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Abstract

An original 3D stochastic geometrical model has been developed to simulate the microstructural evolution of porous solid-oxide cell electrodes
made of yttria-stabilized zirconia and nickel. The microstructural change induced by Ni agglomeration has been more specifically simulated.
The model is based on random sets and algorithms for solving the linear assignment problem related to the time evolution of one component
in the microstructure. The possibility to generate realistic 3D microstructures with the model has been verified by comparing the geometrical
characteristics of synthetic microstructures with those extracted from real electrode reconstructions. The ability of the Stochastic Time Evolution
Microstructure (STEM) model to generate microstructures with evolving characteristics has been then illustrated and compared to real data
obtained on aged electrodes. The error on most of the geometrical characteristics are in general lower than 10%, except in some particular cases,
such as the microstructure factor. All the results have then been discussed and suggestions have been proposed for improving the model.

Keywords: 3D microstructure model, Nickel–YSZ electrode, Solid oxide fuel cell, stochastic geometry

1. Introduction

In a context of climate change and increasing scarcity of
fossil fuels, the Solid Oxide Cells (SOCs) technology has at-
tracted considerable attention in the recent years. Indeed, this
high temperature electrochemical device could be used to match
the fluctuations between the electricity production and consump-
tion when using renewable energy sources. Thanks to their
flexibility, the SOCs can be operated in both fuel cell (SOFC
for solid oxide fuel cell) and electrolysis (SOEC for Solid Ox-
ide Electrolysis Cell) modes. They are composed of a dense
electrolyte sandwiched between two porous electrodes. The so-
called hydrogen electrode is typically a cermet composed of Yt-
tria Stabilized Zirconia and Nickel (Ni-YSZ). Within the elec-
trode, the dihydrogen and steam gaseous molecules are trans-
ported through the percolated porosity while the ionic and elec-
tronic conductivity for the oxygen ions and electrons is ensured
by the YSZ and Ni phases, respectively. The electrochemical
reactions takes place at the triple phase boundary (TPB) lines
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where the gas, electronic and ionic phases meet. Therefore, the
SOCs electrochemical performances are strongly dependent on
the electrode microstructural properties [1], and in particular
some specific geometrical characteristics [2–4]. Moreover, in
operation at high temperature, the hydrogen electrode is sub-
jected to a phenomenon of Ni migration and agglomeration,
which tends to decrease the density of TPB lines and hence the
cell electrochemical performances [5, 6].

The characterization of the complex electrode microstruc-
ture is thus essential to better understand the initial electrode
performances as well as the degradation mechanisms. For this
purpose, different characterization techniques such as Focused
Ion Beam coupled with a Scanning Electron Microscope (FIB-
SEM) [7–9], X-ray absorption tomography [10–12] or X-ray
holotomography [5, 13, 14] have been used to image the Ni-
YSZ electrode in its pristine state or after long-term operation.
Despite the possibility to reconstruct volumes at high resolu-
tion, this approach requires the manufacturing and testing of
several cells in different operating conditions. The number of
volumes are usually limited since the 3D characterization is
time consuming. In this approach, the experimental dataset is
in general insufficient to draw precise correlations on the im-
pact of the electrode microstructure on SOCs performances and
durability in different operating conditions.
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Nomenclature

i, j Phase name ξTPBl Density of Triple Phase Boundary length (µm−2)
Ci Covariance function of i τ

geo
i Geometric tortuosity

εi Volume fraction βi Constrictivity
S i

p Specific surface area (µm−1) Mi Microstructure-factor
S i, j

p Interfacial specific surface area (µm−1) di
p Mean phase diameter (µm)

P(λ) Poisson distribution δi Proportion of connected phase
#X Number of elements of a set X

In order to overcome this problem, the development of model
allowing the generation of synthetic microstructures has met a
growing interest. Thus, many models have been already pro-
posed in recent years, allowing the generation of representative
microstructures for which the geometrical characteristics match
the real electrode properties. Some of these models are based
on non-overlapping hard spheres packing [15–19]. In this case,
the microstructure is generated using an iterative process that
can be relatively time-consuming. Other models are based on
random Gaussian fields [20–24] or even random graphs [25].
They allow generating microstructures in a shorter time since
no iterative procedures are involved for these simulations. All
the proposed models offer rather good results, in particular for
the modeling of globally homogeneous microstructures. Nev-
ertheless, when the microstructure presents some local hetero-
geneities, some characteristics such as the microstructure fac-
tor, the geometrical tortuosity or the constrictivity, along with
the continuous Phase Size Distributions (PSD), can be difficult
to approach with high accuracy.

It is worth noting that the microstructure tends to be more
and more heterogeneous after operation at high temperature
due to the microstructural evolutions occurring in the electrode.
Thus, taking into account this temporal evolution of the mi-
crostructure in order to optimize the performance and durabil-
ity of SOCs is essential. Some physically based models have
been already proposed to simulate in 3D this time evolution
of the microstructure. In this frame, the phase-field approach
has been recently used to simulate the Ni coarsening in opera-
tion [26–29]. However, this type of models requires very long
computation time, limiting both the number of simulations and
the volume of the studied microstructure. In this context, the
development of geometrical models able to reproduce correctly
the microstructural evolution upon operation is necessary and
fully complementary with the physically based models. Indeed,
the geometrical approach does not require large computational
resources. Besides, the model does not depend on the mate-
rial physicochemical properties and can be thus applied to any
three-phase microstructure. However, to the best of our knowl-
edge, no geometrical model has been proposed yet to simulate
the microstructural evolution of SOC electrodes.

In this context, a Stochastic Time Evolution Microstruc-
ture (STEM) model has been developed for three-phase ma-
terial and applied to the Ni-YSZ cermet for SOC application.
The model is composed a of a static component, later called
”static model”, able to simulate the initial and final state of the

same microstructure, and a dynamic component, able to simu-
late the temporal evolution of the microstructure between these
two static bounds. This model is based on a degenerate random
graph structure, similar to the one proposed by M.Neumann et al. [25],
in which a temporal dimension has been added.

In a first part, the real electrode reconstructions and the mi-
crostructural properties measured on the 3D volumes are pre-
sented. In a second part, the static model is defined, followed by
the STEM model, as well as examples of synthetic microstruc-
ture simulations. The optimization process used to identify the
model parameters is also explained and validated. The static
model is then calibrated and validated on two real Ni-YSZ mi-
crostructures obtained before and after ageing. The ability of
the STEM model to reproduce the microstructural evolution is
validated thanks to two other electrode reconstructions obtained
at two intermediate times. The results including the evolution
of the geometrical characteristics over the time are presented
for the synthetic microstructures. Finally, the performances and
limitations of the STEM model are discussed.

2. Image reconstruction and characterization

2.1. Image reconstruction

In this article, the Ni-YSZ cermet of a typical SOC were re-
constructed by synchrotron X-ray holotomography [30, 31] be-
fore and after operation. This technique allows the acquisition
of 3D volumes with a large field of view (50 µm) by keeping a
resolution of a few tenth of a nanometer [32]. Fig. 1 shows three
3D reconstructions of real microstructures for three different
operating times, with a voxel size of 50 nm. The protocol used
to record the data and the procedure to reconstruct the electrode
microstructures are thoroughly described in [32, 33]. It is worth
noting that the studied images were obtained from cells manu-
factured in the same conditions and operated at T = 850°C for
t = 0, 1000, 1500 and 2000 hours. All the details about the
operating conditions as well as the reconstructions have been
already published in [5].

2.2. Image characterization

The characterization of a 3D image consists in measuring
a number of properties on it. A 3D volume representing the
complex electrode microstructure is thus considered fully char-
acterized once these properties are known. The most frequently
measured properties are detailed in [21, 25] whereas the method
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Figure 1. 3D reconstruction of three real microstructures. Cubes of 12.5 µm side (2503 voxels). From left to right, the operating time of the cell is 0 h, 1500 h and
2000 h. The porous, YSZ and Ni phase are respectively black, gray and white.

for their computation is described in [31, 34]. The properties
used in this article are listed below.

1. The phase volume fraction εi is the proportion of phase i
to the total volume. It is simply computed by dividing the
number of voxels belonging to phase i by the total number
of voxels.

2. The proportion of connected phase δi is determined by com-
puting the proportion of phase connecting two opposite sides
of the total volume [34].

3. The density of Triple Phase Boundary length (TPBl) ξTPBl
is computed by identifying each voxel edges at the triple
contacts. A correction factor must be applied to take into
account the cubic discretization of the domain in the form of
voxels [31].

4. The specific surface areas S i
p and interfacial specific surface

areas S i, j
p correspond to the normalized area of phase i and

the normalized area at the interface of phases i and j. They
are computed as described in [35].

5. The tortuosity is a property fully described in [36]. The ge-
ometric tortuosity τgeo

i computed for each of the phases i is
equal to the ratio of the minimum distance to connect one
side to the opposite side of the volume within the phase, to
the length of the volume in that direction. In other words,
if the length of the volume in a given direction is denoted
l and lm is the minimum length to go from one side of the
volume to the other in that direction within phase i, then the
following applies:

τ
geo
i = lm/l. (1)

The minimum length lm is computed using Dijkstra’s algo-
rithm on a Fibonacci heap structure [37–39].

6. The continuous Phase Size Distributions (PSD) or granu-
lometry is computed by performing a sequence of morpho-
logical operations, namely morphological openings, using
a homothetic sphere as structuring element as described in
[31, 40].

7. The constrictivity βi is a property that measures bottleneck
effects of a given microstructure [3, 41]. It is based on the

PSD, and therefore depends on the granulometry of the mi-
crostructure. It is defined as follows:

βi =
(
ri,min/ri,max

)2 (2)

with ri,max the maximum radius of the spheres allowing to
fill at least 50% of phase i, i.e. the median of the cumulative
PSD, noted di

p, and ri,min the maximum radius of the spheres
allowing to fill at least 50% of phase i by intrusion in a given
transport direction. The quantity ri,min can be computed us-
ing a Mercury Intrusion Porosimetry (MIP) simulation de-
scribed in [41, 42] or derived from the PSD.

8. The microstructure-factor Mi of phase i in a given transport
direction is defined as follows:

Mi = σ
e
i /σ

0
i (3)

where σe
i and σ0

i are respectively the effective and intrinsic
conductivities for the percolated phase i. Note that for Ni-
YSZ cermet electrodes, an empirical law has been proposed
to relate the M-factor to the volume fraction, the constrictiv-
ity and the geometrical tortuosity [43] in the form:

Mi = ε
1.67−0.48βi
i /

(
τ

geo
i

)5.18
. (4)

9. The covariance function Ci(r) of a phase i in a given direc-
tion contains information on the spatial structure and reg-
ularity of the microstructure, and in particular the volume
fraction of the given phase [40]. It is defined as the proba-
bility that two points separated by a distance r belong to the
same phase i. In particular, the following applies: Ci(0) = εi.

It can be noticed that many properties such as the tortu-
osity are dependent on the transport direction if considering
anisotropic media. Nevertheless, it has been found that the val-
ues of tortuosity, M-factor, constrictivity, or covariance, had no
preferred direction for typical electrode microstructures studied
throughout this paper. As an illustration, Fig. 2 shows the co-
variance functions computed on four different 3D reconstruc-
tions of real microstructures along the three main axis. It ap-
pears clearly that these values do not depend on the considered
axis proving that the real microstructures are isotropic.
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Figure 2. Covariance functions computed on 3D reconstructions of real microstructures. From left to right, the operating time of the SOC is t = 0 h, t = 1000 h,
t = 1500 h and t = 2000 h.

Finally, the choice of the studied characteristics are moti-
vated by their significance with respect to the effective transport
properties of each phase in the heterogeneous microstructure.
This is particularly the case for volume fraction, tortuosity and
constrictivity [2, 3]. The density of TPBls is also a crucial pa-
rameter controlling the electrochemical reaction in the Ni-YSZ
cermet [44].

3. Proposed stochastic geometrical model

3.1. Static model

The static model, which is proposed in this work to simu-
late three-phase electrode microstructures, is based on three in-
dependent point processes. The sets of points XP, XYZS related
to the porosity and YSZ phase are generated using two Poisson
processes [45] of intensity λP and λYS Z respectively. For the Ni
phase, the set of points XNi is obtained using a Neyman-Scott
point process [46]. This method allows generating sets of clus-
tered points [47, 48] controlled by three parameters. Indeed, the
method depends on (i) an intensity parameter λNi for the cen-
ters of the clusters, (ii) a parameter σ for the standard deviation
of a normal distribution that controls the dispersion around the
centers of the clusters, and (iii) a parameter λc for the Poisson
distribution providing the number of points per cluster. The
Neyman-Scott point process has been selected to produce ag-
gregated sets of points, which should be well adapted to repro-
duce accurately the phenomena of Ni agglomeration and de-
pletion in the microstructure. The choice of this method for
the Nickel phase is thoroughly justified and discussed in sec-
tion 3.3.

After the generation of the random point patterns, it is worth
noting that no graph related to the three electrode phases is
built, in contrast to the method proposed by M.Neumann et al. [25].
In our case, each voxel in the volume V is directly associated
to the set of points XP, XYZS or XNi in such a way that the dis-
tance between the voxel position and the set of points is mini-
mal. In other words, the voxel is assigned to the phase related
to the closest set of points using the method described in [49]
to compute the three distance maps. Finally, a two-step Gaus-
sian pseudo-smoothing parameter θ described in [25] is applied
to the microstructure, which allows in particular to control the
density of TPBl. The proposed static model thus depends on
six parameters.

Examples of synthetic microstructures are shown in Fig. 3.
It appears clearly that it is possible to control the local het-
erogeneity of the microstructure by adjusting respectively the
density and size parameters, λNi and λc, of the clusters for the
Nickel phase (white phase).

3.2. STEM model

To represent the temporal evolution of the microstructure,
the Stochastic Time Evolution Microstructure (STEM) model is
based on the interpolation between two different states obtained
with the static model (cf. previous section 3.1). The sets of pa-
rameter used to generate these two bounds are denoted ω0 =

{λ0
P; λ0

YS Z ; λ0
Ni; λ

0
c ;σ0; θ0} and ω1 = {λ1

P; λ1
YS Z ; λ1

Ni; λ
1
c ;σ1; θ1}

while the interpolation parameter evolving between these two
states is denoted t ∈ [0; 1].

Three sets of points XP(t), XYS Z(t) and XNi(t) can be gen-
erated for each t ∈ [0; 1] by interpolation as follows. A set X0
(respectively X1) is generated using the density max(λ0

P, λ
1
P) (re-

spectively max(λ0
YS Z , λ

1
YS Z)). Assuming that λ0

P > λ
1
P, the states

XP(t = 0) and XP(t = 1) are defined such that XP(t = 0) = X0
and #XP(t = 1) ∼ P(λ1

P), with P(λ1
P) a Poisson distribution of

parameter λ1
P. The set XP(t = 1) is built from XP(t = 0) by

removing randomly a sufficient number of random points. The
number of elements between XP(t = 0) and XP(t = 1) decreases
linearly so that XP(t) ⊆ XP(t = 0), ∀t ∈ [0; 1]. The process is
symmetrical in the case where λ0

P < λ
1
P and is identical for the

definition of XYS Z(t). Thus, there is no spatial interpolation in
the construction of the sets XP(t) and XYS Z(t).

Then, for the construction of the set XNi(t), two sets Xm(t =
0) and Xm(t = 1) are generated using the cluster densities λ0

Ni
and λ1

Ni respectively. These two sets represent the positions of
the cluster centers of the Nickel phase in the microstructure for
the two bounds at t = 0 and t = 1. Using the Auction Al-
gorithm [50], it is possible to match the sets Xm(t = 0) and
Xm(t = 1). The sum of the distances that must be covered by the
center of the cluster to go from one state to the other is there-
fore minimal. The states Xm(t) are finally defined by spatial
interpolation between Xm(t = 0) and Xm(t = 1). The elements
of Xm(t = 0) that could not be matched with any element of
Xm(t = 1), and vice versa, are removed randomly according to
the value of t ∈ [0; 1] so that #Xm(t) varies linearly.

Finally, for each subset of points clustered around an ele-
ment of Xm(t), the same procedure as described above for the
sets XP(t) and XYS Z(t) is performed, using the densities λ0

c and

4
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Figure 3. 3D rendering volume of three synthetic microstructures. Cubes of 17.5 µm side (3503 voxels). From left to right, the parameters λP = λYZS = 2.10−3,
θ = 3 and σ = 5 are constants, whereas λNi ∈ {2.10−3; 1.10−4; 5.10−5} and λc ∈ {1; 20; 40}. The porous, YSZ and Ni phase are respectively black, gray and white.

Figure 4. Evolution of the synthetic 3D microstructure between two states with the STEM model. Cubes of 12.5 µm side (2503 voxels). Boundary states are given
by ω0 = {2.10−3; 2.10−3; 1.10−4; 15; 10; 3} and ω1 = {2.10−3; 2.10−3; 5.10−5; 50; 5; 3}. The porous, YSZ and Ni phase are respectively black, gray and white.

λ1
c . The standard deviation of the distances of each of the gen-

erated point clusters around each center is itself adjusted so that
it is equal to σ(t) = t × σ1 + (1 − t) × σ0. A set of points XNi(t)
can thus be defined as the set of points surrounding the set of
cluster centers Xm(t).

By definition, the three sets XP(t = 0), XYS Z(t = 0) and
XNi(t = 0) (resp. XP(t = 1), XYS Z(t = 1) and XNi(t = 1)) al-
low generating a microstructure with the same characteristics
as the one generated with the parameter set ω0 (resp. ω1), once
the smoothing parameter θ0 (resp. θ1) is applied. Therefore, it
is possible to produce any intermediate state of the microstruc-
ture for t ∈ [0; 1] using the XP(t), XYS Z(t) and XNi(t) sets and
applying a smoothing of parameter evolving with the time as
follows:

θ(t) = t × θ1 + (1 − t) × θ0. (5)

Fig. 4 illustrates the results obtained by applying the STEM
model to two states of the cermet microstructure in order to
simulate the coalescence of the Nickel phase (white). It can be

seen that it is mainly the Nickel phase that is moving by model
design, which makes the transformation realistic.

3.3. Discussion

There are several reasons why it was decided to use a Neyman-
Scott point process for the Ni phase rather than a Poisson point
process. Initially, it was decided to combine graph matching
techniques described in [51, 52] for the dynamic aspect of the
model with the graph structure described in [25] for the static
part. Nevertheless, it soon became apparent that it was possible
to generate microstructures with satisfactory properties while
using an underlying graph structure with an extremely small
number of edges. Indeed, comparative tests involving synthetic
microstructures generated from full graphs on the one hand and
from their set of vertices only on the other hand have shown
relative error differences of the order of 0.1% at most for all
the measured geometrical properties. Therefore, the choice was
made to leave the graph structure aside and to build the model
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only on sets of points, i.e. the sets of vertices of degenerate
graphs (cf. description of the static model 3.1). Thanks to this
choice, it was possible to reduce the number of model param-
eters from ten to four. On the other hand, contrary to the mi-
crostructures studied in [25], those emulated with the STEM
model are not necessarily locally homogeneous or fully con-
nected [1, 29]. These characteristics are essential to simulate
the phenomenon of the Nickel coarsening and agglomeration.
Indeed, it seemed natural to use an aggregated point process
to structure the Nickel phase, knowing that the analytical re-
lationships between the model parameters and the geometrical
properties of the microstructure could not be preserved.

Another reason that motivated the use of the Neyman-Scott
point process is the evolutionary aspect of the microstructure.
In the first version of the model, with an underlying graph struc-
ture, the different graphs representing a kind of skeleton of the
microstructure were matched by solving a quadratic assignment
problem [53], using the FAQ (Fast Approximate Quadratic as-
signment problem) algorithm [54, 55]. However, the computa-
tion time can be very long on large volumes. Without the graph
structure, the proposed model consists in solving a fast linear
assignment problem [56]. Moreover, by using a Neyman-Scott
point process, it was possible to further optimize the compu-
tation time by matching the sets of cluster centers rather than
the whole sets of points associated with the Nickel phase, thus
reducing the size of the sets to be matched by at least one order
of magnitude.

Finally, it should be noted that the set matching process only
applies to the Nickel phase. This choice not only reduces the
computation time, but it is also motivated by the objective of
obtaining a more realistic transformation. Indeed, by modifying
only slightly the sets of points associated with the porous and
ceramic phases of the microstructure, these phases themselves
will only be marginally affected by the temporal evolution and
the interpolation process. This behavior is more in line with
reality, as can be seen in Fig. 4.

4. Models fitting and validation

4.1. Cost function and optimization process

The fitting process requires the definition of a cost func-
tion. Among the most interesting geometrical properties for
optimizing the SOC performances, the choice was made to re-
tain the density of TPBl, the interfacial specific surface areas
and the volume fractions. For a set of parameter values ω for
the STEM model and a set of geometric properties measured on
the 3D reconstruction of an electrode, the proposed cost func-
tion is defined as follows.

Fk(ω) = 4 ×
2∑

i=0

∆ (εi) +
∑

0≤i< j≤2

∆(S i, j) + 2 × ∆(ξTPBl) (6)

where ∆ is the relative error on the geometric properties
measured on the 3D synthetic microstructure generated by the
STEM model with the set of parameter values ω and the geo-
metric properties contained in the set k.

It should be noticed that the specific surface areas can be
deduced by linear combination of the interfacial specific surface
areas, the reverse not being true. For this reason, the interfacial
specific surface areas have been chosen as parameters in the
cost function.

The fitting process consists of applying the Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES) algorithm [57,
58] to the cost function Fk for a set of properties k. To vali-
date the approach, a synthetic microstructure was generated by
the STEM model using a set of known parameter values ω0.
The necessary geometric properties were measured on this mi-
crostructure. The fitting process was then run, and a set of pa-
rameter values ω̂0 was obtained. Table 1 shows the relative er-
rors between the elements of ω0 and ω̂0. As the differences are
extremely small, the fitting process is considered as validated.

Table 1. Comparison of the values used to generate a synthetic microstructure
with those returned by the fitting process.

Parameters Original values (ω0) Fitted values (ω̂0) Error

λP 16 µm−3 16.12 µm−3 0.7%
λYS Z 16 µm−3 15.91 µm−3 -0.6%
λNi 0.8 µm−3 0.79 µm−3 -0.6%
λc 20 19.81 -0.9%
σ 0.2 µm 0.21 µm 3.4%
θ 3 3.02 0.7%

4.2. Static model validation
In order to validate the static model, the fitting procedure

was performed using data from several real microstructures.
The quality of the model was mainly evaluated with respect to
the errors made on the geometrical properties of the generated
synthetic microstructure that are not taken into account in the
cost function, such as the tortuosity or the constrictivity.

The rendering volumes for the reconstructions of the real
microstructures and the related synthetic microstructures gener-
ated by the static model after the optimization step are displayed
in Fig. 5. The two real microstructures correspond to the same
type of Ni-YSZ cermet obtained for the pristine cell (t = 0 h)
and after an operation of t = 2000 h. The measurements made
on the corresponding real and synthetic microstructures are pro-
vided in Tables 2 and 3.

When comparing the geometrical properties of the real and
synthetic microstructures, it appears that the results are in good
agreement regarding the volume fractions and the density of
TPBl (i.e. the properties that have the most weight in the cost
function). The results are also satisfactory for the interfacial
specific surface areas, even if the discrepancy on S 0,2

p is higher.
However, it can be noticed that the error on the specific surface
areas between the real electrodes and the synthetic microstruc-
tures remains very limited. This implies a probable limitation of
the model, which fails to take into account precisely the interac-
tion between the phases. This error on S 0,2

p is more pronounced
for the aged electrode for which the Nickel phase is aggregated
around clusters leading to enhance the local heterogeneity in the
microstructure. As for the other properties, a good agreement
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Figure 5. From left to right, 3D reconstruction of a real microstructure before use, after 2000 h of use, and synthetic microstructures generated by the static model
after optimization (t = 0 h and t = 2000 h). Cube of 17.5 µm side. The porous, YSZ and Ni phase are respectively black, gray and white.

Electrode at t = 0 h
Porous phase Solid phase (YSZ)

Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−)
Real µ-structure 1.49 0.95 0.22 0.56 1.61 0.59 0.010 2.39 0.99 0.49 0.59 1.17 0.61 0.166
Virtual µ-structure 1.55 0.97 0.22 0.52 1.61 0.65 0.011 2.4 0.99 0.48 0.63 1.18 0.58 0.153
Error (%) 3.6% 2.9% 0.1% 7.1% 0.1% 10.6% 4.4% 0.1% −0.8% −0.8% 6.8% −0.7% 4.5% −7.9%

Solid phase (Ni)
Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) ξT PBl(µm−2) S 0,1

p S 0,2
p S 1,2

p
Real µ-structure 1.56 0.97 0.29 0.67 1.47 0.6 0.024 2.42 1.22 0.33 1.16
Virtual µ-structure 1.62 0.98 0.29 0.64 1.47 0.64 0.025 2.43 1.22 0.38 1.16
Error (%) 3.8% 2.7% 0.1% 4.5% 0.4% 5.4% 2.4% 1.3% 0.2% 17% −0.1%

Table 2. Geometric properties of the 3D reconstructions of the real and synthetic microstructures.
Electrode at t = 2000 h

Porous phase Solid phase (YSZ)
Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−)
Real µ-structure 1.41 0.99 0.31 0.72 1.35 0.58 0.041 2.25 0.99 0.47 0.6 1.16 0.59 0.163
Virtual µ-structure 1.42 0.99 0.28 0.7 1.44 0.62 0.026 2.06 0.99 0.51 0.75 1.16 0.58 0.141
Error (%) ∼ 0% 0.6% −8% 2.8% 7.3% 5.8% −36% −8.7% ∼ 0% 8.7% 25% 0.2% 1.7% −13.5%

Solid phase (Ni)
Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) ξT PBl(µm−2) S 0,1

p S 0,2
p S 1,2

p
Real µ-structure 1.05 0.92 0.22 0.8 1.65 0.56 0.009 1.11 1.3 0.11 0.94
Virtual µ-structure 0.94 0.89 0.21 0.84 1.82 0.66 0.005 1.09 1.26 0.15 0.79
Error (%) −10.1% −3% −8% 5% 10.2% 16.5% −39% −1.8% −3.4% 42.8% −16%

Table 3. Geometric properties of the 3D reconstructions of the real and synthetic microstructures.

between the synthetic microstructures and the real reconstruc-
tions is found for the proportion of connected phase, the geo-
metrical tortuosity, the constrictivity and the M-factor, at least
for the cell at t = 0 h. It can be noted that the error is higher
for the M-factor of the aged electrode (t = 2000 h). This lim-
itation on the microstructural factor is a recurrent problem that
has been already reported in literature [15, 21, 25].

Finally, as a general matter, it can be concluded that the re-
sults are globally better with the first microstructure (t = 0 h)
than with the second (t = 2000 h), in particular for the constric-
tivity, the tortuosity and the M-factor. As mentioned before, the
model is more suited to microstructures with low local hetero-
geneity, which is not the case for the second microstructure, due
to the agglomeration of the Nickel phase.

4.3. STEM model validation

The STEM model is able to simulate the evolution of the
microstructure by interpolation between two known states that
can be emulated with the static model. In this study, electrode
reconstructions are available for cells operated at the same tem-

perature at different ageing times t ∈ {0 h; 1000 h; 1500 h; 2000 h}.
Although it is possible to use the static model to generate mi-
crostructures fitted for these four operating times, the STEM
model is designed to predict the microstructure evolution be-
tween the two bounds for which it was calibrated (i.e. with
t ∈ [0; 2000]). To validate the STEM model, the microstruc-
tural properties measured on the synthetic volumes at different
operating times must be compared to the ones extracted from
the reconstructions.

Fig. 6 shows the temporal evolution of a 3D microstructure
generated by the STEM model for t ∈ [0; 2000]. In Fig. 7,
some properties taken from the synthetic volumes are plotted as
function of time and compared with the real data. At the same
time, Tables 4 and 5 compile all the properties measured on the
real microstructures and the microstructures generated by the
STEM model. They also include the properties extracted from
3D microstructures obtained with the static model by fitting its
parameters to the real data.

First, Fig. 7 shows that over a set of six STEM simulations,
the standard deviation of the measured properties is extremely

7
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Figure 6. Evolution of the microstructure generated by the STEM model by interpolation between two extreme states fitted to real data. Cubes of 12.5 µm side
(2503 voxels). The porous, YSZ and Ni phase are respectively black, gray and white.
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Figure 7. Evolution of the properties of the synthetic microstructure generated by the STEM model throughout the lifecycle of the SOC (from t = 0 h to t = 2000 h).
The properties are computed over an average of 6 simulations. The dotted lines correspond to the standard deviation. Measurements made on 3D reconstructions of
real microstructures are also indicated.
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Electrode at t = 1000 h
Porous phase Solid phase (YSZ)

Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−)
Real µ-structure 1.52 0.99 0.29 0.41 1.4 0.5 0.029 2.32 0.99 0.45 0.36 1.18 0.48 0.134
Static model 1.46 0.99 0.29 0.44 1.42 0.53 0.028 2.2 0.99 0.45 0.44 1.18 0.49 0.134
STEM model 1.63 0.98 0.28 0.35 1.45 0.49 0.023 2.28 0.99 0.5 0.43 1.17 0.51 0.165
Error static (%) −3.9% 0.2% −0.9% 7.3% −1% 5.7% −5.4% −4.8% ∼ 0% −0.2% 19.4% −0.2% 0.9% 0.3%
Error STEM (%) 3.4% −0.5% −2.3% −14.6% 2.8% −2% −21% −1.5% ∼ 0% 11% 18% −0.8% 5.6% 22.8%

Solid phase (Ni)
Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) ξT PBl(µm−2) S 0,1

p S 0,2
p S 1,2

p
Real µ-structure 1.22 0.95 0.26 0.51 1.58 0.53 0.014 1.68 1.3 0.21 1.0
Static model 1.24 0.97 0.26 0.48 1.63 0.63 0.013 1.68 1.21 0.25 0.98
STEM model 1.18 0.91 0.23 0.46 1.73 0.57 0.007 1.73 1.35 0.26 0.91
Error static (%) 1.8% 3.1% −0.9% 5.9% −3.2% 19.1% −9.2% 0.1% −7.4% 17.4% −1.5%
Error STEM (%) −2.7% −3.6% −13% −10% 9.8% 8.4% −46% 2.9% 3.6% 24.6% −8.7%

Table 4. Geometric properties of the 3D reconstructions of the real and synthetic microstructures. Comparison between the properties of the real microstructure,
those of the microstructure generated by the static model, and those of a microstructure generated by the STEM model.

Electrode at t = 1500 h
Porous phase Solid phase (YSZ)

Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−)
Real µ-structure 1.5 0.99 0.27 0.61 1.41 0.62 0.028 2.41 0.99 0.45 0.56 1.2 0.59 0.128
Static model 1.38 0.98 0.27 0.69 1.5 0.61 0.020 2.06 0.99 0.45 0.71 1.21 0.6 0.123
STEM model 1.53 0.99 0.28 0.59 1.44 0.61 0.026 2.21 0.99 0.5 0.71 1.19 0.65 0.158
Error static (%) −8% −0.7% 0.9% 13.1% −6.3% 1.1% −28% −14.7% ∼ 0% −0.2% 26.8% 1.1% 1.8% −3.8%
Error STEM (%) 2.1% 0.7% 3.7% −3.6% 2.1% −0.8% −6.3% −9.1% ∼ 0% 11% 26.7% −0.8% 9.9% 23%

Solid phase (Ni)
Properties S p(µm−1) δ(%) ε(%) dp(µm) τgeo(−) β(−) M-factor (−) ξT PBl(µm−2) S 0,1

p S 0,2
p S 1,2

p
Real µ-structure 1.28 0.94 0.28 0.85 1.53 0.57 0.018 1.35 1.31 0.18 1.08
Static model 1.25 0.96 0.28 0.78 1.55 0.69 0.018 1.36 1.08 0.28 0.96
STEM model 1.23 0.93 0.23 0.83 1.66 0.68 0.010 1.36 1.36 0.27 0.95
Error static (%) −1.7% 2.1% 0.9% 8.2% −1.4% 22.5% 0.6% 0.3% −17.3% 59.7% −11.7%
Error STEM (%) −3.8% −0.7% −17% −1.3% 8.8% 19% −46% 0.9% −7.4% 50.5% −12%

Table 5. Geometric properties of the 3D reconstructions of the real and synthetic microstructures. Comparison between the properties of the real microstructure,
those of the microstructure generated by the static model, and those of a microstructure generated by the STEM model.

small, except for the geometrical tortuosity of the Nickel phase.
This last result is probably correlated with the fact that only
the set of points providing the structure of the Nickel phase is
mobile due to the agglomeration. Regarding the tortuosity, it
can be noted that the one of the YSZ phase is almost constant
over time, which is explained by the stability of the ceramic
phase in operation. The STEM model is not without limita-
tions if considering the comparison between the volume frac-
tions, specific surface areas and interfacial specific surface ar-
eas for the synthetic and real microstructures at t = 1000 h and
t = 1500 h. However, it is worth noting that the variations of
these properties, sometimes significant and unintuitive for the
real microstructures, come from the fact that the data are ex-
tracted from four different microstructures, and not from the
same SOC whose properties were measured at four different
times in its lifespan.

Tables 4 and 5 show in more details the relative discrep-
ancies that arise between the properties of real microstructures
and those that the STEM model can generate. It can be seen that
some parameters such as the density of TPBl, the specific sur-
face areas and, to a lesser extent, the interfacial specific surface
areas, are rather well predicted by the model. The volume frac-
tions are also sometimes a little off the mark, especially for the
YSZ phase, although the deviation is rarely greater than 10%.
The structural properties such as the M-factor, tortuosity, con-

strictivity or mean phase diameter are also rather well approx-
imated if the errors are put in perspective with those generally
reported in literature [15, 21, 22, 25].

Overall, the curves representing the temporal evolution of
the microstructural properties generated by the STEM model
(Fig. 7) are rather smooth and continuous, with the notable ex-
ception of the tortuosity of the Nickel phase. As a general com-
ment, the deviations from the real data are usually in the range
of 10% at the most, with the exception of the specific case of
S 0,2

p already mentioned in section 3.1. This rather good agree-
ment between the evolutions of real and synthetic microstruc-
tures tends to validate the model. Indeed, the STEM model is
able to generate three-phase microstructures at each moment
of the SOC lifetime between two known boundary states. Al-
though the properties of the synthetic microstructures some-
times deviate slightly from the real data, their evolution is rather
smooth, with the understanding that the model can still be greatly
improved. Indeed, it should be noted that an area for improve-
ment would be to reconsider the way in which the interpolation
between the two extreme bounds is performed. In fact, it has
been stressed that many parameters, such as the number of ele-
ments of the sets of points structuring the three phases, the clus-
ter dispersion parameter of the Neyman-Scott point process or
the smoothing parameter of the microstructure, should evolve
in a linear way. This choice is obviously questionable and more
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accurate evolutions based on physical considerations could be
implemented in the STEM model. Nevertheless, the STEM ap-
proach constitutes a relevant framework to obtain geometrical
models able to reproduce correctly the microstructural evolu-
tion of SOC electrodes.

5. Conclusion

In this paper, an original model named STEM has been pro-
posed to simulate the evolution of a SOC microstructure by in-
terpolation between two known states. These bounds are sim-
ulated using a static model based on sets of random points.
Special care was paid to optimize the process of microstructure
generation and its evolution over time. Indeed, the generation of
a microstructure with the static model takes only a few seconds,
while the simulation of its temporal evolution with the STEM
model takes only a few minutes. The static model showed that
it is able to generate virtual microstructures whose geometrical
characteristics are close to the real microstructures. The STEM
model is able to simulate the continuous evolution of these char-
acteristics. The most important discrepancies can be explained
(i) by the simplicity and lack of flexibility of the static model,
(ii) the improvements that still need to be made to the STEM
model, and (iii) the fact that the experimental data at our dis-
posal do not represent the temporal evolution of a single SOC
(but were taken from four different SOCs of the same batch op-
erated under the same conditions at different times).
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