1) P (3.1) NP-c (4.2.2) NP-c (4.2.3) P (3.1) P (3.1)

Connected × P [18, 24] NP-c [12] P (3.1) NP-c (4.2.4) NP-c [12] NP-c [12]

Strong × × NP-c [11] P (3.1) NP-c (4.2.7) NP-cT (Th. 10) NP-cT (Th. 10)

Acyclic × × × P (3.2.6) P (3.5) P (3.1) P (3.1)

Acyclic spanning × × × × P (3.5) NP-c (4.2.6) NP-c (4.2.6)

Having B+ × × × × × P [16] NP-c [2]

Having B− × × × × × × P [16]

Table 1: Complexity of arc-partitioning problems
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δ− ≥ k δ+ ≥ k Cycle Factor ≤ k arcs ≥ k arcs Balanced Eulerian Cycle

Bipartite P (3.1) P (3.1) NP-c (4.3.3) NP-c (4.3.2) P (3.1) NP-c (4.3.4) NP-c (4.3.5) NP-c (4.3.6)

Connected P (3.4.2) P (3.4.2) NP-c (Th. 8) P (3.1) P (3.2.1) P (3.1) NP-c (Th. 10) NP-c [12]

Strong NP-c (Cor. 9) NP-c (Cor. 9) NP-c (Th. 8) P (3.1) NP-c (Th. 8) P (3.1) NP-c (Th. 10) NP-c [12]

Acyclic P (3.1) P (3.1) NP-cT (Th. 8) NP-c (4.2.1) P (3.1) P (3.2.5) NP-c (4.2.8) NP-cT (Th. 10)

Acyclic spanning P (3.3.1) P (3.3.1) NP-cT (Th. 8) NP-c (4.2.1) P (3.2.1) NP-cT (Th. 8) NP-cT (Th. 10) NP-cT (Th. 10)

Having B+ P (3.2.3) NP-c (4.2.5) NP-c (Th. 8) P (3.1) P (3.2.1) P (3.1) NP-c (Th. 10) NP-c [12]

Having B− NP-c (4.2.5) P (3.2.3) NP-c (Th. 8) P (3.1) P (3.2.1) P (3.1) NP-c (Th. 10) NP-c [12]

Table 2: Complexity of arc-partitioning problems continued

δ− ≥ k δ+ ≥ k Cycle Factor ≤ k arcs ≥ k arcs Balanced Eulerian Cycle

δ− ≥ k P (3.2.3) P (3.3.2) P (3.2.2) P (3.1) P (3.2.1) P (3.1) NP-c (Cor. 9) P (3.2.3)

δ+ ≥ k × P (3.2.3) P (3.2.2) P (3.1) P (3.2.1) P (3.1) NP-c (Cor. 9) P (3.2.3)

Cycle Factor × × P (3.2.2) P (3.2.1) P (3.2.1) P (3.2.2) NP-c (Th. 8) NP-c (Th. 8)

≤ k arcs × × × P (3.2.1) P (3.1) P[14] NP-c [14] NP-c (Th. 8)

≥ k arcs × × × × P (3.2.1) P (3.1) NP-c (Th. 8) P (3.2.1)

Balanced × × × × × P (3.2.4) P (3.2.4) P (3.2.4)

Eulerian × × × × × × NP-c (Th. 10) NP-c [12]

Cycle × × × × × × × NP-c (Th. 10)

Table 3: Complexity of arc-partitioning problems continued

2 Preliminaries

We refer the reader to [6] for notation and terminology not explicitly defined in this paper. We will
only recall a few pieces of notation here. The underlying graph UG(D) of a digraph D = (V,A)
is the graph G = (V,E) which has an edge between u and v if and only if at least one of uv, vu is
an arc of D. A digraph is connected if UG(D) is a connected graph.

Let D = (V,A) be a digraph. The out-degree, d+(v) (resp. in-degree, d−(v)) of a vertex v ∈
V is the number of arcs in A of the form vw (resp, uv) and the degree of v is d(v) = d+(v)+d−(v).
We denote by δ+(D) (resp. δ−(D) and δ(D)) the minimum out-degree (resp. in-degree and degree)
of a vertex in D. The minimum semi-degree, denoted δ0(D) of D is δ0(D) = min{δ+(D), δ−(D)}.
A digraph D is k-regular if every vertex has in-degree and out-degree equal to k; D is balanced
if d+(v) = d−(v) for every vertex v ∈ V (D) and D is eulerian if it is balanced and connected.

Theorem 1 (Edmonds). [16] Let D = (V,A) be a digraph, let s ∈ V be a fixed vertex and let
k ≥ 2 be an integer. Then D has k arc-disjoint out-branchings rooted at s if and only if there are
k arc-disjoint (s, t)-paths in D for every choice of t ∈ V − s

The existence of k arc-disjoint (s, t)-paths in a digraph can be checked in polynomial time
using flows (see e.g. [6, Section 5.4]). A polynomial algorithm which constructs the desired out-
branchings or determines that no such collection exists follows from the proof of Theorem 1 in
[22].

Theorem 2. [23] For every integer k > 2 it is NP-complete to decide whether a k-regular graph
G has a hamiltonian cycle.

Theorem 3. [6, Theorem 6.1.2] It is NP-complete to decide whether a 2-regular digraph has a
hamiltonian cycle

Corollary 4. For every integer k ≥ 2 it is NP-complete to decide whether a k-regular digraph D
has a hamiltonian cycle.
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Proof. The case k = 2 is Theorem 3 and for k ≥ 3 the result follows by the observation that if G
is k-regular and D is obtained from G by replacing each edge of G by a directed 2-cycle, then D
is a k-regular digraph and D has a hamiltonian cycle if and only G has a hamiltonian cycle.

Lemma 5. For every integer k ≥ 2 the problem of deciding whether a k-regular digraph contains
an hamiltonian path is NP-complete.

Proof. Given a k-regular digraphD, let us construct a k-regular digraphD2 that has an hamiltonian
path if and only if D has an hamiltonian cycle. As the hamiltonian cycle problem is NP-hard for
D by Corollary 4, we obtain the NP-hardness for D2.

Fix an arbitrary vertex x of D and construct D2 by starting with two copies of D, with the
vertices x′ and x′′ corresponding to x. Then replace each arc x′u by an arc x′′u, and vice versa.
Clearly D2 is k-regular. Let us now see that it has an hamiltonian path if and only if D has an
hamiltonian cycle. Indeed, if D2 has an hamiltonian path, the subpath linking x′ and x′′ spans a
copy of D, and thus corresponds to an hamiltonian cycle of D. Conversely, an hamiltonian cycle
of D corresponds to an x′x′′-path spanning a copy of D, thus taking two such paths one obtains
an hamiltonian cycle of D2.

Theorem 6. [12] It is NP-complete to decide whether a 2-regular digraph has a pair of arc-disjoint
hamiltonian cycles.

The following classic theorem by Tutte characterizes graphs with k-edge disjoint spanning trees.

Theorem 7 (Tutte). [26] A graph G = (V,E) has k edge-disjoint spanning trees for an integer
k ≥ 2 if and only if

eP ≥ k · (|V | − 1) (1)

holds for every partition P = {V1, V2, . . . , Vr} of V into non-empty sets, where eP denotes the
number of edges of E which have an end in two distinct sets of P

Although the condition in the theorem involves an exponential family of partitions of the vertex
set, one can obtain a polynomial algorithm which for a given integer k ≥ 2 either constructs k edge-
disjoint trees in G or a partition P which violates (1). This follows from the constructive proof of
Theorem 7 in [18] and also from the fact that the problem can be solved using matroid techniques
(see Section 3.4).

This implies that the (connected, connected)-arc-partition problem is polynomial as it is equiv-
alent to finding two edge-disjoint spanning trees in a graph.

A digraph D = (V,A) has a (having B+, having B+)-arc-partition if and only if there are
two vertices u1, u2 of D (possibly u1 = u2) of D such that D has arc-disjoint out-branchings B+

u1
and B+

u2
, where B+

ui
is rooted at ui, i = 1, 2. For a given choice of distinct vertices u1, u2 of D

the digraph D′ we obtain by adding a new vertex s and the arcs su1, su2 has two arc-disjoint
out-branchings rooted at s if and only if D has branchings B+

u1
and B+

u2
as above.

By Theorem 1 and the remark after it we can check the existence of arc-disjoint out-branchings
from s in D′. Hence by checking all possible choices of u1, u2 we can solve the (having B+, having
B+)-arc-partition for D in polynomial time. By symmetry (reversing all arcs of D) implies that also
the (having B−, having B−)-arc-partition problem, is polynomial. In contrast to this, Thomassen
proved that the (having B+, having B−)-arc-partition problem is NP-complete (see [2] and [3]).

The more constrained (strong, strong)-arc-partition problem is NP-complete [11]. This problem
is more constrained because any strongly connected graph contains an out-branching, and an in-
branching.

The (strong, connected)-arc-partition problem is NP-c [12]. Actually this problem remains NP-c
for 2-regular digraphs [9]. The (having B+, connected)-arc-partition problem is also known to be
NP-c [12] but this time, the problems turns out to be polynomial on 2-regular digraphs [9].

In [12], it is also shown that the (strong, cycle), the (having B+, cycle), the (connected, cycle),
and the (eulerian, cycle)-arc-partitions problems are all NP-c. The latter result is not explicitly
stated but one can check that the reduction in [12] from 3-SAT to the (strong, cycle)-arc-partition
problem is also a reduction from 3-SAT to (eulerian, cycle)-arc-partition problem, because the
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constructed digraph is eulerian, and every (strong, cycle)-arc-partition of an eulerian digraph D is
also an (eulerian, cycle)-arc-partition of D.

In [14] it is shown that the (≤ k arcs, balanced)-arc-partition problem can be solved in poly-
nomial time, while the (≤ k arcs, eulerian)-arc-partition problem is NP-complete, even when
restricted to planar digraphs with maximum degree three. However the authors showed that the
(≤ k arcs, eulerian)-arc-partition problem admits an FPT algorithm when parameterized by k.

3 Polynomially solvable arc-partition problems

3.1 Trivial problems

A property P is upward closed if every superdigraph on the same vertex set of a digraph D with
property P also has property P. The (P1, P2)-arc-partition problem is trivial to solve when P1
holds for the arcless digraph, and when P2 is upward closed. Indeed, it suffices to check whether D
has property P2. If this is the case then (∅, A(D)) is a solution and otherwise there is no solution.
This argument shows that the (P1, P2)-arc-partition problem is polynomial when P1 belongs to
{bipartite, acyclic, ≤ k arcs, balanced} and P2 belongs to {connected, spanning, strong, having B+,
having B−, δ+ ≥ k, δ− ≥ k, ≥ k arcs}. Note that these combinations of properties define 32
different problems.

3.2 Almost trivial problems

3.2.1 (≥ k arcs, P2)-arc-partition

If there exists a polynomial algorithm A which given a digraph D, either computes the minimum
size of a subgraph of D having property P2 or decides that D has no such subdigraph, then it
suffices to check whether there are enough edges left to verify the ≥ k arcs property. We claim
that such an algorithm A exists when P2 belongs to {≥ k arcs, δ+ ≥ k, cycle, cycle factor ,
connected, having B+, having B−, Acyclic spanning}. For ≥ k arcs and δ+ ≥ k, the existence of A
is clear. For cycle, one just computes the shortest directed cycle of D in polynomial time [6]. For
connected, one has to check that UG(D) is connected, and has to consider a spanning tree (with
|V | − 1 edges) for the connected subgraph. For having B+ (resp. having B−, or a cycle factor),
one has to check that D has an out-branching (resp. in-branching, or a cycle factor), and only
has to consider that it uses exactly |V | − 1 arcs (resp. |V | − 1 arcs, or |V | arcs). Note that as a
cycle factor always has exactly |V | arcs, the (cycle factor, ≤ k arcs)-arc-partition problem is also
polynomial. For acyclic spanning, one has to compute a minimum spanning star forest of UG(D),
and this is polynomial [20].

3.2.2 (cycle factor, P2)-arc-partition

Removing a cycle factor decreases the out-degree and the in-degree of every vertex by exactly one.
Hence, for any property P2 for which it suffices to check the in- and out-degrees of the vertices
(which is the case when P2 belongs to {cycle factor, balanced, δ+ ≥ k, δ− ≥ k}) it suffices to
check whether D contains a cycle factor or not (recall that a digraph H has property ’cycle factor’
precisely when H is 1-regular).

3.2.3 (δ+ ≥ k, P2)-arc-partition

For each vertex we know how many out-going arcs are available for A2, and there is no other
constraint for A1. Thus, if property P2 admits an extra constraint consisting in bounding the out-
degrees of the vertices, and remains polynomially solvable, the (δ+ ≥ k, P2)-arc-partition problem
is polynomially solvable. This is the case when P2 belongs to {cycle, δ+ ≥ `, having B−}. Indeed,
for cycle we are given a set of vertices (those with δ+(v) = k) through which the cycle should not
pass. For δ+ ≥ `, all vertices must have out-degree at least k + `. For having B−, at most one
vertex can have out-degree ≤ k, and in that case it is the only possible root for the in-branching.
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3.2.4 (balanced, P2)-arc-partition

If every digraph with property P2 is balanced (which is the case when P2 belongs to {balanced,
eulerian, cycle, cycle factor}, then D admits a (balanced, P2)-arc-partition if and only if D is
balanced and contains a subgraph (V,A2) with property P2 (as the graph (V,A \A2) is necessarily
balanced).

3.2.5 (balanced, acyclic)-arc-partition

Every digraph has such an arc-partition (A1, A2). Indeed, let A1 = ∅ and A2 = A(D) and then
while D[A2] contains a directed cycle C, move all its edge from A2 to A1. Clearly this results in
the desired arc-partition in polynomial time.

3.2.6 (acyclic, acyclic)-arc-partition

Let us recall the easy argument that every digraph D has such an arc-partition: just take an
arbitrary ordering x1, x2, ..., xn of V (D). Then

A1 = {xixj ∈ A|i < j} and A2 = {xixj ∈ A|i > j}

is an (acyclic, acyclic)-arc-partition of D (see Figure 1).

A1

A2

x1 x2 ... xn

Figure 1: Construction of an (acyclic, acyclic)-arc-partition

3.3 Problems that can be solved using flows in networks

Here we list two problems which we have not already shown to be polynomial and where a poly-
nomial algorithm can be obtained using flows.

A network N(V,A, l, u) consists of a directed graph D = (V,A) associated with two functions
on A : a lower bound l, a capacity u.

Let s, t ∈ V be distinct vertices of a network N(V,A, l, u, c). A feasible (s,t)-flow in N is a
function x : A −→ R+ such that the following holds :

•
∑

sv∈A x(sv) =
∑

vt∈A x(vt),

• for each v ∈ V \ {s, t},
∑

uv∈A x(uv) =
∑

vu∈A x(uv) and

• for each a ∈ A, l(a) ≤ x(a) ≤ u(a).
Given a network N(V,A, l, u), along with distinct vertices s, t ∈ V , one can decide in polynomial
time whether N has a feasible (s,t)-flow (see e.g [1] or [6, Chapter 4]).

3.3.1 (acyclic spanning, δ+ ≥ k)-arc-partition

Given an instance D = (V,A) we make a network as follows: let V ′, V ′′ be disjoint copies of V
and form a network with vertex set V ′ ∪ V ′′ ∪ {s, t} with an arc v′w′′ for each original arc vw, all
possible arcs from s to V ′ as well as all possible arcs from V ′′ to t. All arcs have lower bounds
0 and their capacities are as follows: all arcs from V ′ to V ′′ have capacity 1. If d+

D(v) = k then
set the capacity of the arc v′′t to d−(v)− 1 otherwise it i s d−(v). Set the capacity and the lower
bound of the arc sv′ to k for all v ∈ V . This network has a feasible (s, t)-flow if and only if D has
a subdigraph D2 = (V,A2) with out-degree k everywhere such that D1 = D − A2 has min degree
at least one. If D1 has directed cycles, we can move arcs to D2 until there are no directed cycles
in D1 and still have minimum degree at least one in the remaining digraph.
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3.3.2 (δ− ≥ k, δ+ ≥ `)-arc-partition

Let N be a network on vertices {s, t} ∪ V1 ∪ V2 where V1 and V2 are two copies of V with all arcs
vi,1vj,2 such that vivj ∈ A(D). These arcs have capacity 1 and lower bound 0. Then add all arcs
svi,1 with lower bound 0 and capacity d+(v) − `. and all arcs vi,2t, with a lower bound k and
infinite capacity (see Figure 2).

Then it is easy to check that N admits a (s, t)-flow if and only if D admits a (δ− ≥ k, δ+ ≥ `)-
arc-partition: the capacities on the arcs out of s make sure that we reserve at least ` arcs out of
every vertex for D1 and the capacities on the arcs into t make sure that we reserve at least k arcs
entering every vertex for D2.

s

v1,1

v2,1

...

vn,1

v1,2

v2,2

...

vn,2

t

V1 V2

≤ d+(v1)− `

≤ d+(vn)− `

...

≤ 1

≤ 1

≤ 1

≤ 1

≤ 1

≥ k

≥ k

≥ k

≥ k

Figure 2: Construction of the network N

3.4 Problems solvable by matroid techniques

Although we only need matroid techniques to solve the (connected, δ− ≥ k)-arc-partition problem,
we have included this small subsection as it illustrates the power of matroid algorithms.

Let S be a finite set of elements and let F be a collection of subsets of S. The pair M = (S,F)
is a matroid if the following holds :

(i) ∅ ∈ F ,

(ii) If Y ∈ F and X ⊆ Y , then X ∈ F ,

(iii) If X,Y ∈ F and |Y | = |X|+ 1 then there exists an y ∈ Y \X such that X ∪ {y} ∈ F .

The sets in F are called independent and it follows from the axioms above that all maximal
independent sets (called bases) of a matroid have the same size. A famous and very useful example
of a matroid is the circuit matroid associated with a graph G = (V,E). Here S = E and F consists
of the acyclic edge sets E. The following are two very important problems for matroids

• The matroid intersection problem: Given two matroids M1 = (S,F1) and M2 = (S,F2)
over the same set S; Find a set X ∈ F1 ∩ F2 of maximum cardinality.

• The matroid partition problem: Given two matroids Mi = (S,Fi) i = 1, 2, . . . , k over
the same set S; Find a set X ⊂ S of maximum cardinality with the property that X has a
partition X = X1 ∪X2 . . . ∪Xk such that Xi ∈ Fi for i = 1, 2, . . . , k.

Both problems above can be solved in polynomial time provided that we have polynomial oracles
to decide independence of a given set in the involved matroids. (see e.g. [21, 24]).
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3.4.1 (connected, connected)-arc-partition)

We mentioned already in Section 2 that Kaiser [18] gave an algorithmic proof of Theorem 7 and
that this leads to a polynomial algorithm that either produces a pair of edge-disjoint trees or a bad
partition F of the vertex set. Another way to find k edge-disjoint spanning trees or decide that no
such collection exists is to use an algorithm for matroid partition: Given a graph G = (V,E) let
M1,M2, . . . ,Mk be k copies of the circuit matroid for G (as defined above) So a set of E′ ⊆ E of
edges is independent in Mi precisely when E′ induces a forest in G and a base of Mi has size |V |−1
if and only if G is connected (bases are the edges of a spanning tree). Thus G has k edge-disjoint
spanning trees if and only if the solution X to the matroid partition problem for M1,M2, . . . ,Mk

has size k(|V |−1). Hence we obtain an algorithm for deciding whether a graph has k edge-disjoint
spanning trees by solving the corresponding matroid partitioning problem.

3.4.2 (connected, δ− ≥ k)-arc-partition

First note that this problem is equivalent to the partition of the arc set into a spanning tree of the
underlying undirected graph, and a graph with minimum in-degree at least k. This can be solved
by matroid intersection. Given a digraph D = (V,A) with δ−(D) ≥ k we let M1 be the circuit
matroid of UG(D) and let M2 = (A,F2) be the matroid where a set A′ of arcs is in F2 if each
vertex v has in-degree at most d−(v)− k in D′ = (V,A′) (we leave out the easy proof that M2 is a
matroid over the set A). Then M1 and M2 have a common independent set of size |V | − 1 if and
only if D has the desired partition (the spanning tree must leave at least k arcs into v unused for
each v.)

3.5 (acyclic spanning, acyclic (spanning))-arc-partition

Let D be a connected digraph (otherwise handle each of its connected component separately).
We claim that D admits an (acyclic spanning, acyclic spanning)-arc-partition if and only if the
following holds :

• D has minimum degree at least two,

• UG(D) is not a cycle of odd length.

If D is an odd cycle or has minimum degree at most one, then D does not admit any (spanning,
spanning)-arc-partition and hence it also has no (acyclic spanning, acyclic spanning)-arc-partition.
Here the property spanning is the same as having minimum degree at least one in the underlying
graph.

Conversely, Assume that UG(D) is not an odd cycle and that it has minimum degree at least
two. If UG(D) is an even length cycle, then D clearly admits a (acyclic spanning, acyclic spanning)-
arc-partition) so we can assume that UG(D) is not a cycle. We will show how to construct an
(acyclic spanning, acyclic spanning)-arc-partition of D.

As we mentioned in Section 3.2.6, D admits an (acyclic, acyclic)-arc-partition (A1, A2). While
D has a vertex v such that v is not covered by A1, choose one arc (entering or leaving) of v and
move it from A2 to A1. This move cannot create a cycle and thus we can repeat this operation until
the current arc-partition (A1, A2) is an (acyclic spanning, acyclic)-arc-partition. This shows that
the (acyclic spanning,acyclic )-arc-partition problem can be solved in polynomial time, because
every digraph without any isolated vertex admits such a partition. Assume now that (A1, A2) is
such a partition that minimizes the number of vertices of D that are not covered by A2. If A2
covers every vertex of V we are done, so assume that v is a vertex of D which is not covered by
A2.

Claim 7.1. UG(D) does not contain a walk W = u0u1...uk alternating between A1 and A2 from
v = u0, and such that if uk−1uk ∈ Ai the vertex uk has an incident edge in Ai \ E(W ).

Proof. Suppose that UG(D) contains such a walk and let W be a shortest walk with this property,
and note that the minimality of W implies that the following holds:

• u0u1 ∈ A1 and dA1(u0) > 1,
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• dA1(uj) = 1 (this edge being uj−1uj) for any odd j < k, and

• dA2(uj) = 1 (this edge being uj−1uj) for any even 0 < j < k.

Then, let A′1 = A1∆A(W ) and A′2 = A2∆A(W ) (where X∆Y is the set (X \ Y ) ∪ (Y \ X)).
Note that each of A′1, A

′
2 induce acyclic digraphs. If A′1 (resp. A′2) contains a directed cycle, this

cycle uses an edge uj−1uj where j is even (resp. odd). However, as dA′1
(uj−1) = 1 (resp. as

dA′2
(uj−1) = 1) such cycle cannot exist. Furthermore, one can also note that (V,A′1) is (still)

spanning and that (V,A′2) spans one more vertex, v. This is a contradiction, and we thus have
that D does not contain such alternating walk W .

Since UG(D) has minimum degree at least two, this graph contains cycles. Let us now show
that v belongs to every cycle of UG(D). Otherwise, one could consider a cycle C of UG(D) not
containing v, and a (non-trivial) path P = u0u1...uk from u0 = v to any vertex uk of C. By
applying Claim 7.1, to all subpaths of P ∪ C starting at v we conclude that P is alternating, that
the two edges incident to uk in C belong to the same set Ai (the one such that uk−1uk /∈ Ai),
and that otherwise the edges of C alternate between A1 and A2 (and thus C has odd length).
These observations imply that (A′1, A′2) with A′i = Ai∆

(
A(P ) ∪ A(C)

)
is an (acyclic spanning,

acyclic)-arc-partition such that A′2 covers more vertices of D than A2, a contradiction.
Finally, we have that v has degree two: otherwise the walk consisting in going from v to v

through a cycle, and leaving v through a third edge would violate Claim 7.1. This contradicts the
fact that UG(D) is not a cycle. Indeed if UG(D) had a vertex of degree at least three, it would
contain several cycles (since δ(UG(D)) ≥ 2), say C1 and C2, intersecting at v, but in that case
C1∆C2 would contain a cycle that does not contain v, a contradiction. We thus conclude that
(A1, A2) is an (acyclic spanning, acyclic spanning)-arc-partition.

4 Some NP-complete arc-partition problems

The NP-completeness of many of the arc-partition problems follow from Theorems 3 and 6 and the
following two results

4.1 Reduction from hamiltonian cycle in 2-regular digraphs

Theorem 8. Let D = (V,A) be a 2-regular digraph on n vertices. The following properties are
equivalent :

0. D admits a hamiltonian cycle,

1. D admits a (strong, δ+ ≥ 1)-arc-partition,

2. D admits an (eulerian, δ+ ≥ 1)-arc-partition,

3. D admits a (connected, cycle factor)-arc-partition,

4. D admits a (strong, cycle factor)-arc-partition,

5. D admits a (having B+, cycle factor)-arc-partition,

6. D admits a (strong, ≥ n arcs)-arc-partition,

7. D admits a (eulerian, ≥ n arcs)-arc-partition,

8. D admits an (eulerian, cycle factor)-arc-partition,

9. D admits a (cycle, cycle factor)-arc-partition,

10. D admits a (cycle, ≤ n arcs)-arc-partition,

11. there is an arc a ∈ A such that D − {a} admits an (acyclic, cycle factor)-arc-partition,
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12. there is an arc a ∈ A such that D − {a} admits an (acyclic spanning, cycle factor)-arc-
partition,

13. there is an arc a ∈ A such that D−{a} admits an (acyclic spanning, balanced)-arc-partition,

Proof. Let D be a 2-regular digraph. If D has a hamiltonian cycle C, then D − A(C) is a cycle
factor. Hence, (A(C), A \ A(C)) is the desired partition of the properties 1 to 10. For properties
11, 12 and 13, one just has to consider any arc a of C and (A(C) \ {a}, A \ A(C)) is the desired
partition.

Conversely, if D admits a (cycle, ≤ n arcs)-arc-partition, then D admits a cycle C of size at
least n. This cycle is thus of size exactly n and D is hamiltonian. Hence property 10 implies
property 0.

If D admits a (P1, P2)-arc-partition (A1, A2), with P1 ∈ {strong, eulerian}, then A1 induces a
strong spanning subdigraph on at least n arcs of D. If P2 ∈ {δ+ ≥ 1, ≥ n arcs, cycle factor}, then
|A2| ≥ n. Thus A1 induces an hamiltonian cycle, as it is spanning strong subdigraph with exactly
n arcs. Thus each of the properties 1, 2, 4, 6, 7 and 8 implies property 0.

If D admits a (cycle factor, P2)-arc-partition (A1, A2), then A2 also induces a cycle factor of
D since D is 2-regular. If property P2 implies that (V,A2) is connected, then this subgraph is
hamiltonian. This is the case for P2 ∈ {connected, having B+, cycle} and similarly if P2 is the
property of having an arc such that its removal results in being acyclic. Indeed, a cycle factor
with k connected components needs at least k arc removals to become acyclic. Hence each of the
properties 3, 5, 9, 11, and 12 implies property 0.

If D has an arc-partition (A1, A2), such that (V,A1) is balanced and such that (V,A2 \ {a}) is
spanning and acyclic for some arc a, the reasoning is similar. Here we have that A2 induces an
eulerian subdigraph (as it is balanced, connected and spanning), but as A2 \{a} induces an acyclic
digraph, the eulerian subdigraph induced by A2 has only one cycle and it is thus an hamiltonian
cycle. Hence property 13 also implies property 0.

By Theorem 3, each of the 13 arc-partition problems 1-13 mentioned above are NP-complete.

Using the fact that a (k+ 1)-regular digraph has a (strong, δ+ ≥ k)-arc-partition if and only if
it has a hamiltonian cycle which again is if and only if it has a (eulerian, δ+ ≥ k)-arc-partition we
obtain the following from Corollary 4.

Corollary 9. For every integer k ≥ 1 the following problems are NP-complete

• The (strong, δ+ ≥ k)-arc-partition problem.

• The (eulerian, δ+ ≥ k)-arc-partition problem.

Theorem 10. Let D = (V,A) be a 2-regular digraph. The following properties are equivalent :

0. D admits two arc-disjoint hamiltonian cycles,

1. D admits a (strong, strong)-arc-partition,

2. D admits an (eulerian, connected)-arc-partition,

3. D admits an (eulerian, strong)-arc-partition,

4. D admits an (eulerian, eulerian)-arc-partition,

5. D admits an (eulerian, having B+)-arc-partition,

6. D admits a (cycle, cycle)-arc-partition,

7. there is an arc a ∈ A such that D − {a} admits a (cycle, acyclic)-arc-partition,

8. there is an arc a ∈ A such that D − {a} admits an admits a (cycle, acyclic spanning)-arc-
partition,

9. there is an arc a ∈ A such that D−{a} admits an (eulerian, acyclic spanning)-arc-partition,
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10. there is an arc a ∈ A such that D − {a} admits a (strong, having B+)-arc-partition,

Proof. If D admits two arc-disjoint hamiltonian cycles C1 and C2, then (A(C1), A(C2)) is the
desired partition of properties 1 to 6. By removing any arc of A(C2), one can obtain the desired
partition of properties 7 to 10. Let us now show that each of the properties 1 to 10 implies property
0.

If D admits (A1, A2) a (strong, strong)-arc-partition, A1 and A2 induce two arc-disjoint strong
spanning subdigraph of D. Then, each of this subdigraph has exactly n arcs and D admits two
arc-disjoint hamiltonian cycle.

If D admits (A1, A2) an (eulerian, connected)-arc-partition, then A2 is eulerian, because it is
balanced (since D is 2-regular and A1 is eulerian) and connected. Hence, (A1, A2) is a (strong,
strong)-arc-partition of D, so A1 and A2 are two arc-disjoint hamiltonian cycles of D. The same
holds for partitions with properties 3, 4 and 5 because they are also (eulerian, connected)-arc-
partitions of D.

If D admits (C1, C2) a (cycle, cycle)-arc-partition, then C1 and C2 are two arc-disjoint hamil-
tonian cycles because each cycle must have exactly n arcs.

If there exists an arc a ∈ A such that D − {a} admits (A1, A2) a (cycle, acyclic)-arc-partition,
then D − A1 is a balanced spanning subdigraph of D. In other words, D − A1 the union of some
arc-disjoint cycles. Since D − (A1 ∪ a) is acyclic, D − A1 is a cycle, and (A1, A2 ∪ a) is a (cycle,
cycle)-arc-partition of D. With the previous remark, we show that D has 2 arc-disjoint hamiltonian
cycles. The same kind of argument works for properties 8 and 9.

Finally if there is an arc uv such that D′ = D − {uv} admits (A1, A2) a (strong, having B+)-
arc-partition, then A1 has exactly n arcs and A2 has exactly n − 1 arcs. Then, A1 induces a
hamiltonian cycle of D′, and A2 induces a hamiltonian path P of D′. Since u has exactly one
leaving arc in D′, and v has exactly one entering arc in D′, then P starts in v and ends in u. Then,
A1 and A2 ∪ {uv} induces two arc-disjoint hamiltonian cycles of D.

By Theorem 6, each of the 10 arc-partition problems 1-10 mentioned above are NP-complete.

4.2 (P1, acyclic)-arc-partition problems

4.2.1 (≤ k arcs, acyclic)-arc-partition

This is exactly the Feedback-Arc-Set problem, known to be NP-c [6].
The (≤ k arcs, acyclic spanning)-arc-partition problem is also NP-c : let D be an instance of

the (≤ k arcs, acyclic)-arc-partition problem and D′ obtained from D by adding a vertex v and all
arcs vu (where u is a vertex of D). Clearly, since v is a source and is dominating, D admits an (≤ k
arcs, acyclic)-arc-partition if and only if D′ admits a (≤ k arcs, acyclic spanning)-arc-partition.

4.2.2 (bipartite, acyclic)-arc-partition

This problem is equivalent to finding a bipartition (V1, V2) of V such that each D[Vi] is an acyclic
digraph on V : If D has such a vertex partition, then taking A1 to be all arcs between V1 and V2
and A2 = A(D[V1])∪A(D[V2]) we get a (bipartite, acyclic)-arc-partition. Conversely, if (A1, A2) is
a (bipartite, acyclic)-arc-partition, then let (V1, V2) be a bipartition of D1 = (V,A1). Then (V1, V2)
is the desired vertex partition of D.

This shows that the (bipartite, acyclic)-arc-partition problem is NP-complete as the correspond-
ing vertex-partition problem (acyclic chromatic number at most 2) is known to be NP-c [13].

4.2.3 (bipartite, acyclic spanning)-arc-partition

This is NP-c as the previous problem is NP-c : let D be an instance of the (bipartite, acyclic)-arc-
partition problem. Let D′ the digraph obtained from D by adding a new vertex x and an arc from
x to every vertex of D. Then D admits a (bipartite, acyclic)-arc-partition if and only if D′ admits
a (bipartite, acyclic spanning)-arc-partition.
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4.2.4 (connected, acyclic spanning)-arc-partition

Clearly a digraph D admits a (connected, acyclic spanning)-arc-partition if and only if D admits
a (connected, spanning)-arc-partition (while the spanning part contains a cycle, one can move one
arc of this cycle to the connected part).

Now let G be a cubic graph, and D′ an arbitrary orientation of G. Then G admits a hamiltonian
path if and only if D′ admits a (connected, spanning)-arc-partition. This shows that the (connected,
acyclic spanning)-arc-partition problem is NP-c since the hamiltonian path problem is NP-complete
on cubic graphs (see e.g. page 199 in [17]).

4.2.5 (having B+, δ+ ≥ k)-arc-partition

The (having B+, δ+ ≥ k)-arc-partition problem is NP-complete on (k+1)-regular digraphs because
it is equivalent to the hamiltonian path problem on (k+1)-regular digraphs, which is NP-complete
by Lemma 5. Indeed, if a (k + 1)-regular digraph D has an hamiltonian path P , then P is also
an out-branching, and δ+(D \ E(P )) ≥ k. Conversely, given a (having B+, δ+ ≥ k)-arc-partition
(A1, A2), note that every vertex has at most one outgoing arc in A1. Since in any out-branching
every vertex except the root has exactly one incoming arc, this out-branching in A1 is a hamiltonian
path starting at the root of the out-branching.

4.2.6 (having B+, acyclic spanning)-arc-partition

We describe a polynomial reduction of the hamiltonian path problem for 2-regular digraphs to the
(having B+, acyclic spanning)-arc-partition problem.

Let D = (V,A) be an instance of the hamiltonian path problem for 2-regular digraphs and
let B(D) = (V ′, V ′′, A′) be the bipartite digraph where V ′ and V ′′ are two copies of V , and A′

contains all arcs u′u′′ (for u ∈ V ) and all arcs u′′v′ (for uv ∈ A). Note that every vertex of B(D)
is incident to exactly 3 arcs. We claim that D has a hamiltonian path if and only if B(D) admits
a (having B+, acyclic spanning)-arc-partition. Suppose first that P = u1u2 . . . un is a hamiltonian
path of D. Then P ′ = u′1u

′′
1u
′
2u
′′
2 . . . u

′
nu
′′
n is a hamiltonian path of B(D) and every arc not on P ′

goes from V ′′ to V ′. This implies that (A1, A2) is a (having B+, acyclic spanning)-arc-partition of
B(D) when we take A1 = A(P ′) and A2 = A(B(D)) \A1.

Conversely, assume we have such partition (A1, A2) of A(B(D)). As A2 is spanning, we have
that A1 induces a digraph whose maximum undirected degree is at most two. Thus, the out-
branching contained in this digraph is either a hamiltonian path or it is the union of two directed
paths P1, P2 starting from the same root. In the former case we are done, so assume we are in
the latter case. If the root has out-degree two then it is a vertex of V ′′, we denote it r′′. As r′

has out-degree zero in this out-branching we have that one of the paths, say P1, ends at r′. We
finally obtain a hamiltonian path of B(D), from the out-branching by removing the first edge of
P1, adding the edge r′r′′ and finishing with the path P2.

4.2.7 (strong, acyclic spanning)-arc-partition

The bipartite digraph B(D) that we constructed above has a (strong, acyclic spanning)-arc-
partition if and only if it has a hamiltonian cycle and this happens if and only if D has a hamiltonian
cycle. Hence the fact that the hamiltonian cycle problem is NP-complete for 2-regular digraphs [6]
implies that the (strong, acyclic spanning)-arc-partition problem is NP-complete.

4.2.8 (eulerian, acyclic)-arc-partition

Consider again a 2-regular digraph D and the digraph B(D) as above. It is easy to see that D is
hamiltonian if and only if B(D) is hamiltonian.

If D is hamiltonian, then let C be a hamiltonian cycle of B(D). Since every vertex has in-degree
or out-degree at most 1, B(D)− A(C) is acyclic because every vertex in B(D)− A(C) is either a
source or a sink and (A(C), A \A(C)) is an (eulerian, acyclic spanning)-arc-partition.

Conversely, if B(D) admits has an eulerian subgraph H, then, since the degree of every vertex
in the underlying graph of B(D) is three, every vertex of B(D) has exactly one entering and one

12



leaving arc in H, implying that H is a hamiltonian cycle of B(D). This shows that B(D) has an
(eulerian, acyclic (spanning))-arc-partition if and only if D is hamiltonian. Thus the (eulerian,
acyclic (spanning))-arc-partition problem is NP-complete.

4.3 (bipartite, P2)-arc-partition problems

4.3.1 (bipartite, bipartite)-arc-partition

It is easy to check that D = (V,A) admits such a partition if and only if the underlying graph D
is 4-colorable: Suppose V1, V2, V3, V4 is a partition of V (D) into 4 independent sets. Let A1 consist
of all arcs of A that go between V1 ∪ V2 and V3 ∪ V4 and let A2 be the remaining arcs (they go
between V1 and V2 or between V3 and V4). Then (A1, A2) is a (bipartite, bipartite)-arc-partition.
Conversely if (A1, A2) is a (bipartite, bipartite)-arc-partition, then let (Xi,1, Xi,2) be a bipartition
of V (D[Ai]), i = 1, 2, and take the vertex partition X1,1∩X2,1, X1,1∩X2,2, X1,2∩X2,1, X1,2∩X2,2.
Each of the 4 sets in this partition are independent so they induce a 4-colouring of the underlying
graph D. The (bipartite, bipartite)-arc-partition problem is thus NP-c.

4.3.2 (bipartite, ≤ k arcs)-arc-partition

This problem is equivalent to finding a cut of size at least m − k, where m is the number of arcs
in the input. Since the problem of finding a maximum cut is known to be NP-hard [17], The
(bipartite, ≤ k arcs)-arc-partition problem is NP-c.

4.3.3 (bipartite, cycle factor)-arc-partition

We will show how to reduce the well known NP-complete 3-SAT problem to this arc-partition
problem.

Let W [u, v, p, q] be the digraph (the variable gadget) with vertices {u, v, y1, ..., y3p, z1, ..., z3q},
which has two directed (u, v)-paths uy1, ..., y3pv and uz1, ..., z3qv, and also has the arc vu and all
the arcs y3iy3i−2, for i ∈ {1, ..., p}, and z3iz3i−2, for i ∈ {1, ..., q} (see Figure 3). We allow one of
p, q, but not both to be zero, in which case one of the (u, v)-paths is just an arc from u to v.

Note that if (A1, A2) is a (bipartite, cycle factor)-arc-partition of W [u, v, p, q], then the following
holds:

• The arc vu is necessarily in A2 (because of the cycle in A2 containing u).

• Either uy1 or uz1 belongs to A2 (same reason).

• Each arc y3iy3i+1 (respectively z3iz3i+1) belongs to the same part as uy1 and as y3pv (respec-
tively as uz1 and as z3qv). This follows from the fact that all the vertices y3i+2 and z3i+2
are incident to two arcs in A2, and that then among the arcs entering y3i+1 and z3i+1 (resp.
leaving y3i and z3i) exactly one should be in A2.

Note that these three properties still hold if W [u, v, p, q] is part of a larger digraph, in such a
way that the only arcs leaving W [u, v, p, q] leave from the vertices y3i+1 and z3i+1, and the only
arcs entering W [u, v, p, q] enter at the vertices y3i and z3i. Furthermore, note that all arcs leaving
and entering W [u, v, p, q] must be part of A1.

u

y1 y2 y3 y4 y5 y6

z1 z2 z3

v

Figure 3: One of the two possible (bipartite, cycle factor)-arc-partitions of W [u, v, 2, 1].
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Let W ′[r, s, t, a1, a2, a3] be the digraph (the clause gadget) of Figure 4 (r, s and t are vertices,
a1, a2 and a3 are arcs).

v
r

ss t t

v

v

vv

v

v

a1

a2

a3

Figure 4: The clause gadget W ′

Let F be an instance of 3-SAT with variables x1, ..., xn and clauses C1, ..., Cm, the ordering of
which induces an ordering of the occurrences of a variable x and its negation x in these. With each
variable xi we associate a private copy of W [ui, vi, 2pi, 2qi], where ui, vi are vertices, and pi (resp.
qi) is the number of clauses with xi appearing positively (resp. with xi appearing).

Now with each clause Cj we associate a copy of W ′[rj , sj , tj , aj,1, aj2 , aj,3] where rj , sj and tj
are three new vertices (private to Cj), and we identify aj,1,aj,2 and aj,3 as follows :

Assume that Cj contains the variables xi, xk, xl (where xi,xk and xl can be negated or not). If
xi is not negated in Cj and this is the rth copy of xi, then we identify the arc aj,1 with yi,6r−3yi,6r−2.
If xi is negated in Cj and this is the sth copy of xi, we identify aj,1 with zi,6s−3zi,6s−2. We identify
aj,2 and aj,3 in a similar way.

Now we will prove that the obtained digraph D′ admits a (bipartite, cycle factor)-arc-partition
if and only if F is satisfiable.

• Assume that D′ admits a (bipartite, cycle factor)-arc-partition (A1, A2).
Let Φ be the truth assignment that we obtain by of setting xi true if uiyi,1 belongs to A2
(the cycle factor part) and false if it belongs to A1 (the bipartite part) for each variable xi.
As we remarked previously, for each k, yi,3kyi,3k+1 and uiyi,1 belong to the same part. The
same holds for zi,3kzi,3k+1 and uizi,1.

Let Cj be a clause of F . We have seen that in the clause gadget associated with Cj , the arcs
of the 7-cycle distinct from a1, a2, and a3 must be in A1. Since A1 induces a bipartite graph
on D′, we deduce that at least one arc of {aj,1, aj,2, aj,3} belongs to A2. If the corresponding
variable xi is not negated in Cj , then yi,6r−3yi,6r−2 belongs to A2, implying that uiyi,1 belongs
to A2, and xi is true in Φ. Similarly, if xi is negated in Cj , we deduce that uizi,1 belongs to
A2 and xi is false in Φ. Since Cj was an arbitrary clause, we see that all clauses of F are
satisfied by the truth assignment Φ.

• Conversely, assume that F is satisfiable. Let Φ be a truth assignment of F .

For each variable xi, if xi is true in Φ, let Ei be the arcs of the cycle uy1y2...y6piv and of
all the cycles zi,3k−2zi,3k−1zi,3k (1 ≤ k ≤ 2qi). In an analogous way, if xi is false in Φ, we
define Ei as the arcs of the cycles uz1z2...z6qi

v and yi,3k−2yi,3k−1yi,3k (1 ≤ k ≤ 2pi). For
each clause Cj , we define Ẽj as the arcs of the 3-cycle rj , sj , tj . Let A2 be the union of all Ei

and Ẽj and A1 be all other arcs. We will show that (A1 , A2) is a (bipartite, cycle factor)-
arc-partition of D′. Clearly, each vertex of D′ has exactly one leaving and one entering arc
in A2, so (V (D′), A2) is a cycle factor. Concerning the bipartite part, one can see that if a
and a′ are two arcs in A2 that belong to two different clause gadgets, then a and a′ belong
to two different connected components of (V (D′), A2). Furthermore, each arc in a variable
gadget which belongs to A2 either belongs to a clause gadget or is adjacent to at most one
other arc in A2. Now, to prove that (V (D′), A2) is bipartite, it suffices to prove that the (non
oriented) 7-cycle of each clause gadget does not have all of its arc in A2. This is true because
the corresponding clause has a true literal in Φ.
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Remark 11. In the previous proof, the obtained digraph D′ has maximum degree 4, showing that
the problem is NP-complete even on digraphs of maximum degree at most 4. If D has maximum
degree at most 3, the problem becomes polynomial because if D admits a cycle factor C, then
D −A(C) has maximum degree at most 1 and is obviously bipartite.

4.3.4 (bipartite, balanced)-arc-partition

We will use a reduction from 3-SAT which is similar to the one above.
This time, let R[u, v, p, q] be the digraph with vertices

V (R) = {u, v, y1, ..., y2p, z1, ..., z2q, x1, ..., xp, w1, ..., wq, a, b, c}

and the arcs of the two directed (u, v)-paths uy1, ..., y2pv and uz1, ..., z2qv, all the arcs y2ixi, xiy2i−1,
for i ∈ {1, ..., p} all the arcs z2iwi, wiz2i−1, for i ∈ {1, ..., q} and finally the arcs va,ab,bu,ca and
cb. Consider any (bipartite, balanced)-arc-partition (A1, A2) of R[u, v, p, q] induced by a (bipartite,
balanced)-arc-partition of a larger digraph containing R[u, v, p, q] as an induced subdigraph and
where all arcs incident with the vertices a, b, c are arcs of R[u, v, p, q]. As c is a source (and will
remain a source), none of its incident arcs can be in A2. This implies that the arc ab and therefore
all arcs of the path vabu are in A2, and either uy1 or uz1 belongs to A2.

Note also that each arc y2iy2i+1 (respectively z2iz2i+1) belongs to the same part as uy1 and
y2pv (respectively as uz1 and z2qv).

u

y1 y2 y3 y4

x1 x2

z1 z2

w1

v

ab

c

Figure 5: One of the two possible (bipartite, balanced)-arc-partitions of R[u, v, 2, 1].

Now, letR′[r, s, t, a1, a2, a3] be the digraph (the clause gadget) of Figure 6 (r, s and t are vertices,
a1, a2 and a3 are arcs). As r, s and t are sources (and will remain sources in our construction),
none of their incident arcs can be in the balanced part of any good partition. So a1,a2 and a3 are
the only arcs in R′ which can be in the balanced part, and at least one of them has to be in the
balanced part to avoid a 9-cycle in the bipartite part.

v
r

v
s

v
t

v

v

vv

v

v

a1

a2

a3

Figure 6: The clause gadget R′
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Let F be an instance of 3-SAT with variables x1, ..., xn and clauses C1, ..., Cm, and assume we
have an ordering of the occurrences of a variable x and its negation x in the clauses. With each
variable xi we associate a copy of R[ui, vi, 2pi, 2qi] where xi occurs pi times and xi occurs qi times
in the clauses of F .

Now with each clause Cj we associate a copy of R′[rj , sj , tj , aj,1, aj2 , aj,3] where rj , sj and tj
are three new vertices private to Cj , and we identify aj,1,aj,2 and aj,3 as follows :

Assume that Cj contains the variables xi, xk, xl (where xi,xk and xl can be negated or not). If
xi is not negated in Cj and this is the rth copy of xi, then we identify aj,1 with yi,4r−2yi,4r−1. If
xi is negated in Cj and this is the rth copy of xi, we identify aj,1 with zi,4r−2zi,4r−1. We identify
aj,2 and aj,3 in a similar way.

With the same kind of argument as in the previous proof, we can check that F is satisfiable if
and only if the obtained digraph has a (bipartite, balanced)-arc-partition.

4.3.5 (bipartite, eulerian)-arc-partition

Let D = (V,A) be an instance of the (bipartite, balanced)-arc-partition problem. Let V =
{x1, ..., x|V |} and let D′ = (V ′, A′) be the digraph where :

V ′ = V ∪ {d} ∪ {zi,1, zi,2|1 ≤ i ≤ |V |}
A′ = A ∪ {dzi,1, zi,1xi, xizi,2, zi,2d}

We claim that D admits a (bipartite, balanced)-arc-partition if and only if D′ admits a (bipartite,
eulerian)-arc-partition.

Suppose first that D has a partition (A1, A2), where A1 induces a bipartite digraph and A2 a
balanced digraph. Then A′2 = A′ \A1 is balanced in D′ because A2 is balanced in D, and we add
exactly one leaving and one entering arc in each xi,zi,1 and zi,2 (and d has exactly |V | entering
and leaving arcs). A′2 is also strongly connected in D′ because each xi has a path to d and from d.
Thus (A1, A2) is a (bipartite, eulerian)-arc-partition of D′.

Conversely, if D′ admits an (bipartite, eulerian)-arc-partition (A′1, A′2), then each arc of A′1
belongs to A because each arc of A′ \A is incident to zi,1 or zi,2, for some i and is the only entering
(or leaving) arc of this vertex. Now A2 = A∩A′2 is balanced because we remove exactly one leaving
and one entering arc of each vertex. Finally, (A∩A′1, A2) is a (bipartite, balanced)-arc-partition of
D.

4.3.6 (bipartite, cycle)-arc-partition

We will show how to reduce the hamiltonian cycle problem in 2-regular digraphs problem to this
arc-partition problem.

Let D = (V,A) be 2-regular digraph. We construct D′ = (V ′, A′) from D as follows: to each
vertex vi ∈ V , we associate 3 copies vi,1, vi,2 and vi,3, and the arcs vi,1vi,3, vi,2vi,1 and vi,2vi,3. To
each arc vivj ∈ A, we associate a new vertex xij and the arcs vi,3xij and xijvj,1.

Now, we will show that D has a hamiltonian cycle if and only if D′ has a (bipartite, cycle)-arc-
partition.

If D has a hamiltonian cycle C = v1, v2, ..., vn, consider the corresponding cycle of D′ :

C ′ = v1,1v1,3x1,2v2,1v2,3...vn,1vn,3

Clearly, C ′ contains all arcs of the form vi,1vi,3, and then D′ \A(C ′) is bipartite, with the following
(X,Y ) bipartition :

X = {vi,1, vi,3 : vi ∈ V }
Y = {vi,2 : vi ∈ V } ∪ {xij : vivj ∈ A}

Thus (A(C ′), A(D′) \A(C ′)) is a (bipartite, cycle)-arc-partition of D′.
Conversely, if D′ has such a partition, let C ′ be the cycle such that D′ \ A(C ′) is bipartite.

Clearly, C ′ must contain every arc vi,1vi,3, because C ′ cannot contain vi,2 and vi,1vi,2vi,3 is an odd
cycle of UG(D′). Then, C ′ corresponds to a hamiltonian cycle of D.
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5 Remarks and open problems

In this paper, we completed the complexity classification of the (P1, P2)-arc-partition problem for
15 properties that we consider canonical for digraphs. However, many other properties could be
also considered for P1 or P2, as for instance, having a perfect matching, being a spanning bipartite
subdigraph, being planar, containing a cycle factor, being a (not necessarily spanning) collection
of disjoint cycles, having δ0 ≥ k, having maximum out-degree (in-degree or semi-degree) at most
k, having no odd directed cycle (same as each strong component is bipartite). We mention here
just a few problems that could be interesting to study. Possibly some are easy or already solved,
the point is just to show some relevant problems.

Problem 12. What is the complexity of the following arc-partition problems?

• The (cycle factor, having no odd directed cycle)-arc-partition problem

• The (perfect matching, having no odd directed cycle)-arc-partition problem

• The (perfect matching, strong)-arc-partition problem

• The (bipartite, ∆+ ≤ k)-arc-partition problem

• The (perfect matching, having B+)-arc-partition problem

We have seen that many of the, almost straightforward, NP-completeness proofs used the
(non-trivial) fact that hamiltonian cycle problem is NP-complete for 2-regular digraphs or that
hamiltonian path is NP-complete for cubic graphs. Hence it is interesting to see which of the
(P1, P2)-arc-partition problems become tractable when restricted to digraphs of higher minimum
degree. A natural general class to look at for this is digraphs with sufficiently high arc-connectivity.
For a positive integer k, a digraph D = (V,A) has arc-connectivity at least k if D−A′ is strongly
connected for any set A′ ⊂ A of at most k − 1 arcs of D.

Conjecture 13 (Thomassen [25]). There is a constant C, such that every digraph with arc-
connectivity at least C has an out-branching and an in-branching which are arc-disjoint.

Conjecture 13 has been verified for semicomplete digraphs [2] and for locally semicomplete
digraphs [8]. In both cases arc-connectivity 2 suffices. Recently it was shown that arc-connectivity
3 suffices for digraphs of independence number at most 2 [4]. For general digraphs Conjecture 13 is
wide open and as far as we know it is not known whether already C = 3 would suffice. Conjecture 13
has even been strengthen by as follows.

Conjecture 14 (Bang-Jensen,Yeo [11]). There is a constant C, such that every digraph with
arc-connectivity at least C has a (strong, strong)-arc-partition.

In [12] examples of 2-arc-strong 2-regular digraphs with no hamiltonian cycle are described.
They show that arc-connectivity 2 is not sufficient in Conjecture 14.

Question 1.

• Does every 3-arc-strong digraph have a (strong, δ+ ≥ 1)-arc-partition?

• Does every 3-arc-strong digraph have a (strong, δ0 ≥ 1)-arc-partition?

• Does every 3-arc-strong digraph have a (strong, connected)-arc-partition?

The next result implies that every 2-arc-strong digraph has a pair of arc-disjoint cycles

Proposition 15. Every strong digraph D = (V,A) with minimum out-degree at least 2 has a cycle
C such that D −A(C) is strong.

Proof. Let C be a cycle of D = (V,A) such that the size of the largest initial component D1 of
D′ = D − A(C) is maximized. If V (D1) = V we are done so assume this is not the case. As D is
strong we have V (C)∩V (D1) 6= ∅ and V (C)∩ (V −V (D1)) 6= ∅. Hence if any strong component of
D′ − V (D1) contains a cycle C ′ then C ′ is a better choice than C (as all vertices of V (D1)∪ V (C)
will belong to the same strong component of D−A(C ′)), contradiction, so D′−V (D1) has at most
one non-trivial component. This contradicts that every vertex of D has out-degree at least 2.
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Question 2. Is it possible to extend the previous result to 2 vertex-disjoint cycles, increasing the
arc-connectivity or min degree if necessary?

The hamiltonian path problem is NP-complete on 3-connected cubic graphs [17, page 199] so
the first part of the next result is best possible.

Theorem 16. Every 2-edge-connected graph G with δ(G) ≥ 4 has a (connected,spanning)-edge-
partition. For every natural number k ≥ 3 it is NP-complete to decide whether a connected graph
of minimum degree at least k has a (connected,spanning)-edge-partition.

Proof. Generalizing a result of [15] it was shown in [10] that every 2-edge-connected graph has a

spanning tree T such that dT (v) ≤ d(v)+3
2 . This implies that a 2-edge-connected graph of minimum

degree at least 4 has a spanning tree which avoids at least one edge at each vertex and hence it
has a (connected, spanning)-edge-partition.

To prove the second claim we show how to reduce the hamiltonian path problem for cubic
graphs to the (connected,spanning)-edge-partition problem for graphs with minimum degree at
least k, where k ≥ 3. Let G be a cubic graph on vertices v1, . . . , vn and build the graph H from G
and n(k−3) copies W1,1, . . . ,W1,k−3,W2,1, . . . ,Wn,1, . . . ,Wn,k−3 of Kk+1 by adding one edge from
vi to each of Wi,1, . . . ,Wi,k−3. If k = 3, then H is just G and H has a (connected,spanning)-edge-
partition if and only if G has a hamiltonian path, so we may assume that k > 3. Now it suffices to
note that each of the edges between V (G) and the copies of Kk+1 are cut edges of H and hence
must belong to every spanning tree of H. Hence again we see that H has a (connected,spanning)-
edge-partition if and only if G has a hamiltonian path.

Theorem 17. Every 2-arc-strong digraph D with δ+(D) ≥ 5 has a (strong, δ+ ≥ 1)-arc-partition
and every 2-arc-strong digraph D with δ+(D) ≥ 5 has a (strong, δ0 ≥ 1)-arc-partition.

Proof. We prove the second claim as it is easy to check that the first claim follows from our
arguments. It was shown in [10] that every 2-arc-strong digraph has an out-branching B+

s such
that d+

B+
s

(v) ≤ d+
D(v)/2 + 1 and an in-branching B−s such that d−

B−s
(v) ≤ d−D(v)/2 + 1, where we

can choose the root s arbitrarily. Now let D = (V,A) be 2-arc-strong with δ+(D) ≥ 5 and let
B+

s , B
−
s be branchings as above. Let A1 be the union of A(B+

s ) and A(B−s ). Then D1 = (V,A1)
is strong and spanning. Let A2 = A − A1 and set D2 = (V,A2). Then, noting that every
vertex except s has out-degree precisely one in B−s and s has out-degree zero in B−s , we have
d+

A2
(v) ≥ d+

D(v) − (bd+
D(v)/2c + 1) − 1 ≥ dd+

D(v)/2e − 2 ≥ d5/2e − 2 = 1. Similarly we see that

d−A2
(v) ≥ 1.

The first part of the result above can be improved as follows.

Theorem 18. Every 2-arc-strong digraph with minimum out-degree at least 4 has a (strong, δ+ ≥
1)-arc-partition.

Proof. Let D = (V,A) be a 2-arc-strong digraph with minimum out-degree at least 4. Let X be
a subset of V , A′ be the arcs of D[X] and A1, A2 be two disjoints subsets of A′. We say that
(X,A1, A2) is good if and only if there is a special vertex x0 in X such that the following holds :

• D1 = (X,A1) is strongly connected,

• ∀x ∈ X,x 6= x0, either d+
A2

(x) ≥ 1 or d+
A(x) ≥ d+

A′(x) + 2,

• d+
A2

(x0) ≥ 1 or d+
A(x0) ≥ d+

A′(x0) + 1.

One can see that D always has such a tuple : choose any vertex x in V , let X be the singleton
{x}, and A1, A2 be two empty sets, (X,A1, A2) is clearly good.

Now let (X,A1, A2) be such a tuple which maximize the size of X. Assume that |X| < |V |,
and let x0 be the special vertex described above.

If d+
A2

(x0) ≥ 1, then let uv ∈ A be an arc from X to V \X (such an arc exists because D is 2-arc-
strong). Let P be a shortest path from v to X, consider X ′ = X ∪ V (P ), A′1 = A1 ∪A(P )∪ {uv},
and A′2 = A(D[X ′])\A′1. Clearly, (X ′, A′1) is strongly connected, and every vertex in X ′, excepting
u, either has at least one leaving arc in A′2 or has at least two leaving arcs to V \X. The vertex u
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either has at least one leaving arc in A′2 or has at least one leaving arcs to V \X. Then (X ′, A′1, A′2)
is good (with special vertex u) and |X ′| > |X|, which is a contradiction.

Now if d+
A2

(x0) = 0, then d+
A(x0) ≥ d+

A′(x0)+1. Let x0v be an arc from x0 to V \X, and consider
P1 a shortest path from X to v in D \ {x0v}, and P2 a shortest path from v to X in D \ {x0v}.
Note that P1 and P2 exist because D is 2-arc-strong. Then consider X ′ = X ∪ V (P1) ∪ V (P2),
A′1 = A1 ∪ A(P1) ∪ A(P2), and A′2 = A(D[X ′]) \ A′1. Now (X ′, A′1, A′2) is good (where the special
vertex is the initial vertex of P1). Note that the vertices that are on both P1 and P2 either have at
least one leaving in A′2 or have at least two leaving arcs to V \X because the minimum out-degree
of D is at least 4. Then (X ′, A′1, A′2) is good and |X ′| > |X|, which is a contradiction.

Then we know that X = V , and (A1, A2) is clearly a (strong, δ+ ≥ 1)-arc-partition of D.

Problem 19.

• Determine the minimum r ∈ {3, 4} such that every 2-arc-strong digraph D with δ+(D) ≥ r
has a (strong, δ+ ≥ 1)-arc-partition.

• Determine the minimum r ∈ {3, 4, 5} such that every 2-arc-strong digraph D with δ+(D) ≥ r
h has a (strong, δ0 ≥ 1)-arc-partition.

Proposition 20. For every natural number k ≥ 2 it is NP-complete to decide whether a digraph
D with δ0(D) ≥ k has a (strong, δ0 ≥ 1)-arc-partition and it is NP-complete to determine whether
it has a (strong, δ+ ≥ 1)-arc-partition.

Proof. The proof is very similar to the proof of the NP-completeness part in Theorem 16. This
time we start from a 2-regular digraph D on n vertices and (k−2)n disjoint copies of the complete
digraph on k+ 1 vertices and join each vertex of V (D) by one arc to and from k− 2 private copies
of the complete digraphs. The resulting digraph D′ has a (strong, δ0 ≥ 1)-arc-partition if and only
if D has a hamiltonian cycle and the proof is complete.

Lemma 21. Every bipartite graph G = (X,Y,E) has an edge-partition E = E1, E2 such that
dEi

(v) ≥ bdG(v)/2c. Such a partition can be constructed in polynomial time.

Proof. Let H be the bipartite graph that we obtain from G by first replacing each vertex xi ∈ X
by rv = ddG(v)/2e new vertices xi,1, . . . xi,r and distributing the edges incident to xi arbitrarily
among xi,1, . . . xi,r such that every vertex except possibly xi,r has degree 2 (which will have degree
1 if dG(xi) is odd). Then do the same with the vertices of Y in the graph we obtained above. Then
the maximum degree in H is 2 so H is a disjoint union of paths and even cycles. Now 2-colour these
paths and cycles so that colours alternate and finally transfer that colouring to G by contracting
all copies of a vertex from X (Y ) into the original vertices. It is easy to check that if Ei is the set
of edges of colour i then we have dEi

(v) ≥ bdG(v)/2c.

Corollary 22. Every digraph D = (V,A) has an arc-partitioning A = A1 ∪A2 such that d+
Ai

(v) ≥
bd+

D(v)/2c and d−Ai
(v) ≥ bd−D(v)/2c

Proof. This follows directly from Lemma 21 by considering the bipartite representation of D =
(V,A), that is, the bipartite graph whose vertex set consist of two copies V1, V2 of V and which
has an edge from u1 ∈ V1 to v2 ∈ V2 precisely when the arc uv is in A.
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