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Abstract Interval B&B solvers handle non-convex optimization problems in a
rigorous way and deal with a wide variety of operators. However,
these solvers are not dedicated to QPs and do not exploit quadratic
convex relaxations. We present an interval B&B code that can effi-
ciently solve QPs. At each node, we use a quadratic convex relaxation
as strong as a SDP relaxation, and a bisection heuristic dedicated to
QPs. Experiments show significant speedups on integer instances.
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1. Introduction
We consider the optimization problem (QP ) of a quadratic function of n
variables under quadratic inequalities:

(QP )


min f(x) ≡ ⟨Q0, xx

T ⟩+ cT0 x

gr(x) ≡ ⟨Qr, xx
T ⟩+ cTr x ≤ er r ∈ R

ℓi ≤ xi ≤ ui i ∈ I (1)

xi ∈ N i ∈ J ⊆ I (2)

∗This research benefited from the support of the FMJH’Program Gaspard Monge for opti-
mization and operations research and their interactions with data science.
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where R is the set of inequality indices, I is the set of variable indices,
and J ⊆ I is the subset of integer variables. The quadratic forms f and gr
use symmetric real matrices Q0 and Qr and real vectors c0 and cr. ⟨A1, A2⟩
denotes a dot product between two matrices A1, A2 of same dimensions.
Each variable xi lies in the interval [ℓi, ui] where ℓi and ui are real scalars.

The objective is to make enumeration methods based on interval arith-
metic and quadratic convex reformulation methods cooperate in order to
better solve, globally and rigorously, Problem (QP ). Our work leads to a
new quadratic solver called QIBEX that is a quadratic variant of IbexOpt, a
constrained nonlinear optimization tool using rigorous interval algorith-
mic operators [1, 8]. Interval methods provide IbexOpt with two main
advantages: first, the guarantee of the solution obtained despite rounding
problems on floating numbers; second, the possibility of defining the con-
straints and the objective function based on a wide variety of mathemat-
ical operators. To reduce the domain of variables and improve the lower
bound, it uses several contraction operators: HC4 [2] that is the state of the
art constraint propagation algorithm, ACID(HC4) [7] that performs specific
work on a few adaptively chosen variables, or X-Newton [1] that is an in-
terval contractor based on a specific X-Taylor polyhedral relaxation.

Our main contribution is an interval B&B algorithm that can solve glob-
ally, efficiently and rigorously (QP). At each node, the hybrid solver QIBEX
uses a quadratic convex relaxation that is calculated thanks to SDP (Sec-
tion 2), together with a bisection heuristic dedicated to quadratic optimiza-
tion. The interval features can then propagate efficiently this information
for contracting all variable domains (Section 3). Our experiments show sig-
nificant speedups on integer quadratic instances (Section 4).

2. Quadratic Convex Reformulation
Quadratic convex reformulation first introduces a new variable Xij that
models the product of variables xi and xj , for each pair (i, j) ∈ I2. Then, it
builds the following program, parameterized by the positive semidefinite
matrices S0 and Sr ∀ r ∈ R:

(PC)



minF (x,X) ≡ ⟨S0, xx
T ⟩+ ⟨Q0 − S0, X⟩+ cT0 x

(2)

Gr(x) ≡ ⟨Sr, xx
T ⟩+ ⟨Qr − Sr, X⟩+ cTr x ≤ er r ∈ R

Xij ≥ ujxi + uixj − ujui, Xij ≥ ℓjxi + ℓixj − ℓjℓi i, j ∈ I2 (3)

Xij ≤ ujxi + ℓixj − ujℓi, Xij ≤ ℓjxi + uixj − ℓjui i, j ∈ I2 (4)

Xij = xixj i, j ∈ I2 (5)
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Thanks to equalities (5), problems (QP ) and (PC) are equivalent for any
parameters S0, Sr (r ∈ R). Moreover, since the latter matrices are positive
semidefinite, the quadratic forms F and Gr are convex, and the only non-
convexities in (PC) come from Constraints (2) and (5). By dropping these
constraints, we obtain Problem (PC) a convex QCQP relaxation to (PC)
and thus to (QP ). Now, an important issue is the choice of matrices S0

and Sr. The criterion adopted in [3] is to choose the matrices such that
relaxation (PC) is as tight as possible. It was proved in [5] that the best
choice is to set Sr equal to the null matrix and to deduce S0 from a dual
optimal solution of (SDP ) the "Shor plus RLT" relaxation of (QP ).

(SDP )



min⟨Q0, X⟩+ cT0 x

⟨Qr, X⟩+ cTr x ≤ er r ∈ R
(3)− (4)(

1 xT

x X

)
⪰ 0

To sum up, we solve (SDP ) and deduce a positive semidefinite matrix S∗
0

in order to build the following quadratic convex relaxation of (QP ):

(PC∗)


minF (x,X) ≡ ⟨S∗

0 , xx
T ⟩+ ⟨Q0 − S∗

0 , X⟩+ cT0 x

Gr(x) ≡ ⟨Qr, X⟩+ cTr x ≤ er r ∈ R
(3) − (4)

Problem (PC∗) is a quadratic convex problem that has the same optimal
value as (SDP ). It can be used to compute a tight lower bound to the opti-
mal value of (QP ) and it can also be used within a spatial B&B to globally
solve (QP ). This is implemented in the software SMIQP [6].

3. Improving an interval B&B using QCR
Our hybrid algorithm QIBEX is built upon solvers IbexOpt [1, 8] and SMIQP [6].
The steps of IbexOpt algorithm that were modified for designing QIBEX are
surrounded in the pseudo-code of Algorithms 1 and 2.

Algorithm 1 describes the main procedure of our interval B&B. It starts
from an initial node with domain [ℓ, u]. The auxiliary variable xobj = f(x)
represents the objective function value. First, the initial box is contracted.
Then, QIBEX calls a procedure QCR that computes the matrix S∗

0 and pro-
duces (PC∗). Finally, the B&B is described in the while loop, and works in
best-first order. Once a node is selected, its domain is split into two parts
by the Bisect separation procedure, and both sub-nodes (vL, vR) are han-
dled by the Contract&Bound procedure before being added into the list of
nodes by UpdateNodes. If one or both sub-nodes reach a sufficiently small
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size ϵsol, they are rather pushed into the smallV list and cannot be selected
anymore. QIBEX uses a bisection heuristic adapted from a separation strat-
egy dedicated to QPs [5]. If the strategy selects no variable, we resort to the
SmearSumRel heuristic available in IbexOpt [8].

Algorithm Qibex (f , g, x, [ℓ, u] , ϵobj , ϵsol)
v← createNode([ℓ, u])
v← Contraction(v, g)

PC∗← QCR (f , g, x, v.box)

vs← {v} ; smallV ← ∅
while vs ̸= ∅ and f̃ − fmin > ϵobj and f̃−fmin

|f̃ |
> ϵobj do

v← SelectNode(vs) ; vs← vs \ {v} /* node selection */

(vL, vR)← Bisect (v, PC∗ ) /* separation/bisection step */

(vL, vs, xf̃ , f̃ )← Contract&Bound (vL, vs, f , g, x, ϵobj , xf̃ , f̃ , PC∗ )

(vR, vs, xf̃ , f̃ )← Contract&Bound (vR, vs, f , g, x, ϵobj , xf̃ , f̃ , PC∗ )
(vs, smallV )← UpdateNodes (vL, vR, ϵsol, vs, smallV )
fmin←min vs ∪ smallV lobj

return (fmin, xf̃ , f̃ )

Algorithm 1: The QIBEX interval-based B&B dedicated to QPs

Algorithm Contract&Bound (v, vs, f , g, x, ϵobj , xf̃ , f̃ , PC∗ )
v← Contraction (v, g ∪ {f(x) = xobj} ∪ {xobj ≤ f̃ − ϵobj})
if v.box ̸= ∅ then

(xpc∗, costpc∗)← ConvexOptimize(PC∗, v.box)

(xf̃ , cost)← FeasibleSearch (v, f , g, ϵobj , xpc∗ ) // Upperbounding

if cost < f̃ then
f̃ ← cost
vs← FilterOpenNodes(vs, f̃ − ϵobj)

v← Contraction (v, g ∪ {costpc∗ ≤ xobj ≤ f̃ − ϵobj} ∪ {f(x) = xobj} )

return (v, vs, xf̃ , f̃ )

Algorithm 2: The Contract&Bound procedure run at each node

The other main improvement relates to the Contract&Bound procedure
of Algorithm 2. First, the standard Contraction procedure implemented in
IbexOpt is called. If it leads to an empty box, it proves the absence of solu-
tion in this domain, and we are done. Otherwise, the ConvexOptimize pro-
cedure evaluates PC∗, whose optimal solution is called xpc∗. The four sub-
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sequent instructions carry out the upper bounding phase: FeasibleSearch
tries to find a feasible point using several techniques of IbexOpt. In ad-
dition, it tests whether xpc∗ is feasible. If such a point xf̃ is found, then

f̃ is updated and the open nodes are filtered by FilterOpenNodes to re-
move those with a lower bound lobj greater than f̃ − ϵobj . A last call to
the contraction procedure is useful either if costpc∗ improves lobj , or a
better upper bound f̃ has been found. A last contribution is the handling
of integer variables in QIBEX which was not provided in IbexOpt. For
this, rounding to integer operations enforcing the integrality constraints
are launched after the contractions and during feasible search computa-
tions.

4. First experiments

We compare two variants of our new algorithm: QIBEX-B and QIBEX-BH,
with the solvers IbexOpt, Baron [9] and Gurobi [10]. QIBEX-B uses the
IbexOpt SmearSumRel bisection strategy, while QIBEX-BH uses our tailored
bisection heuristic. We run our experiences on continuous, mixed and in-
teger intances and the results reveal the same trends. We present here the
results of 50 instances of the class IQCP5 [3], where each instance consists
in minimizing a quadratic function of n general integer variables subject to
5 quadratic inequality constraints. In our tests n varies from 10 to 50, and
each variable belongs to the interval [0, 20]. We set the time limit to 2 hours.
We solve the semi-definite programs, as described in [4].

Figure 1. Performance profile of the CPU times (left) and number of nodes (right)

We present in Figure 1-left the performance profile [11] of the CPU times
for methods QIBEX-B, QIBEX-BH, IbexOpt, Baron 19.3.24, and Gurobi 9.1.1

for the 50 considered instances. We observe that QIBEX-B and QIBEX- BH

perform best both in terms of CPU time and number of instances solved.
In Figure 1-right, we compare the number of nodes required by IbexOpt,
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QIBEX-B and QIBEX-BH on instances of size 10. The number of nodes is
significantly reduced by using the PC∗ bound (factor 11), and is further
reduced by using the dedicated separation heuristic (additional factor 1.5).
For larger instances, QIBEX-BH requires on average half number of nodes as
QIBEX-B. The fact that QIBEX is even slower than Gurobi on the "easiest"
problems comes from the pre-processing phase computing PC∗.

5. Conclusion and future research
Two main research directions come out of our work. The first one concerns
the rigorous aspect of the solver which can be further improved. In partic-
ular, the solvers that compute the optimal solution to PC∗ are not rigorous
because they are subject to round-off errors. The other one concerns the
extension of our approach to the case where the functions are non linear
and non polynomial. A first idea would be to use a Taylor approximation
of order 2 to approximate the problem by quadratic functions.
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