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ABSTRACT

Context. The Event Horizon Telescope (EHT) collaboration recently released horizon-scale images of the supermassive black hole
M87*. These images are consistently described by an optically thin, lensed accretion flow in the Kerr spacetime. General relativity
(GR) predicts that higher-resolution images of such a flow would present thin, ring-shaped features produced by photons on extremely
bent orbits. Recent theoretical work suggests that these “photon rings” produce clear interferometric signatures that depend very little
on the astrophysical configuration and whose observation could therefore provide a stringent consistency test of the Kerr hypothesis.
Aims. We wish to understand how the photon rings of a Kerr black hole vary with its surrounding emission. Gralla, Lupsasca, and
Marrone (GLM) found that the shape of high-order photon rings follows a specific functional form that is insensitive to the details of
the astrophysical source, and proposed a method for measuring this GR-predicted shape via space-based interferometry. We wish to
assess the robustness of this prediction by checking it for a variety of astrophysical profiles, black hole spins, and observer inclinations.
Methods. We use the ray tracing code Gyoto to simulate images of thin equatorial disks accreting onto a Kerr black hole. We extract
the shape of the resulting photon rings from their interferometric signatures using a refinement of the method developed by GLM. We
repeat this analysis for hundreds of models with different emission profiles, black hole spins, and observer inclinations.
Results. We identify the width of the photon ring and its angular variation as a main obstacle to the method’s success. We qualitatively
describe how this width varies with the emission profile, black hole spin, and observer inclination. At low inclinations, our improved
method is robust enough to confirm the shape prediction for a variety of emission profiles; however, the choice of baseline is critical to
the method’s success. At high inclinations, we encounter qualitatively new effects that are caused by the ring’s non-uniform width and
require further refinements to the method. We also explore how the photon ring shape could constrain black hole spin and inclination.
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1. Introduction

The existence of black holes (BH) is a key prediction of general
relativity (GR) in the strong-field regime. More specifically, the
theory posits that the spacetime geometry around these compact
objects is described by the Kerr metric. This “Kerr hypothesis”
underlies a considerable amount of astrophysics and also plays
a driving role in theoretical physics, but it has yet to be directly
tested. A number of experiments are now poised to change this.
The recent successes obtained in gravitational-wave and radio
interferometry by LIGO-Virgo, GRAVITY, and EHT (LIGO
Scientific Collaboration & Virgo Collaboration 2016; GRAVITY
Collaboration 2018; Event Horizon Telescope Collaboration
2019a) herald the advent of a new era of black hole astron-
omy, and their future extensions promise to deliver observations
that will enable tests of the Kerr hypothesis with unprecedented
precision.

In April 2019, the EHT collaboration published the
very first images resolving the nucleus of the galaxy M87
(Event Horizon Telescope Collaboration 2019a,b,c,d,e,f). Reco-
nstructed from 1.3 mm very-long-baseline interferometry
(VLBI) observations, these images achieved an angular
resolution comparable to the expected size of M87* – the super-
massive compact object at the center of M87 – and revealed
a thick, non-uniformly bright ring with a diameter of ∼40 µas
encircling a central brightness deficit. These observed features
are roughly compatible with those appearing in simulated

black hole images (e.g., Luminet 1979; James et al. 2015;
Event Horizon Telescope Collaboration 2019e), and indeed
M87* may be consistently modeled as a Kerr BH surrounded
by an accretion flow whose emission originates within a few
Schwarzschild radii of the event horizon. Direct (weakly lensed)
images of such a flow present an asymmetric bright ring that is
consistent with the 2017 EHT observations (e.g., Gralla et al.
2019; Johnson et al. 2020; Chael et al. 2021).

Due to the limited resolution of these first EHT images of
M87*, this consistency test of the Kerr hypothesis remains weak;
instead, the Event Horizon Telescope Collaboration (2019f) has
thus far assumed the Kerr nature of M87*, so as to constrain
its mass from observations. However, as technology continues
to improve, increasingly better images will be obtained, and
these should enable correspondingly sharper probes of the space-
time geometry around M87*. Nonetheless, it is not immediately
clear how to best extract relativistic signatures from such probes,
which raises the question: how could sharper images of M87* in
principle lead to more stringent tests of the Kerr hypothesis?

Addressing this question is made particularly difficult by the
inherent asymmetry of the imaging problem. Thanks to curved-
spacetime ray tracing codes such as Gyoto (Vincent et al. 2011)
and others (Gold et al. 2020), solving the forward problem has
become a fairly routine task, and determining the observa-
tional appearance of a compact object with specified properties
(spacetime metric, emission model) is now relatively straight-
forward. The inverse problem, on the other hand, remains nigh
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intractable: inferring the nature of an astrophysical source from
its visual appearance requires one to disentangle effects of the
spacetime geometry from properties of the emission, a prob-
lem subject to enormous degeneracy. A veritable zoo of theoreti-
cally proposed objects (besides the Kerr BH) have been shown to
also produce simulated images with features compatible with the
recent EHT observations1, and many of these alternative models
cannot yet be ruled out by observations with current EHT reso-
lution (e.g., Vincent et al. 2021).

This present blurriness is not the only limitation: even with
higher resolution, images that resolve only the direct emission
will likely never separate astrophysical and geometrical effects.
(This partly explains the present lack of robust constraints on the
spin of M87*.) As such, these images may always be compatible
with models of a Kerr BH surrounded by some (possibly exotic)
emission, and hence they could never lead one to definitively
conclude a violation of the Kerr hypothesis, as this would require
achieving greater confidence in the astrophysics than in GR –
this could of course break the degeneracy in principle, but seems
very unlikely in practice (e.g., Gralla 2020; Bauer et al. 2022).

Recent work suggests a promising path forward. The strong
gravity of a Kerr BH creates around it a “photon shell” – a region
outside its event horizon in which its gravity is so strong that
light rays can become trapped on unstably bound orbits (Bardeen
1973; Teo 2003). As a result, sources in the vicinity of the black
hole can produce multiple relativistic images in the observer sky:
provided that the emission is optically thin, the primary image
(consisting of weakly lensed photons that travel directly to the
observer after being emitted) is generically superimposed with
a series of mirror images arising from highly bent photons that
circumnavigated the photon shell multiple times on their way
from source to observer (Johnson et al. 2020; Gralla & Lupsasca
2020a). If the emission is not spherical (so that it does not fully
surround the hole), then these successive images form a discrete
sequence of “photon rings” that are labeled by photon half-orbit
number n and converge to a “critical curve” in the observer sky
corresponding to the light rays that asymptote to unstably bound
orbits in the photon shell. Crucially, GR predicts that these rings
must display a self-similar structure governed by Kerr critical
exponents γ, δ, and τ that respectively control the successive
demagnification, rotation, and time delay of successive images
(Johnson et al. 2020; Gralla & Lupsasca 2020a). This suggests
that observing this characteristic lensing pattern may provide a
way to extract information about the black hole geometry, and to
discriminate between different spacetimes (e.g., Wielgus 2021).

The photon ring has not yet been conclusively observed,
but its GR-predicted substructure has already been numerically
confirmed with state-of-the-art (general relativistic magneto-
hydrodynamics) GRMHD-simulated images of M87*, in which
at least n = 3 subrings can be distinguished (Johnson et al.
2020). Although these rings (which are observable) are distinct
from the theoretical critical curve (which is not observable),
they closely track its shape, which is insensitive to the astro-
physical details of the surrounding emission and entirely fixed
by the Kerr metric (Bardeen 1973; Gralla & Lupsasca 2020c).
Critical curves have been extensively discussed in the litera-
ture and spacetimes other than Kerr are known to produce dif-
ferent shapes (e.g., Johannsen & Psaltis 2010; Johannsen 2013;
Cunha & Herdeiro 2018; Okounkova et al. 2019; Medeiros et al.

1 A non-exhaustive list includes: exotic compact objects (e.g.,
Vincent et al. 2016; Herdeiro et al. 2021), wormholes (e.g.,
Wielgus et al. 2020), non-singular black holes (Lamy et al. 2018),
etc.

2020). Thus, measuring the shape of a high-n photon ring of
M87* may be a good proxy for probing the shape of its critical
curve, and hence its geometry.

This idea was recently made precise by Gralla et al. (2020),
who established that, in a certain class of models, the shape of
the n = 2 subring is extremely close to that of the critical curve.
Moreover, they showed that on very long baselines u ∼ 300 Gλ,
which could be accessible with space-based2 extensions of the
EHT, this subring presents a clean interferometric signature, as
expected from Fourier theory (Johnson et al. 2020; Gralla 2020).
They argued that a space mission targeting M87* could resolve
the shape of its n = 2 photon ring with sufficient precision to
enable a sharp comparison with the GR prediction: simulations
of their experiment achieved sub-percent precision, forecasting
a stringent consistency test of the Kerr hypothesis. We will refer
to their proposed procedure as the GLM method.

Of course, this first study is subject to multiple limitations,
as it relies on a restricted class of emission models consisting of
stationary, axisymmetric disks composed of circular-equatorial
orbiters. More precisely: 1) it only investigated a choice of 3 toy
emission profiles, viewed from observer inclinations of 10◦−30◦
(the range of expected relevance to M87*); 2) it considered only
geometrically thin disks; 3) it ignored astrophysical fluctuations,
which amounts to studying (coherently) time-averaged images.

It is crucial to assess the robustness of the GLM method in
greater generality. The aim of this paper is to extend the GLM
analysis to many more configurations; that is, to broaden its
scope by performing a parameter survey of emission profiles,
as well as BH spins and inclinations, in order to remove the
first limitation outlined above. This work remains confined to the
framework of thin, equatorial accretion disks; a parallel study of
the impact of disk thickness is ongoing and will soon address
the second limitation (Vincent et al. 2022). In the meantime, it
is worth noting that recent work by Chael et al. (2021) suggests
that geometrically thin models yield effective approximations to
numerically modeled GRMHD accretion flows.

Finally, another objective of this paper is to initiate the study
of black-hole-spin estimates based on astrophysics-independent
shape measurements of the n = 2 photon ring. A first step is
taken in this direction by establishing that photon rings arising
from astrophysically plausible configurations constitute only a
small subset of the full range of theoretically allowed shapes.

The paper is organized as follows. First, Sect. 2 reviews
the theoretical foundations of the GLM method: the critical
curve is defined and contrasted with the concept of “black
hole shadow,” the notion of “lensing bands” is introduced, and
the expected interferometric signature of the photon ring is
described. Next, Sect. 3 presents a numerical implementation
of the GLM method that improves upon the original technique.
Then, Sect. 4 describes how the choice of baseline may affect a
shape measurement of the photon ring, especially if its thickness
varies substantially with angle. After that, Sect. 5 presents the
results of a survey over emission profiles while Sect. 6 exam-
ines the influence of BH spin and inclination. We find that a
measurement is always possible at low inclinations, while new

2 The Earth’s atmosphere limits the frequency, and hence the baseline
length, of observations made with Earth-bound elements of the EHT. As
such, a photon ring shape measurement likely requires an interferometer
with a space leg. The ngEHT – the currently envisioned next-generation
EHT (Doeleman et al. 2019) – is slated to augment its coverage of Earth
baselines with additional ground-based stations; this will improve the
image fidelity but not resolve narrow features like the photon ring. Other
proposals to deploy a radio telescope to space include Haworth et al.
(2019), Pesce et al. (2019), Gurvits et al. (2022).
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complications that may arise at high inclination necessitate fur-
ther refinements to the method. We provide further discussion in
Sect. 7, before ending with our conclusions and perspectives in
Sect. 8.

2. Theoretical overview

2.1. Shadow, critical curve, and photon rings

In the introduction, we asserted that the photon ring generically
decomposes into a stack of discrete subrings. For completeness,
here we list the (mild) astrophysical assumptions required for
the presence of this substructure; this also provides us with an
opportunity to distinguish the photon ring from the “black hole
shadow” and critical curve, terms deserving of disambiguation.

First, the emission region must be optically thin, so that
light may cross it multiple times before being reabsorbed;
otherwise, highly lensed (n > 0) images may be obscured
(e.g., Beckwith & Done 2005). The validity of this assumption
depends on both the source and the observing frequency. As
indicated in Fig. 3 of Johnson et al. (2020), GRMHD predicts
it to likely hold for 230 GHz photons collected from M87* by
present-day EHT, and it is even more likely true at the higher
345 GHz frequency that ngEHT will target; by contrast, the core
of Centaurus A is only expected to be optically thin past 1–5 THz
(Janssen et al. 2021).

Second, the emission region must have a gap rather than
fully surround the hole; otherwise, the discrete structure vis-
ible in the intensity cross-sections displayed in Johnson et al.
(2020), Chael et al. (2021), which resemble the layers of a wed-
ding cake, will not be present. Instead, one will see a continuous
cross-section with a mild (logarithmic) divergence near the the
critical curve: the image-plane curve, first derived by Bardeen
(1973; who used the term “apparent boundary”), corresponding
to light rays that asymptote to unstably bound spherical photon
orbits in the photon shell. The resulting image will then display
a distinctive feature known as the “black hole shadow”: a central
brightness deficit precisely bounded by the critical curve. This
effect was first highlighted by Falcke et al. (2000) in the context
of a BH surrounded by a spherical, radially infalling accretion
flow, and later revisited by Johannsen & Psaltis (2010).

However, as recently pointed out by Gralla et al. (2019) and
Narayan et al. (2019), this spherical-infall scenario is highly
fine-tuned, and in fact no longer viewed as relevant for
M87*: the latest EHT constraints derived from the polari-
metric image of M87* (Event Horizon Telescope Collaboration
2021a,b) strongly favor “magnetically arrested disk” (MAD)
models (Narayan et al. 2003; Igumenshchev et al. 2003) with
emission concentrated near the midplane. Such models do not
display the traditional “shadow” feature (i.e., a central brightness
depression filling the critical curve), but rather a different “inner
shadow” feature associated with the inner edge of the emis-
sion, which produces a smaller but even darker central brightness
depression contained well within the critical curve (Chael et al.
2021). For equatorial disks extending to the horizon, the inner
edge of the emission in principle coincides with the lensed equa-
torial event horizon (though it may appear larger due to redshift
effects).

To summarize, the boundary of the black hole shadow is a
mathematical curve which is not in itself observable, and only
happens to coincide with an image feature – the central bright-
ness depression – in special configurations currently disfavored
by EHT data on M87*. On the other hand, the photon ring is a
visible feature that always arises in images of a BH surrounded

by an optically thin emission region. Moreover, if this emission
is gapped, then this photon ring decomposes into subrings that
converge (exponentially in n) to the theoretical critical curve,
which can be thought of as the n → ∞ subring. The most easily
accessible n = 1 and n = 2 subrings are close to, but nonetheless
still distinct from, the exact critical curve. Therefore their shape
is constrained to be similar, but not exactly equal, to that of the
shadow. This observation is key for the GLM method.

2.2. Bound geodesics form the photon shell

Before turning to the study of the observable photon ring shape,
we first elucidate the shape of the theoretical image-plane curve
comprising the null geodesics that asymptote to unstably bound
orbits around a Kerr BH (Bardeen 1973). The region of space-
time containing these orbits – the photon shell – is extensively
reviewed in Teo (2003), Johnson et al. (2020). Here we describe
it with Boyer-Lindquist coordinates (t, r, θ, φ) on the spacetime
of a Kerr BH with mass M and angular momentum J = a∗M:

ds2 =
∆

Σ

(
dt − a∗ sin2 θdφ

)2
+

Σ

∆
dr2 + Σdθ2

+
sin2 θ

Σ

[(
r2 + a2

∗

)
dφ − a∗dt

]2
, (1)

with ∆(r) = r2 − 2Mr + a2
∗ and Σ(r, θ) = r2 + a2

∗ cos2 θ. We will
often use a dimensionless spin parameter a ≡ a∗/M ∈ [−1, 1].

A Kerr photon with four-momentum pµ has a conserved
energy-rescaled angular momentum and Carter constant

λ =
pφ
−pt

, η =
p2
θ

p2
t
− a2

∗ cos2 θ + λ2 cot2 θ. (2)

Bound photon orbits in Kerr are “spherical”: they evolve at a
constant Boyer-Lindquist radius in the range r̃− ≤ r ≤ r̃+, where

r̃± = 2M
[
1 + cos

(
2
3

arccos (±a)
)]

(3)

is the radius of the retrograde (upper sign) or prograde (lower
sign) circular-equatorial orbit. As they rotate around the BH,
these bound orbits undergo polar librations between angles
[θ̃−, θ̃+], where

θ̃± = arccos
(
∓

√
ũ+

)
≷
π

2
, (4)

ũ± =
r

a2
∗(r − M)2

[
−r3 + 3M2r − 2a2

∗M

±2
√

M∆
(
2r3 − 3Mr2 + a2

∗M
)]
, (5)

and their characteristic conserved quantities are given by

λ̃ =
M

(
r2 − a2

∗

)
− r∆

a∗(r − M)
, η̃ = −a2

∗ũ+ũ−. (6)

Bound orbits are either prograde or retrograde, depending on the
sign of λ̃. Orbits at generic radii r ∈ [r̃−, r̃+] are not closed, as
they do not return to the same location after a full rotation by
∆φ = 2π, but rather explore the entire allowed region within
their shell of fixed r; resonant orbits which are closed form an
exceptional set of measure zero in the photon shell (Wong 2021).
The photon shell occupies a 3D region of space given at any
time t by r̃− ≤ r ≤ r̃−, θ− ≤ θ ≤ θ+, and 0 ≤ φ < 2π. In the
Schwarzschild case (a = 0), it reduces to the sphere at r = 3M.
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2.3. Asymptotically bound geodesics form the critical curve

A photon that is initially outside the photon shell but has exactly
the same conserved quantities (λ, η) = (λ̃, η̃) as a photon bound
at orbital radius r asymptotes to that orbit in its far future or
past. The critical curve is defined as the theoretical curve in the
sky of an observer corresponding to these asymptotically bound
photons. It delineates the region of photon capture by the BH
(inside the curve) from that of photon escape (outside the curve).

For the case of an observer at large distance D � M and
inclination i , 0 from the spin axis of a BH, Bardeen (1973)
showed that a photon with conserved quantities (λ, η) appears in
the sky at a position given by3

ρ =
1
D

√
η + λ2 + a2

∗ cos2 i, cosϕρ = −
λ

Dρ sin i
, (7)

where, following Johnson et al. (2020), we replaced Bardeen’s
original Cartesian coordinates (α, β) with (dimensionless) polar
coordinates (ρ, ϕρ) that are centered about the “line of sight to the
black hole” and such that ϕρ = 90◦ corresponds to the BH spin
axis projected onto the plane perpendicular to this line of sight.
Hence, for such an observer, the critical curve is the parametric
curve Cγ = (ρ̃, ϕ̃ρ) obtained by tracing

ρ̃ =
1
D

√
λ̃2 + a2

∗

(
cos2 i − ũ+ũ−

)
, (8a)

cos ϕ̃ρ = −
λ̃

Dρ̃ sin i
, (8b)

over the radial extent r ∈ [r̃−, r̃+] of the photon shell. Counter-
intuitively, the angle ϕ̃ρ is parameterized not by the angle φ
around the BH, but rather by the radius r within the photon shell.
This effect highlights the warped nature of the Kerr spacetime.

Since Eq. (8b) admits two solutions for every choice of r,
each orbit in the photon shell corresponds to two angles ϕ̃ρ
around the critical curve: this corresponds to the fact that an
asymptotically bound photon can reach the observer on either an
upwards or downwards libration. Only the equatorial observer
with i = 90◦ can see the full set of orbits within the photon shell;
other observers see only the subset of orbits that have sufficient
inclination to reach them (that is, such that ρ̃2 ≥ 0). Examples of
critical curves for various BH spins and inclinations are plotted
in many papers (e.g., Fig. 1 in Farah et al. 2020).

Finally, we emphasize that the notion of a critical curve is not
limited to observers far from the BH. For instance, the critical
curve for observers on timelike circular-equatorial orbits around
a Kerr BH is analyzed in Gates et al. (2021).

2.4. Nearly bound photons form the photon ring

A photon with conserved quantities (λ, η) ≈ (λ̃, η̃) very close to
those of a photon bound at orbital radius r̃ can describe multiple
oscillations in θ ∈ [θ̃−, θ̃+] near the photon shell before leaving it.
Since Kerr bound orbits are unstable, their nearby, nearly bound
geodesics display an exponential rate of radial deviation with
respect to their (fractional) number N of polar half-orbits,

|r − r̃| ∝ eγN , (9)

3 Only photons with vanishing angular momentum λ = 0 can pass
over the poles. Thus, for the special case i = 0 of an on-axis observer,
ρ = D−1

√
η + a2

∗ and ϕρ = φo is the photon’s angle of arrival, while the
critical curve is the circle ρ̃ = D−1

√
a2
∗ (1 − ũ+ũ−) corresponding to the

bound orbit at the unique radius r̃0 such that λ̃ = 0, which is given in
(Gralla & Lupsasca 2020a), where the “BH line of sight” is also defined.

where one full orbit is defined as a complete oscillation from
a turning point θ± back to itself, while fractional N is precisely
defined in Eq. (36) of Gralla & Lupsasca (2020a). The Lyapunov
exponents governing the orbital instability depend on both the
BH spin and photon shell radius (Johnson et al. 2020):

γ =
4
a∗

√
r2 −

Mr∆

(r − M)2

∫ 1

0

dt√(
1 − t2) (ũ+t2 − ũ−

) . (10)

By definition, when a nearly bound photon reaches a dis-
tant observer, it appears at a position close to the critical curve
(Eq. (8)): (ρ, ϕρ) ≈ (ρ̃(r̃), ϕ̃ρ(r̃)) where r̃ is the radius of the
nearby bound orbit. More precisely, its arrival position can be
labeled by the coordinates (r̃, d), where d denotes the perpen-
dicular distance from the nearest point (ρ̃(r̃), ϕ̃ρ(r̃)) on the criti-
cal curve. Johnson et al. (2020) heuristically showed, and then
Gralla & Lupsasca (2020a) rigorously proved, that a light ray
shot backwards into the geometry from position (r̃, d) in the sky
executes

N(r̃, d) ≈ −
1
γ(r̃)

log |d| (11)

half-orbits around the BH before either returning to asymptotic
infinity, if it was outside the critical curve (d > 0), or crossing
the event horizon, if it was inside (d < 0). Gralla & Lupsasca
(2020a) also compute subleading O(d0) corrections to N(r̃, d).

While Eq. (11) is a purely geometric statement about the
lensing behavior of a Kerr BH, it also constrains the structure of
BH images. To describe these constraints, we will from now on
restrict our attention to emission regions that are optically thin,
stationary and axisymmetric. The assumption of stationarity and
axisymmetry amounts to considering only time-averaged images
(averaged over sufficiently long timescales), and the assumption
of infinite optical depth allows one to neglect absorption effects;
as discussed in Sect. 2.1, this approximation becomes exact in
the limit of large observation frequency, and could already pro-
vide a good approximation at the frequencies of current or near-
future observations of M87*.

Since the emission region around the BH is optically thin, a
light ray that passes through it 2N times (each time at essentially
the same inclination) collects roughly twice as many photons as
a neighboring light ray that passes through it N times. That is,

I(r̃, d) ∝ N(r̃, d) ∼ −
1
γ(r̃)

log |d| . (12)

As such, the lensing formula (Eq. (11)) implies a mild (logarith-
mic) divergence in the observed intensity I(ρ, ϕρ) near the critical
curve. The photon ring is defined as the intensity bump caused
by this divergence; in practice, it is cut off by absorption effects
(finite optical depth) as N grows large. In summary: GR predicts
that embedded within every image of a BH surrounded by an opti-
cally thin emission region, there lies a narrow photon ring.

Due to Eq. (11), any axisymmetric ring emitting isotropically
produces an infinite sequence of lensed images within the photon
ring (Gralla & Lupsasca 2020a). Successive images within this
sequence are produced by photons describing increasingly many
half-orbits around the black hole: if the first (direct) image arises
from photons with fractional half-orbit number 0 ≤ N0 < 1,
then the nth lensed image will arise from photons with fractional
half-orbit number N ≈ N0 + n. Since the entirety of the emission
surrounding the black hole can be decomposed into such source
rings, it follows that the photon ring consists of a series of lensed
images of the main emission labeled by half-orbit number n ∈ N.
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Moreover, Eq. (11) implies that these successive images are
increasingly lensed towards the critical curve by an exponential
demagnification factor: a source ring whose nth image appears at
perpendicular distance dn(r̃) from the critical curve will produce
its (n + 1)th image at an exponentially smaller distance

dn+1(r̃) = e−γ(r̃)dn(r̃). (13)

Depending on whether the emission region is gapped or not, this
lensing pattern can result in one of two very distinctive image
substructures within the photon ring.

If the BH is entirely immersed in its surrounding emission
(as in the case of a spherically symmetric accretion flow onto
the hole, for instance), then successive images of the emission
region continuously blend together and the resulting intensity
profile logarithmically rises to a smooth peak centered about the
critical curve. Such an intensity profile is displayed in Fig. 1 of
Narayan et al. (2019), with the corresponding image shown in
Fig. 2 therein: a bright photon ring encircling a central bright-
ness deficit (the interior of the critical curve). Moreover, as
shown in that paper, if the emitting matter is infalling, then
beaming effects strongly attenuate the intensity inside the critical
curve, creating the distinctive shadow effect reviewed in Sect. 2.1
above. The reason is that light rays appearing inside the criti-
cal curve cannot encounter a radial turning point, so any pho-
tons collected along such rays had to have been emitted opposite
to the infalling matter’s direction of motion, thereby incurring a
strong redshift.

On the other hand, if the emission is gapped (as in the case of
emission localized around the equator with gaps near the poles,
for instance), then each successive image of the emission region
displays a corresponding gap, and the resulting intensity pro-
file no longer consists of a smooth logarithmic peak (Eq. (12)),
but rather a sequence of distinct peaks accumulating near the
critical curve. Such an intensity profile is displayed in Fig. 1
of Gralla et al. (2019), with the corresponding image shown in
Fig. 5 therein. In such images, the photon ring decomposes into
a stack of distinct photon subrings, each of which is labeled by n
and corresponds to a single lensed image of the main emission,
demagnified by e−γn. As reviewed in Sect. 2.1, the latest EHT
observations favor M87* models with near-equatorial emission,
and thus we expect this subring structure to be present in actual
images of M87*.

High-resolution, time-averaged, 230 GHz images of M87*
produced using state-of-the-art GRMHD simulations display at
least n = 3 subrings and numerically confirm this GR-predicted
substructure (Johnson et al. 2020), which is also present in all
the images that we obtained from our toy models of M87*.

2.5. Photon subrings lie in lensing bands

To study the subring structure of the photon ring, it is help-
ful to introduce the (purely geometric) notion of a lensing band
(Gralla et al. 2020; Chael et al. 2021): a Kerr observer’s nth lens-
ing band is defined as the region in the sky corresponding to
geodesics that cross the equatorial plane at least n + 1 times
before escaping to asymptotic infinity (if d > 0) or crossing the
event horizon r = r+ of the BH (if d < 0), where the inner and
outer horizon radii are

r± = M ±
√

M2 − a2. (14)

We present a general method for computing Kerr lensing bands
in Appendix A. Figure 1 illustrates the n = 1 and n = 2 lensing
bands for an observer at inclination i = 45◦ from a BH of spin
a = 0.99.
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Fig. 1. n = 1 and n = 2 lensing bands for a distant observer at inclination
i = 45◦ from a BH with spin a = 0.99. The critical curve is given as a
reference.

Each n > 0 lensing band consists of a region bounded by two
concentric, closed curves, and therefore takes an annular shape.
The inner and outer edges of the nth lensing band correspond to
the nth lensed images of the equatorial circles of radius r = r+

and r → ∞, respectively. The inner edge is always contained
within the critical curve, while the outer edge always encircles
it on the outside. According to Eq. (13), these edges converge to
the critical curve exponentially fast in n, with widths scaling as

wn+1(r̃) ≈ e−γ(r̃)wn(r̃) ≈ e−nγ(r̃)w1(r̃), (15)

where w1(r̃) is the angle-dependent width of the first (n = 1)
lensing band (here parameterized by photon shell radius) and the
first relation becomes exact in the limit of large n→ ∞. In short,
the lensing bands form a stacked sequence of annular shapes,
each straddling the critical curve, with the (n + 1)th lensing band
strictly contained within the nth one.

From now on, we further restrict our attention to a thin disk
of isotropic emitters filling the equatorial plane. In this setting,
the lensing bands are particularly useful because they coincide
with the photon subrings: the nth lensed image of the disk, which
produces the nth photon subring, exactly fills the nth lensing
band. It follows that the photon subrings also display a stacked
structure with widths scaling as in Eq. (15). Hence, measuring
the angle-dependent ratio wn+1(r̃)/wn(r̃) ≈ e−γ(r̃) of successive
subrings could (in this setting) allow for the Lyapunov exponents
γ(r̃) to be experimentally determined (Johnson et al. 2020).

2.6. Interferometric signature of a narrow curve in the sky

Having described the subring structure of BH images, we next
turn to a description of the corresponding subring structure in the
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visibility (Fourier) domain. We begin by reviewing some facts
about the interferometric signature of a narrow feature in the sky.

We consider an infinitely thin, closed light curve in the sky.
Assuming this plane curve is convex, we may parameterize it
by normal angle ϕ ∈ [0, 2π) as r(ϕ) = (α(ϕ), β(ϕ)), where we
temporarily revert to Cartesian coordinates (α, β). (Non-convex
curves decompose into multiple such segments ri(ϕ), but we
will not need this generalization here.) The inward-pointing unit
normal is n̂(ϕ) = −(cosϕ, sinϕ). Following Gralla & Lupsasca
(2020c), we define the “projected position” f (ϕ) by

f (ϕ) ≡ −r(ϕ) · n̂(ϕ) = α(ϕ) cosϕ + β(ϕ) sinϕ. (16)

This function encodes the whole curve r(ϕ) = (α(ϕ), β(ϕ)),
which may be reconstructed as

α(ϕ) = f (ϕ) cosϕ − f ′(ϕ) sinϕ, (17a)
β(ϕ) = f (ϕ) sinϕ + f ′(ϕ) cosϕ. (17b)

The projected position f (ϕ) thus encodes all other properties of
the curve, such as its radius of curvature R(ϕ) = f (ϕ) + f ′′(ϕ).
The real motivation for introducing the quantity f (ϕ) is that it
naturally connects to the interferometric signature of the curve.
To see this, we first note that the projected position can be
uniquely decomposed into parity-even and parity-odd parts

f (ϕ) =
dϕ
2

+ Cϕ, (18)

where

dϕ = f (ϕ) + f (ϕ + π), (19a)

Cϕ =
1
2

[
f (ϕ) − f (ϕ + π)

]
. (19b)

The even part dϕ = dϕ+π is the “projected diameter” of the curve
at angle ϕ, while the odd part Cϕ = −Cϕ+π is its centroid motion.
Gralla & Lupsasca (2020c) illustrate several examples of this
shape decomposition.

We now arrive at the key point: if the curve is not infinitely
thin, but still very narrow relative to its diameter (w � dϕ), then
its Fourier transform V(u, ϕ) (where (u, ϕ) are polar coordinates
in the Fourier plane) exhibits a simple behavior in the regime

1
d
� u �

1
w
, (20)

where it adopts the “universal” form, valid to leading order in an
expansion in 0 < w/d � 1 (Gralla 2020),

V(u, ϕ) ≈
e−2πiCϕu

√
u

[
αL(ϕ)e−

iπ
4 eiπdϕu + αR(ϕ)e

iπ
4 e−iπdϕu

]
, (21)

with αL,R(ϕ) = αR,L(ϕ + π) > 0 encoding the intensity profile of
the curve and ensuring that V(u, ϕ+π) = V∗(u, ϕ), as required by
definition (Eq. (29) below). In the context of interferometry, the
complex function V(u, ϕ) is known as the radio visibility, with
the visibility plane (u, ϕ) usually referred to as the baseline plane.
Intuitively, short baselines u � 1/d are not sufficient to resolve
the shape of a bright curve, which then just appears as a blob,
while on very long baselines u � 1/w, the smooth profile of the
curve has been resolved and its signal therefore dies off expo-
nentially; on the other hand, in the universal regime (Eq. (20)),
the curve appears infinitely thin and as a result, its signal follows
a very weak u−1/2 power-law fall-off (Eq. (21)).

In the context of realistic high-frequency VLBI observations,
it is in practice significantly easier to measure the amplitude |V |

of the complex visibility – the “visamp” – than its absolute phase,
as the latter is more susceptible to contamination by a variety of
atmospheric and instrumental effects. While the full complex vis-
ibility (Eq. (21)) encodes both dϕ and Cϕ, the visibility amplitude
depends on dϕ only, and obeys |V(u, ϕ + π)| = |V(u, ϕ)|:

|V(u, ϕ)| ≈

√
α2

L(ϕ) + α2
R(ϕ) + 2αL(ϕ)αR(ϕ) sin

(
2πdϕu

)
u

. (22)

To summarize, the clearest interferometric signature of a bright
curve in the sky is its visibility amplitude (Eq. (22)), which is
strong in the universal regime (Eq. (20)) and only encodes par-
tial information about the shape, namely its projected diameter
dϕ (but not the full shape information, which also requires the
centroid motion Cϕ that is only available in the harder to mea-
sure visibility phase).

2.7. Interferometric signature of the photon ring

Combining the results of the previous sections, we are now in
a position to describe the interferometric signature produced by
the photon ring. We expect the photon subrings to be the only
narrow features present in time-averaged BH images, since other
fine features (such as emission ropes and other flares) should be
transient and wash out after sufficient time-averaging. Thus, we
expect that the nth subring will dominate the visibility amplitude
in the regime (Johnson et al. 2020)

1
wn−1

� u �
1

wn
, (23)

where, according to Eq. (15), wn(r̃) = e−γ(r̃)wn−1(r̃). Beyond,
its signal starts to die off exponentially and the (n + 1)th sub-
ring begins to dominate. This results in a distinctive cascade
structure illustrated in Fig. 2. In each range of Eq. (23), the nth
subring produces a damped oscillation (Eq. (22)) governed by
its projected diameter d(n)

ϕ . All that remains for us to do is to
describe the diameters d(n)

ϕ , beginning with the projected diam-
eter d̃ϕ ≡ d(∞)

ϕ of the critical curve, which they exponentially
converge to in the limit n→ ∞.

2.8. Theoretical shape of the critical curve

A “phoval” (for “photon ring oval”) is a geometric shape with
dϕ
2

= R0 +

√
R2

1 sin2 ϕ + R2
2 cos2 ϕ, (24a)

Cϕ = (X − χ) cosϕ + arcsin (χ cosϕ) . (24b)

More precisely, this is a family of shapes parameterized by five
parameters R0, R1, R2, X, and χ, with the interesting property that
the Kerr critical curve is extremely well-approximated by some
member of the family for any choice of observer inclination and
BH spin (Gralla & Lupsasca 2020c).

We briefly summarize the geometric interpretation of these
parameters. First, the projected position fcirc(ϕ) = R0 describes
a circle centered at the origin with radius R0. Next, the projected
position f 2

ellipse(ϕ) = R2
1 sin2 ϕ + R2

2 cos2 ϕ describes an ellipse
centered at the origin with radii R1 and R2. Adding these two
functions results in the projected position fcirclipse(ϕ) = dϕ/2
given in Eq. (24a), which defines a shape known as a “circlipse.”
It follows from the last paragraph that the projected diameter of
the critical curve is always exquisitely close to that of a circlipse,

d̃ϕ ≡ d(∞)
ϕ ≈ 2R0 + 2

√
R2

1 sin2 ϕ + R2
2 cos2 ϕ, (25)
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with the best-fit parameters R0, R1, and R2 depending in a rather
intricate way on the mass-to-distance ratio M/D, BH spin a,
and observer inclination i. Finally, adding the centroid motion
(Eq. (24b)) to the projected function produces the full phoval
shape, which is translated along the α axis (orthogonal to the spin
axis projected onto the plane perpendicular to the line of sight)
by a horizontal offset X ∈ R, and carries a left-right asymmetry
induced by a parameter χ ∈ [−1, 1] that matches the warping of
the critical curve at high inclinations and high spins. With these
additional parameters, the best-fit phoval reproduces the Kerr
critical curve to a part in 105 over the vast majority of param-
eter space, and to a part in 103 in the extremal limit a → 1
(Gralla & Lupsasca 2020c). Away from extremality, the (parity-
odd) centroid motion gives a minor correction to the shape of
the critical curve, which is almost entirely encoded in its (parity-
even) circlipse diameter.

A critical curve with best-fit circlipse parameters R0, R1, and
R2 has diameters d⊥ ≡ d0 and d‖ ≡ dπ/2 along the directions
perpendicular (α axis) and parallel (β axis) to the projected spin

d⊥ = 2 (R0 + R2) , d‖ = 2 (R0 + R1) , (26)

which define a fractional asymmetry (Johnson et al. 2020)

fA ≡ 1 −
d⊥
d‖

=
R1 − R2

R0 + R1
∈ [0, 1]. (27)

The range 0 ≤ fA ≤ 1 follows from the observation that d⊥ ≤ d‖
over all parameter space, which also implies that R2 ≤ R1. More-
over, we can see from Eq. (24a) that d⊥ and d‖ are the minimal
and maximal diameters of the circlipse, respectively.

Finally, we point out that the two quantities d‖ and fA encode
the BH spin a and observer inclination i, as illustrated in Fig. 7
of Johnson et al. (2020). The map (a, i) → (d‖, fA) is not exactly
bijective, however, but rather two-to-one, as (a, i) and (−a, i + π)
both map to the same (d‖, fA). Putting aside this discrete twofold
degeneracy (which can be broken by other means), this suggests
that one could in principle infer a BH’s spin and inclination from
the projected diameter d̃ϕ of its critical curve (Eq. (25)), or even
just its minimum and maximum d⊥ and d‖ (without any need for
the parameters X and χ encoding its centroid).

However, this suggestion is misleading because the critical
curve is purely theoretical and not in itself observable. Nonethe-
less, the photon subrings – which are observable – converge to
it exponentially fast and moreover, while the first subring is still
noticeably different to the naked eye, the second subring tracks
it quite closely. It is therefore tempting to extract the BH spin
and inclination from the projected diameter d(2)

ϕ . Unfortunately,
we have found this approach to be only moderately successful,
as the residual astrophysics-dependence of the n = 2 ring shape
introduces significant uncertainties (see Sect. 5.3 below).

2.9. Testing GR with the photon ring shape

As we have explained, the projected diameter of the Kerr critical
curve depends only on the spacetime geometry: d̃ϕ encodes the
BH spin and inclination, and is fully determined by them. How-
ever, this theoretical curve, and hence its diameter d̃ϕ, are not
directly observable. Instead, what we may (in principle) observe
is a sequence of photon subrings labeled by half-orbit number n
and approaching the critical curve as n → ∞, with projected
diameters d(n)

ϕ → d(∞)
ϕ = d̃ϕ. Thus, in the large-n limit, the

rings enter a “universal” regime in which their dependence on
astrophysical conditions drops out and they converge to the GR-
predicted, astrophysics-independent shape d̃ϕ. This suggests that
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Fig. 2. Example of a visibility amplitude profile at fixed angle ϕ = 0◦
in the baseline plane, obtained from a BH image simulated with Gyoto
and exhibiting the clean ringing expected from the narrow photon ring.
Three regimes (see Eq. (23)) are visible: in the range [0, 20] Gλ, the
direct (n = 0) image dominates; for u ∈ [20, 120] Gλ, the first (n = 1)
subring prevails; beyond 120 Gλ, the n = 2 ring signature takes over.

a shape measurement of a “large-n” subring could provide a test
of GR and a means to infer the BH parameters.

The first (n = 1) subring is certainly not yet in the universal
regime, as the photons comprising it are not sufficiently bent and
its shape still carries a substantial imprint of the astrophysical
details of the surrounding source. On the other hand, the shape of
the higher n ≥ 3 subrings is much less sensitive on astrophysics,
but these rings are also much harder to detect experimentally, for
at least two reasons: first, their signature only comes to dominate
on exponentially long baselines (Eq. (23)), which (given present
observation frequencies) could only be accessed using a space
element at unrealistic separation from the Earth (e.g., Fig. 5 of
Johnson et al. 2020); second, this problem is compounded by the
need for exceptional sensitivity, as the flux in each subring is also
exponentially suppressed in n (Eq. (15)). As such, the second
subring seems to be the most promising target for a shape test of
GR, as it may sit in the “sweet spot” where it remains accessible
with current or near-future technology (Gralla et al. 2020), while
n = 2 is “sufficiently large” that d(2)

ϕ ≈ d̃ϕ.
Gralla et al. (2020) initiated a quantitative investigation of

this idea and found that in a wide class of toy models of M87*
(subject to the limitations listed in the introduction), the n = 2 sub-
ring indeed produced the universal visibility amplitude (Eq. (22)).
Moreover, they showed that it is possible to recover d(2)

ϕ from
this signature, even in the presence of simulated instrument noise.
They found that, while the n = 2 ring is still noticeably different
from its n→ ∞ limit (the critical curve), it nonetheless adopts the
same shape: more precisely, even though the n = 2 ring and the
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critical curve have different projected diameters d(2)
ϕ , d̃ϕ, they

both take the shape of a circlipse. That is, d(2)
ϕ must also follow

the functional form of Eq. (25).
We emphasize that, while the best-fit radii R0, R1, and R2 for

d̃ϕ are determined only by the BH parameters M/D and a, as
well as the observer inclination i, the best-fit radii R0, R1, and R2

for d(2)
ϕ additionally depend on astrophysical conditions as well.

This is illustrated in Fig. 7 of Gralla et al. (2020), which shows
how these best-fit parameters vary with the astrophysical model,
keeping the BH parameters fixed. Thus, the n = 2 ring carries
some astrophysics-dependence (which makes it harder to extract
the BH parameters from its diameter), but it is weak enough that
d(2)
ϕ does not break out of the functional form

d(2)
ϕ

2
≈ R0 +

√
R2

1 sin2 (ϕ − ϕ0) + R2
2 cos2 (ϕ − ϕ0), (28)

which includes an additional parameter ϕ0 to account for the fact
that the orientation of the image is generically not aligned with
the Bardeen coordinate system. This observation led Gralla et al.
(2020) to propose a novel GR test based on the n = 2 ring shape:
a space-based VLBI mission targeting M87* could extract d(2)

ϕ

and check to what extent it follows the form of Eq. (28).
If the deviation of d(2)

ϕ from its best-fit circlipse is large, then
the Kerr hypothesis fails the test; if it is small, then one can report
a test of the Kerr hypothesis and GR with a precision given by
the root-mean-square deviation of d(2)

ϕ from its best fit. With their
simulated experimental forecast, Gralla et al. (2020) attained a
stringent, sub-percent (0.04%) level of precision.

Finally, we wish to clarify in what sense we regard the GLM
method as a test of the Kerr hypothesis. Such a test can either be:

– A consistency test aiming to confirm that some observable
is consistent with the prediction of the Kerr spacetime, in
which case there is no notion of model comparison; or,

– A model-comparison test aiming to compare predictions of
the Kerr hypothesis with alternative predictions derived from
other spacetime geometries, so as to determine which one
best explains the data (in the Bayesian sense).

In this article, we discuss the GLM method as a consistency
test of the Kerr hypothesis and thus do not consider any other
spacetime but that of Kerr. Performing an unambiguous model-
comparison test of the Kerr hypothesis is a difficult challenge,
as one must be careful to properly take into account all complex
astrophysical degeneracies (e.g., Bauer et al. 2022).

Additional work is needed to establish the viability of this
GLM method for a wider range of configurations. In this paper,
we explore whether the method remains viable when some of the
limitations of the original GLM analysis are removed; this will
be the object of our parameter survey in Sects. 5 and 6 below.

3. Implementation

To check the robustness and precision of the Kerr hypothesis test
reviewed in Sect. 2, we simulated high-resolution images of Kerr
BHs using various types of emission and confirmed that they all
display a photon ring with n = 1 and n = 2 subrings. Then,
we inferred the n = 2 ring diameter d(2)

ϕ from its characteris-
tic damped oscillation (Eq. (22)) in the visibility amplitude on
long baselines, and verified that it follows the predicted func-
tional form (Eq. (28)), thereby establishing the viability of the
GLM method as a test of the Kerr hypothesis. We also stud-
ied the discrepancy between the n = 2 subring and the critical
curve, and checked that a phoval with the minimal and maxi-
mal diameters measured from the n = 2 ring could fit within

the n = 2 lensing band. Our simulations were performed with
the relativistic ray tracing code Gyoto (General relativitY Orbit
Tracer of the Observatoire de Paris), whose details are presented
in Vincent et al. (2011).

3.1. Image simulation

Gyoto simulates an image, that is, a map I(ρ, ϕρ) of the specific
intensity in the observer sky. To reproduce the complex visibility
V(u, ϕ) that is directly sampled via VLBI observations, we had
to additionally compute its 2D Fourier transform,

V(u, ϕ) =

∫ ∞

0

∫ 2π

0
I(ρ, ϕρ + ϕ)e−2πiuρ cosϕρρdρdϕρ, (29)

which by definition satisfies V(u, ϕ + π) = V∗(u, ϕ). Instead
of computing this 2D FT, we followed Gralla et al. (2020) and
made use of the projection-slice theorem to directly compute
V(u, ϕ) along slices of fixed angle ϕ in the Fourier plane: for
each ϕ, we computed the Radon projection (i.e., the integrals of
I(ρ, ϕ) along lines perpendicular to the slice of constant ϕ across
the image), and then applied a 1D fast Fourier transform (FFT)
to obtain the visibility V(u, ϕ) evaluated at that angle ϕ.

We made the following assumptions in our computations:
– BH mass: M = 6.2×109M�, in the range of values for M87*

favored by stellar dynamical measurements (e.g., Gebhardt
et al. 2011; Event Horizon Telescope Collaboration 2019f);

– Distance between the BH and observer: D = 16.9 Mpc, in
the range of values for M87* (e.g., Event Horizon Telescope
Collaboration 2019f);

– Observation wavelength: λ = 1.3 mm, matching the 230 GHz
frequency of current observations Event Horizon Telescope
Collaboration 2019b;

– We neglected absorption effects, a suitable approximation for
optically thin accretion flows, as discussed in Sect. 2 above;

– We used Bardeen’s coordinates (Eq. (7)) in the sky (such that
the projected spin axis points in the direction ϕρ = 90◦);

– We terminated the ray tracing of geodesics after their second
equatorial crossing, so as to avoid parasitic pixels produced
by an under-resolved, partially imaged n = 3 ring.

From these values of M and D, one obtains a conversion ratio
from microarcseconds to units of M consistent with EHT priors
(Event Horizon Telescope Collaboration 2019f):

(M/D)M87∗ = 3.6212 µas. (30)

We took our field of view to be of 180 µas ≈ 50M and ray traced
most images with a resolution of 10 000 × 10 000 pixels, though
to resolve the n = 2 ring, we found it necessary in some cases
(when the ring is highly peaked) to double the linear resolution.

3.2. Image treatment and analysis

3.2.1. Apodization

We find that the visibility amplitude profile |V(u, ϕ)| obtained
from the FFT of a Radon slice indeed presents (on sufficiently
long baselines) the expected periodicity linked to the n = 2 ring.
Without further treatment, however, this ringing signature does
not quite take the “clean” form of Eq. (22) because it is “polluted”
by some other oscillation with higher period and lesser amplitude.

This effect arises from an artificial discontinuity in the Radon
projection, which is set to zero outside our field of view but does
not exactly vanish at its edges, where it instead decays to a tiny
(but still nonzero) intensity that is .10−4 times the maximum
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intensity. Though small, this step function nonetheless produces
its own ringing on long baselines, with periodicity set by the size
of the field of view, and this interferes with our signal.

To eliminate this spurious artifact, one solution would be to
increase the field of view until the intensity at the edges is so
small that this effect vanishes. However, in order to still resolve
the n = 2 ring, these larger images would have to be ray traced
at a correspondingly higher resolution. This would be too costly,
especially since the bulk of the computation would be dedicated
to exterior pixels of very little interest to us. An ingenious way to
overcome this difficulty would be to use adaptative ray tracing,
either by employing algorithms designed for this purpose (e.g.,
Gelles et al. 2021), or else by decomposing the total image into
a sum of multiple layers, each with its own resolution. The latter
approach was adopted by Gralla et al. (2020), who divided the
image into layers labeled by half-orbit number n: since the nth
layer only has nonzero pixels in the nth lensing band, which is
exponentially small, they were able to exponentially increase the
resolution in each layer while keeping fixed the number of pixels
computed in each layer.

Instead of computing images with an unnecessarily large
field of view or using adaptive ray tracing, we dealt with this
effect by simply multiplying the Radon projection by a window
function. This method is known as apodization.

More specifically, we used the window function (also known
as an apodization or tapering function)

W(x) = p(r(1 − x)) p(r(1 + x)), (31)

where x ∈ [−1, 1] ranges over the Radon projection, ε = 1/r is
the range of the cutoff, and p is a “smooth plateau” function,

p(x) =
f (x)

f (x) + f (1 − x)
, f (x) =

{
e−1/x2

if x > 0,
0 if x ≤ 0.

(32)

This function is infinitely smooth (C∞), exactly equal to unity
for x ∈ [−1 + ε, 1− ε], and exactly vanishes at the edges x = ±1.
As a result, multiplying the Radon transform with it smoothens
the FFT while retaining the periodicity that we are interested in.

3.2.2. Visibility amplitude profile fit

Once the visibility amplitude of a given image has been obtained,
the next step in the GLM test of the Kerr hypothesis is to extract
the diameter d(2)

ϕ of the n = 2 ring at every angle ϕρ around
the image. This diameter can be inferred from the ringing sig-
nature displayed by |V(u, ϕ)| at the corresponding angle ϕ = ϕρ
in the Fourier plane, which is predicted to take the universal
form (Eq. (22)) in the baseline regime appropriate to the n = 2
ring (Eq. (23)). Naïvely, one would simply determine the best-
fit parameters αL, αR, and dϕ, and take the latter to provide the
desired measurement of d(2)

ϕ .
In practice, however, a simple fitting method – such as the

FindFit routine implemented in Mathematica – works only
when the signal is extremely “clean,” in the sense that |V(u, ϕ)|
displays no artifacts and follows the precise functional form of
Eq. (22). This happens in ideal cases where the image perfectly
resolves the photon ring and the baselines chosen for the fit corre-
spond exactly to the domain over which the contributions from the
n = 2 subring are dominant (Eq. (23)). Unfortunately, these cases
are quite rare and the signal is typically less clean. As a result, the
naïve fitting methods fail, even if – as in Fig. 3 – the periodicity is
still manifestly present. A more robust approach is clearly called
for.

Markov chain Monte-Carlo (McMC) methods offer such an
approach and prove effective even when the signal is buried in

noise. For instance, the data simulated by Gralla et al. (2020)
for their experimental forecast contained so much noise so as
to render the periodicity invisible to the eye (see panels (a) &
(c) in their Fig. 8), and yet an MCMC analysis enabled the true
ring diameter to be extracted with great precision (see panels (b)
& (d) in their Fig. 8). While extremely robust, MCMC methods
are also computationally intensive and thus a “middle-ground”
approach is more desirable, especially for models without noise.

We devised such a procedure, which proved highly effective.
We now describe it using Fig. 3 as an illustrative example:
1. For each ϕ, choose a baseline window in which to perform

the fit (in Fig. 3, we chose the range u ∈ [2500, 2600] Gλ).
2. Identify the local extrema (both maxima and minima) of the

visibility amplitude profile within this window.
3. Interpolate between maxima to obtain the superior envelope

emax(u) of the amplitude (green dashed curve in Fig. 3).
4. Interpolate between minima to obtain the inferior envelope

emin(u) of the amplitude (blue dashed curve in Fig. 3).
5. Using a simple fitting routine, obtain the ring diameter dϕ as

the parameter d for which the refined model

Vfit(u; d) =

√
α2

L(u) + α2
R(u) + 2αL(u)αR(u) sin (2πdu) (33)

best fits the data, where the functions αL/R(u) are defined as

αL/R(u) =
emax(u) ± emin(u)

2
. (34)

The precise interpolation method used to obtain the envelopes
emax/min(u) is not important; we resorted to cubic interpolation
with the interp1d routine provided with SciPy. Likewise, the
particular fitting method used in the last step is not important
either, as the model is by construction very close to the data; we
made use of the curve_fit routine, also provided with SciPy.

Some words of explanation are in order. First, the use of the
refined model (Eq. (33)) allows us to consider signals that dis-
play the same periodic behavior as predicted by Eq. (22), but
with variable extrema emin and emax. This relaxation significantly
improves the method’s robustness and enables it to determine the
periodicity of even moderately resolved rings, which can display
non-monotonic modulations in their envelopes. We thus expect
the method to remain effective even at lower resolution, thereby
enabling a noticeable speed-up of parameter surveys. A trade-off
of the method is that, in order to attain sufficient precision on the
determination of the periodicity, we are required to examine the
signal over a relatively larger interval of baselines; in practice,
we used a window of 100 Gλ, corresponding to ∼15 periods.

This method also derives significant power from the flexi-
ble fall-off rate built into the visamp model (Eq. (33)), which
generalizes the u−1/2 power-law fall-off exhibited by the analytic
formula (Eq. (22)) to arbitrary damping rates. Such a step was
already taken by Johnson et al. (2020), who noticed that their
signal presented damped oscillations with envelope emax(u) =

u−1/2e−(uw)ζ , with two additional parameters w and ζ needed to
obtain a good fit (see their Fig. 4). The present approach is
more general still. The use of an envelope tailored to the oscilla-
tion damping provides more robustness and allows one to ignore
other ringing patterns that could arise from pixel effects, or even
beating produced by interactions with other signals of larger
periodicity: as shown in Fig. 3, this method works even when
such beats produce a local increase of the visamp. Its drawback
is that astrophysical noise (ignored here) may result in ill-defined
envelope functions for Eq. (34).

We also wish to emphasize that Eq. (21) is only the leading
term in an expansion in powers of 0 < w/d � 1. Interestingly,
preliminary analysis suggests that subleading corrections set by
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Fig. 3. Example of a visibility amplitude profile with its envelope and best-fit model curve. Here, the naïve fitting method would fail because the
envelope has complex, non-monotonic variations; yet, the periodicity is clearly visible and amenable to extraction via our refined fitting method.

the angle-dependent, nonzero thickness of the ring w(ϕ) could
also predict a beating pattern; analytic study of these corrections
will be the subject of future work.

Finally, we note that while Eq. (33) is symmetric under
L↔ R interchange, this symmetry is broken by the definitions of
Eq. (34), according to which αL measures the oscillations’ mean
and αR their amplitude, with αR < αL by convention.

3.2.3. Multi-peaked distribution for the diameter

The above fitting procedure returns a “best-fit” diameter dϕ that
minimizes the normalized root-mean-square deviation (RMSD)

RMSDu(d) =

√〈
[Vfit(u; d) − |V(u)|]2

〉
u

〈Vfit(u; d)〉u
, (35)

where 〈·〉u denotes an average over the chosen baseline window.
Often, this dϕ is only a local (rather than global) minimum of

RMSDu(d), in which case it is not the absolute best-fit diameter;
even so, it still gives a good fit so long as 0 < RMSDu(dϕ) � 1.
This is illustrated with the example in Fig. 4, for which the
above procedure yields a diameter dϕ = 37.312 µas that is a
local (but not global) minimum of Eq. (35). Nevertheless, the
resulting model Vfit(u; dϕ) (dashed yellow curve) closely tracks
the visamp |V(u)| (solid red curve), as indicated by their small
deviation (shown in the left panel inset) and as measured by the
correspondingly small numerical value of RMSDu(dϕ).

Still, the global minimum of RMSDu(d) is dϕ = 37.115 µas,
and with this diameter the model Vfit(u; dϕ) (dashed black curve)
provides an even better fit to |V(u)|: their deviation (left inset) is
even narrower, as measured by the smaller value of RMSDu(dϕ).

By definition, the global minimum of RMSDu(d) is always
the absolute best-fit diameter. Equivalently, it is also determined

as the global maximum of the “goodness-of-fit” measure

g(dϕ) ≡ e−RMSDu(dϕ). (36)

We show g(dϕ) for the above example in the right panel of Fig. 4,
where we recognize the tallest peak to be the global maximum
dϕ = 37.115 µas, with the next local maximum corresponding to
the naïve best-fit parameter dϕ = 37.312 µas. Surprisingly, we
also observe an entire periodic sequence of local maxima (with
several providing a good fit) separated by a gap of ∆dϕ ≈ 0.2 µas.

This multi-peak structure was already observed by
Gralla et al. (2020) in their experimental forecast. Its phys-
ical origin can be intuitively understood as follows.

Over a sufficiently narrow baseline window, one may view
u ≈ uw � 1/d as fixed. Within such a window, the univer-
sal form (Eq. (22)) of the visibility amplitude is periodic in
the diameter, as |V(u)| is approximately invariant under shifts
dϕ → dϕ + k/uw for integer k ∈ Z. As a result, the probability
distribution for dϕ is multi-peaked, with peaks separated roughly
by ∆dϕ ≈ 1/uw. The example in Fig. 4 confirms this argument:
the observed gap of ∆dϕ ≈ 0.2 µas between peaks corresponds
to a baseline length

uw ≈
1

2 × 10−7 arcsec
≈

1.03 × 1012

rad
≈ 1030 Gλ, (37)

which, as expected, lies well within the chosen baseline window
of u ∈ [1000, 1045] Gλ.

Another intuitive way to understand this degeneracy comes
from the observation that the number of damped oscillations (or
“hops”) from the origin u = 0 to the baseline window u ≈ uw is

Nw ≈ uwdϕ. (38)

Hence, shifts dϕ → dϕ+k/uw are equivalent to Nw → Nw +k, and
this degeneracy in dϕ implies that the number Nw of hops from
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Fig. 4. Example of a model requiring a multi-peak fitting technique. Left: fit comparison: naïvely fitting the model Vfit(u; d) (Eq. (33)) to the visamp
profile |V(u)| (solid red curve) yields an excellent but suboptimal fit (dashed yellow curve), since a better one exists (dashed black curve). Right:
goodness of fit g(dϕ) as a function of fitting diameter (Eq. (36)). The absolute best-fit corresponds to the global maximum of g(dϕ), while other
local maxima correspond to good but subopitmal fits. These peaks are approximately periodic with a separation ∆dϕ ≈ 0.2 µas that exactly matches
1/uw, since our baseline window is at uw ∼ 1000 Gλ.

the origin cannot be measured with perfect precision using only
the visibility amplitude on very long baselines u ≈ uw: adding or
substracting a few units to this period number Nw would barely
shift the extrema within our fitting window, and as a result the fit
Vfit(u, dϕ + k/uw) remains acceptable for several values of k ∈ Z.

In practice, we accounted for this degeneracy by adjuting our
fitting procedure to keep track of several of the most prominent
peaks of the multi-peak distribution, as follows:
1. For each ϕ, obtain a first estimate of dϕ by computing the

mean distance between local maxima of the visamp |V(u)|.
2. Pick an interval of some width ∆dϕ & 10/uw centered around

this estimate and plot the goodness of fit g(dϕ) defined by
Eqs. (35) and (36), as in the right panel of Fig. 4.

3. Find the peaks of g(dϕ) in this interval and keep the values
of dϕ corresponding to local maxima above a chosen peak
height, together with the associated goodness of fit g(dϕ).

The resulting list should contain several diameters dϕ that locally
maximize g(dϕ), including the global maximum. It is important
to note, however, that the latter is not always the “true” diame-
ter dϕ of the ring as measured from its image, which can some-
times correspond to one of the smaller peaks in g(dϕ). There are
also cases where the multi-peaked distribution g(dϕ) is relatively
flat, so we do not obtain a good measurement at that angle ϕ.
Despite such failures, one can usually still infer the true diame-
ter dϕ by carrying out this analysis at multiple angles, as we next
explain.

3.2.4. Circlipse fit and test of the Kerr hypothesis

Having determined the absolute best-fit ring diameter dϕ at every
angle ϕ around the image, the final step of the GLM test is to fit

it to the GR-predicted functional form of the ring (Eq. (28)),

dfit(ϕ; R) = 2R0 + 2
√

R2
1 sin2 (ϕ − ϕ0) + R2

2 cos2 (ϕ − ϕ0), (39)

with parameters R = {R0,R1,R2, ϕ0}. In practice, we carried out
this fitting by examining 36 angles in the range [0◦, 180◦) spaced
at regular intervals of 5◦. That is, we used ϕ ∈ {0◦, 5◦, . . . , 175◦}.
The best-fit parameters Rfit are then obtained by minimizing

RMSDϕ(R) =

√〈[
dfit(ϕ; R) − dϕ

]2
〉
ϕ

〈dfit(ϕ; R)〉ϕ
, (40)

where 〈·〉ϕ denotes an average over the chosen baseline angles.
If 0 < RMSDϕ(Rfit) � 1, then the circlipse fit is good and the

Kerr hypothesis passes the GLM test at a level of precision given
by the normalized root-mean-square deviation RMSDϕ(Rfit)4.
Otherwise, the fit is poor and the Kerr hypothesis fails the test.

As explained in the last section, this naïve approach is not
robust because of the multi-peaked distribution for dϕ: keeping
only the absolute best-fit diameter dϕ may yield a suboptimal fit,
since it may force us to use a wrong diameter at some angles ϕ.

However, we found a simple way to remedy this by using the
data collected at all angles simultaneously, as follows:
1. For each angle ϕ, compute g(dϕ), identify several peak values

of dϕ, and display them all together as in Fig. 5.

4 Gralla et al. (2020) use the width of the peak in g(dϕ) as a measure
of the uncertainty σϕ in the inferred diameter dϕ, enabling them to use
a standard chi-squared metric [their Eq. (15)] to assess goodness of fit.
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Fig. 5. Example of a successful circlipse fit and Kerr hypothesis test. Left: every 5◦, we determine the possible diameters dϕ of the n = 2 ring
by maximizing the goodness-of-fit measured g(dϕ) (Eq. (36)). For each angle ϕ, we obtain a periodic set of diameters separated by ∆dϕ ≈ 1/uw,
with likelihood proportional to g(dϕ) and indicated by the coloring of the data point. Right: circlipse fit for each of the possible rings. The darkest
circlipse is most likely to be the true shape of the image ring, since the corresponding “joint goodness of fit” far exceeds that of the other solutions.

2. Separate these peaks into multiple circlipse-shaped subsets
Ci, each with “joint goodness-of-fit” measure

g(Ci) ≡
∏
ϕ

g(dϕ). (41)

3. Finally, fit each Ci to a circlipse shape (Eq. (39)) with nor-
malized RMSD(Ci) ≡ RMSDϕ(Rfit) given by Eq. (40).

This “multi-fit method” results in several circlipses Ci that are
not equally likely, as measured by their different values of g(Ci).
In favorable examples such as the one in Fig. 5, the likeliest Ci
(i.e., the one with maximal g(Ci), shown in dark blue in the right
panel) does turn out to be the “true” circlipse shape of the actual
n = 2 ring in the image5.

That said, there is no reason for this to be the case in general,
and in some cases the “true” circlipse in the underlying image
may well differ from the likeliest circlipse Cmax as determined
by this analysis. Of course, there is no other way to infer the true
circlipse in a real experiment, so in principle we must take it to be
the likeliest one Cmax, even if it does not provide the best fit to the
circlipse shape, that is, even if RMSD(Cmax) , mini RMSD(Ci).

In practice, the least favorable examples present a handful of
circlipses Cmax

i sharing similar near-maximal likelihoods g(Ci).
In such cases, we may only infer the true ring diameter up to a
degeneracy of a few periods ∆dϕ ≈ 1/uw, but we may still report
a test of the Kerr hypothesis at a level of precision given by the
maximal RMSD(Cmax

i ) within the set of best-fit circlipses Cmax
i .

5 However, we note that even in such examples, the true circlipse does
not minimize RMSD(Ci), which tends to monotonically decrease with
the scale of dϕ due to its normalization. That is, larger ring diame-
ters provide better fits to the circlipse shape according to the measure
defined by Eq. (40).

4. Importance of the choice of baseline window

Before reporting the results of our parameter surveys, we first
describe some new and important features of the GLM method
that we noticed in the course of our investigation. In order to
determine the diameter d(2)

ϕ of the n = 2 ring, it is crucial to
sample the visamp |V(u, ϕ)| in the appropriate regime (Eq. (23)),
that is, on baselines long enough to resolve the width of the n = 1
ring (but not that of the n = 2 ring) at image angle ϕρ = ϕ:

1
w1(ϕρ)

� u �
1

w2(ϕρ)
. (42)

It is only in this regime that the signature of the n = 2 ring can
dominate the visamp and produce damped periodic oscillations
(Eq. (22)) that encode the ring diameter d(2)

ϕ . In the example of
Fig. 2, this requires us to choose a baseline window u & 100 Gλ.

The angle-dependence of Eq. (42) is important. At low incli-
nations, this dependence is relatively weak, and the baseline
threshold b2(ϕ) ≈ 1/w1(ϕ) past which the n = 2 ring dominates
|V(u, ϕ)| is approximately constant in ϕ. As a result, there exist
baseline windows for which a ring diameter measurement works
for all angles ϕ. On the other hand, at high inclinations, b2(ϕ)
may vary so much that no choice of baseline can satisfy the con-
dition (Eq. (42)) for all angles simultaneously; worse, the visamp
may even cease to encode the n = 2 ring diameter altogether.

These difficulties can be quantitatively fleshed out as follows.
The GLM method can only succeed for a fixed choice of baseline
window u ≈ uw that satisfies Eq. (42) for all angles, so that

max
ϕ

b2(ϕ) � uw � min
ϕ

b3(ϕ). (43)
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Here, bn(ϕ) ≈ 1/wn−1(ϕ) denotes the threshold past which the
visamp contribution from the nth ring overtakes its predeces-
sor’s. These thresholds are well-defined when there is a clear
transition between the baseline regimes in which each subring’s
signature dominates; however, these are not always cleanly
delineated. To understand why, we recall that |V(u, ϕ + π)| =
|V(u, ϕ)|, which implies that the baseline thresholds must obey
(when they exist)

bn(ϕ + π) = bn(ϕ). (44)

On the other hand, the subring widths wn(ϕρ) are only subject to
the periodicity constraint wn(ϕρ + 2π) = wn(ϕρ) and may display
significant variation with image angle ϕρ ∈ [0, 2π). In particular,
w1(ϕρ) and w1(ϕρ +π) may be very different at high inclinations,
in which case b2(ϕρ) fails to be sharply defined. Worse, while it
must always be the case that w2(ϕρ) < w1(ϕρ), it may happen
that w2(ϕρ) ∼ w1(ϕρ + π) for some angles ϕρ, in which case the
periodic ringing of the visamp |V(u, ϕ)| at ϕ = ϕρ is affected by
both the n = 1 and n = 2 rings but encodes neither’s diameter.
We now describe these inclination-dependent effects in detail.

4.1. Low to moderate inclinations

At low-to-moderate inclinations, each subring produces a dis-
tinct signature in its own baseline regime, and so the threshold
b2(ϕ) exists. This is the case illustrated in Figs. 2 and 6. Accord-
ing to Eq. (15), the next thresholds are related to it by

bn+1(ϕ) ≈ eγ(ϕ)bn(ϕ), (45)

an approximate Kerr-lens equation that becomes exact as n→ ∞
and is already an excellent approximation for n & 2.

On the other hand, one cannot determine b2(ϕ) from first
principles, as the first subring’s width w1(ϕρ) must be computed
for each model separately. We may thus rewrite Eq. (43) as

max
ϕ

b2(ϕ) � uw � min
ϕ

eγ(ϕ)b2(ϕ), (46)

where b2(ϕ) is model-determined (astrophysics-dependent) and
the demagnification factor eγ(ϕ) is universal (GR-predicted).

Letting γ0 = minϕ γ(ϕρ) denote the minimal demagnification
factor, we see that a sufficient (though not necessary) condition
for the existence of a baseline window uw satisfying Eq. (46) is

max
ϕ

b2(ϕ) � eγ0 min
ϕ

b2(ϕ). (47)

At low inclinations, where b2(ϕ) ≈ b0 is relatively flat and eγ0

takes values of approximately 10 ∼ 20, this sufficient condition
is manifestly satisfied, guaranteeing the existence of a suitable
choice of baseline window over which to carry the measurement.
At higher inclinations, however, eγ0 ∼ 1 (it is in fact exactly unity
for equatorial inclination and maximal spin a = 1). Moreover,
b2(ϕ) varies significantly, so this condition is clearly violated.
This does not necessarily imply that Eq. (43) cannot be satisfied,
but it does mean that some choices of baseline window uw that
are suitable at a given angle ϕmay not be suitable at other angles.

This effect is illustrated in Fig. 6, which displays a model
from our parameter survey with BH spin a = 0.5 and moderate
inclination i = 45◦. Panels B–D illustrate the angle-dependence
of the threshold b2(ϕ), which varies from b2(60◦) ≈ 200 Gλ to
b2(140◦) ≈ 700 Gλ. If one were to extract a diameter dϕ from the
periodicity of the visamp in the baseline window uw ≈ 600 Gλ,
then one would be measuring the n = 2 ring diameter d(2)

ϕ at
ϕ = 60◦ (panel B) and the n = 1 ring diameter d(1)

ϕ at ϕ = 140◦

(panel D). At an intermediate angle of ϕ = 102◦, one would
land in a transition region between the n = 1 and n = 2 regimes
in which the visamp periodicity encodes neither ring’s diameter,
but rather some “superposition” of the two.

Of course, at moderate inclinations, this issue can always be
avoided by selecting a larger baseline window. For the example
of Fig. 6, any choice uw & 1000 Gλ is sufficiently large: over
such baseline windows, the visamp periodicity always encodes
the n = 2 ring diameter (until the n = 3 signal takes over on
even larger baselines u & 2000 Gλ). Meanwhile, measurements
of dϕ on insufficiently long baselines lead to tell-tale transitions
between d(1)

ϕ and d(2)
ϕ that inevitably result in the characteristic,

non-periodic pattern of data points shown in panel A of Fig. 6.
The reason is the following. For the angles in the blue zone,

dϕ = d(2)
ϕ is the “true” diameter of the n = 2 ring’s image, while

for the angles in the gray zone, dϕ = d(1)
ϕ is the “true” diame-

ter of the n = 1 ring’s image. These regions are separated by
green zones in which neither ring dominates the signal, so that
dϕ is equal to neither d(2)

ϕ nor d(1)
ϕ : in such regions, dϕ does not

track the diameter of any actual image feature, and in particular
it need no longer be a continuous curve. As a result, the absolute
best-fit diameter dϕ – defined to maximize Eq. (36) – is allowed
to “jump” across circlipse bands (and indeed, one can see two
such jumps in the second green zone 150◦ < ϕ < 175◦ of panel
A). In fact, such jumps are necessary to ensure the periodicity
of the physical ring diameter d(2)

ϕ in the blue zone, which must
necessarily remain invariant under shifts ϕ→ ϕ + π.

On the other hand, the continuous curves Ci that the human
eye naturally joins points into need not be periodic as ϕ→ ϕ+π;
it is only the totality {Ci} of such curves that needs to respect that
periodicity. It is therefore perfectly acceptable for these curves
to continuously wrap into their successor as one looks up across
panel A of Fig. 6. While these curves Ci are still separated by
a gap ∆dϕ ≈ 1/uw, they are manifestly not circlipses, and their
lack of periodicity is an indicator that the baseline window is
inadequate for a full measurement of d(2)

ϕ .
To summarize, at low inclinations i . 20◦, the baseline

regimes corresponding to each subring are sharply delineated;
in particular, the baseline threshold b2(ϕ) exists and is relatively
flat, so that if a baseline window uw is suitable for a measurement
of the n = 2 ring diameter d(2)

ϕ at some angle ϕ, then it is almost
surely suitable at every other angle around the baseline plane.
At higher but still moderate inclinations i . 50◦, the baseline
threshold b2(ϕ) still exists but now exhibits substantial variation.
Because of this, some baseline windows uw may be suitable for a
measurement of the n = 2 ring diameter d(2)

ϕ at certain angles ϕ,
but not others, where they instead pick up the n = 1 ring diameter
d(1)
ϕ or some unphysical “superposition” of the two. Nonetheless,

it should be possible to tell if this is happening from the shape of
dϕ, which would display the general pattern shown in panel A of
Fig. 6. Moreover, at these inclinations, this difficulty can always
be avoided by selecting a sufficiently large baseline window.

4.2. High inclinations

At higher inclinations i & 60◦, subrings do not always pro-
duce clearly delineated signatures in individual baseline regimes,
and as a result the baseline threshold b2(ϕ) does not exist at all
angles ϕ. Physically, this can occur because the baseline thresh-
old must be π-periodic (Eq. (44)), while the subring images need
only be 2π-periodic. In particular, while w2(ϕρ) < w1(ϕρ) for
every angle ϕρ around the image, at high inclinations it is usually
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Fig. 6. Measurements of the photon ring shape carried out over insufficiently long baseline windows display characteristic transition effects. In
this example, the BH spin is a = 0.5, the observer inclination is i = 45◦, and the emission profile (Eq. (50)) has parameters µ = 3r+/2, γ = −1, and
σ = 0.5M. (A) Projected diameters dϕ inferred from the periodicity of the visamp in the range [550, 650] Gλ via the multi-fit method (Sect. 3).
With this baseline choice, dϕ does not follow the circlipse shape (Eq. (28)) because it only tracks d(2)

ϕ within the blue zone, which is separated
by green transition zones from the gray zone where it corresponds to d(1)

ϕ . The visamp profile |V(u, ϕ)| over this baseline window (shown as an
orange band) is dominated by the n = 2 ring at ϕ = 60◦ in the blue zone (B), by the n = 1 ring at ϕ = 140◦ in the gray zone (D), and by neither at
ϕ = 100◦ (C).
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Fig. 7. Left: Gyoto log-scale image of a BH with spin a = 0.5 and inclination i = 89◦, surrounded by a thin disk with emission profile (Eq. (50))
with parameters µ = r−, γ = −2, and σ = 1.5M. The bright horizontal line is the direct n = 0 image of the disk viewed almost edge-on. Right:
zoom-in around a region with β ≈ 0. The width of the n = 1 subring for β > 0 is of the same order of magnitude as the width of the n = 2 ring for
β < 0.
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Fig. 8. Visibility amplitude profiles |V(u, ϕ)| of the image in Fig. 7. At
ϕ = 90◦, the ringing signature is sensitive to the projected diameter dϕ
of a hybrid ring composed of the upper half of the n = 1 ring and lower
half of the n = 2 ring, as well as to the distance between this hybrid ring
and the horizontal line of direct n = 0 emission. These visamps are not
exact as they neglect emission from outside the field of view of Fig. 7.

the case that w2(ϕρ) ∼ w1(ϕρ + π) for angles ϕρ opposite the spin
axis. In that case, the visamp V(u, ϕ) at baseline angle ϕ = ϕρ (or
equivalently, ϕ = ϕρ + π) is sensitive to the diameters of both the
n = 1 and n = 2 subrings.

This phenomenon is clearly visible in the example shown in
Fig. 7, which corresponds to a BH of spin a = 0.5 observed from
a near-equatorial inclination i = 89◦. Since w2(ϕρ) ≈ w1(ϕρ + π)
for ϕρ = 90◦, it follows that the visamp profile |V(u, 90◦)|, which

is plotted in red in Fig. 8, cannot display a sharply delineation
between regimes dominated by the n = 1 and n = 2 subrings.
Nonetheless, this profile still displays oscillations. According to
Eq. (21), their periodicity ought to be set by the diameter of a ring
of fixed width in the image, which in this case must be the com-
posite ring consisting of the upper half of the n = 1 ring joined
together with the lower half of the n = 2 ring. In other words, we
would expect the visamp for this model to still adopt the universal
form (Eq. (22)) on long baselines, but with a projected diameter
dϕ corresponding to a hybrid n = 1&2 ring of uniform width.
In practice, this expectation is not quite realized in this model
because of the direct (n = 0) image of the near-side of the equato-
rial disk, which cuts across the photon ring. Since this horizontal
line is itself thin and bright like the hybrid n = 1&2 ring, the verti-
cal intensity cross-section consists of three spikes; as a result, the
visamp profile at angles ϕ ≈ 90◦ is sensitive to multiple projected
diameters, including that between the upper half of the n = 1 ring
and the n = 0 emission line, and that between the n = 0 emis-
sion line and the lower half of the n = 2 ring. These diameters are
roughly half that of the hybrid ring, and indeed the visamp con-
sists of a beating pattern with roughly twice the period expected
for the signature of the photon ring.

5. Parameter survey for the emission profile

5.1. Description of the models

In this paper, we restrict our attention to the “thin-disk” emis-
sion models presented in Sect. III.A of Gralla et al. (2020) and
Sect. 3.2 of Chael et al. (2021), which consist of emission pro-
files that are stationary, axisymmetric, and confined to the equa-
torial plane. The emitters forming the disk are assumed to
describe stable, circular-equatorial orbits all the way down to the
radius of the innermost stable circular orbit (ISCO), past which
they follow the prescription of Cunningham (1975) for infall to
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the horizon. This specifies the redshift factor g of light rays emit-
ted from the disk, whose observed (bolometric) intensity is then
computed as

I(α, β) =

N(α,β)∑
n=0

fnJ
(
r(n)

s

)
g4

(
r(n)

s , α
)
, (48)

where J(r) is an arbitrary radial emission profile, r(n)
s = r(n)

s (α, β)
denotes the radius at which a light ray crosses the equatorial
plane for the nth time after being shot back into the geometry
from position (α, β) in the observer sky, and N + 1 is the total
number of times the light ray intersects the equatorial plane6.
Here, we also introduced a “fudge factor”

fn =


1 n = 0,
1.5 n ∈ {1, 2} ,
0 n ≥ 3,

(49)

whose effect is to remove n ≥ 3 subrings from the image
(which would be underresolved), while enhancing the inten-
sity of the n = 1 and n = 2 subrings relative to the direct
n = 0 image. This enhancement can account for the effects
of geometric thickness and results in images whose intensity
cross-sections match those observed in time-averaged GRMHD-
simulated images (Johnson et al. 2020; Chael et al. 2021). In this
sense, the equatorial model (Eq. (48)) provides a good approx-
imation for realistic accretion flows, and its simplicity and rel-
atively low computational cost make it ideal for the survey of
emission profiles undertaken here.

While the equatorial source profile J(r) can in principle take
any form, in this survey we considered only profiles of the form

J(r; µ, γ, σ) =
e−

1
2 [γ+arcsinh( r−µ

σ )]2√
(r − µ)2 + σ2

. (50)

This is a three-parameter subset of Johnson’s S U-distribution
(the fourth parameter δ is set to unity), already adopted by
Gralla et al. (2020) for its versatility: this functional form pro-
vides a simple way to generate smooth profiles with emission
typically concentrated near the event horizon of the BH, and
displaying substantial variation with changes in µ, γ, and σ. In
short, these three parameters respectively determine a location
(the peak of the distribution), a shape (its asymmetry), and a
scale (its width). We now describe in detail how their variation
affects ring width.

First, µ influences the location of the emission profile’s peak.
We considered values in the range [r−, 2r+], where r± denote the
horizon radii given in Eq. (14). At the lower end of this range
(left column of Fig. 9), the peak is very close to or behind the
event horizon, but it moves farther out near the upper end of the
range (right column of Fig. 9). The observed thickness of the
photon subrings is not significantly affected by this variation.

Second, γ controls the profile’s asymmetry. We considered
values in the range [−2, 2]. When γ < 0 (left column of Fig. 9),
the steep end of the distribution is to the left and (mostly) cut off
by the horizon, leaving only a gentle-sloping tail in the emission
profile. When γ > 0 (right column of Fig. 9), the reverse is true:
the profile’s steep end lies to the right and remains visible outside
the horizon, while its gentle-sloping side is cut off. Hence, the
rings tend to become thinner as γ increases.

6 Analytic formulas for r(n)
s and N are derived by Gralla & Lupsasca

(2020a,b) and are succintly presented in Appendix A of Chael et al.
(2021).

Third, σ encodes the profile’s width. We considered values
in the range [0.25M, 1.5M]. At the upper end of this range (left
column of Fig. 9), the profile is broad enough to produce thick
rings, which makes the GLM test easy to carry out on a baseline
window u ∈ [450, 550] Gλ for all our considered values of µ
and γ. At the lower end (right column of Fig. 9), the profile is a
steep spike (provided that the distribution’s peak lies outside the
horizon) that produces narrower rings: as a result, the n = 1 ring
dominates on longer baselines, and a measurement of the n = 2
ring diameter may require (in the most extreme cases) a baseline
window uw & 2000 Gλ.

Images with thinner rings have a larger baseline threshold
b2(ϕ) for carrying out a measurement of the n = 2 ring diameter
d(2)
ϕ . This trend is illustrated in Fig. 9 with two extreme examples

that display maximally thick rings (left column) and maximally
thin rings (right column) within our considered parameter range.

5.2. Choice of parameters for the survey

In order to assess the robustness of the GLM method described in
Sects. 2 and 3, we conducted a survey over the emission-profile
parameter space {µ, γ, σ}. We used “intermediate” values for the
BH spin and inclination of a = 0.5 and i = 45◦, and examined
a total of 100 emission models corresponding to all the possible
combinations of parameters with values presented in Table 1.

As a cross-check, we repeated the survey using the cur-
rently favored values of BH spin and inclination for M87*.
The power in the relativistic jet produced by M87* sug-
gests that this BH is highly spinning, since most low-spin
GRMHD models do not give rise to a sufficiently powerful
jet (Event Horizon Telescope Collaboration 2019a). We there-
fore took a = 0.94, the highest value considered in EHT simu-
lations (Event Horizon Telescope Collaboration 2019e). We also
assumed that the spin axis of the BH and of its accretion disk are
aligned with its forward jet, which has a measured inclination
of i ≈ 17◦ (Walker et al. 2018). Since r− ≈ r+/2 for this value
of BH spin, we examined the same combinations of parameters
except for those with µ = r+/2; this amounted to a total of 80
emission profiles in our survey.

5.3. Results

We investigated these models to address the following questions:
Q1. Is the GLM test possible in principle? In particular, does

d(2)
ϕ follow the GR-predicted functional form of a circlipse

(Eq. (39))?
Q2. If so, how do the best-fitting circlipse parameters Rfit vary

with the astrophysical profile? In particular, what can we
learn about the BH parameters from the photon ring shape?

Our survey led us to the following answers:
A1. Yes. In all the models considered here, we identified a

regime in which the n = 2 ring dominates the visamp
and extracted the projected ring diameter d(2)

ϕ from the
signal’s periodicity. For reasons discussed in Sect. 4, this
required using different baseline lengths, sometimes as low
as u & 150 Gλ (Fig. 2) or as high as u & 2000 Gλ (bottom
right panel of Fig. 9). We always found an excellent fit to
the circlipse shape (Eq. (39)) as measured by the normal-
ized RMSD (Eq. (40)): in all cases,

RMSDϕ(Rfit) < 10−4. (51)

A2. By analogy with Eq. (26), it is helpful to repackage the
best-fit parameters Rfit = {R0,R1,R2, ϕ0} describing the
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Table 1. Parameter values considered in the emission profile survey.

Parameter Considered values

µ {r−, r+/2, r+, 3r+/2, 2r+}

γ {−2,−1, 0, 1, 2}
σ/M {0.25, 0.5, 1., 1.5}

Notes. r± denote the radii of the outer and inner horizons (Eq. (14)).

projected diameter of the n = 2 ring into maximal/minimal
diameters7

d+ = d(2)
ϕ0+π/2 = 2 (R0 + R1) , d− = d(2)

ϕ0
= 2 (R0 + R2) (52)

of the associated circlipse shape (d− ≤ d+ since R1 ≥ R2 by
definition). We plot the set of (d+, d−) obtained from all our
emission models in Figs. 10 and 11, and provide mean val-
ues and standard deviations for (d+, d−) in Tables 2 and 3.
These results give a good overview of the variabilty in the
circlipse shape obtained from different astrophysical source
profiles. We return to the question of spin inference in
Table 4 below.

As discussed in Sect. 2.9, one expects the n = 2 photon ring
to closely track the critical curve. This is verified in practice,
though we find that the choice of astrophysical source profile still
has a significant impact on the shape of the n = 2 ring. In most
of our models, the n = 2 ring is slightly larger in diameter than
the critical curve, so that d+ > d‖ and d− > d⊥. In particular, we
find that broader emission profiles produce thicker n = 2 rings
and therefore a larger difference in these diameters. Conversely,
narrow profiles that produce thinner rings lead to diameters that
are closer to (and sometimes, even smaller than) those of the
critical curve. Either way, conflating the shape of the n = 2 ring
with that of the critical curve can lead to erroneous conclusions.

Nevertheless, it is possible to approximate the critical curve
diameters (d‖, d⊥) by (d+, d−), and to then use these parameters
to estimate the BH spin and inclination (assuming a mass prior)
as described in Sect. 2.8. However, the precision of this spin and
inclination determination is significantly limited by the spread
of results for the n = 2 ring diameters at a given (a, i) value. To
illustrate this, Figs. 10 and 11 also display diameters of critical
curves that are compatible with the measured n = 2 ring shape,
but which correspond to (a, i) values that are different from the
“true” values of the BH spin and inclination used in the model
(green and pink stars). The constraints on these BH parameters
derived from the inferred n = 2 ring diameters have substantial
error bars, for which we provide lower bounds in Table 4.

5.4. Range of allowed phovals within the n = 2 lensing band

These results highlight that the critical curve is not necessarily
the most relevant concept for the analysis of the n = 2 photon
ring shape. For our thin-disk models, a more fruitful approach is
to consider the n = 2 lensing band described in Sect. 2.5, since
it contains all the possible geometric shapes of the n = 2 photon
ring for a given BH spin and inclination. The critical curve lies
within this band as well, but so do the critical curves of BHs with
neighboring spins and inclinations, as Figs. 10 and 11 indicate.

7 We use the notation (d+, d−) instead of (d‖, d⊥) to emphasize that
these diameters describe the n = 2 ring rather than the critical curve.
Another difference is that d+ , dπ/2 and d− , d0 because of the rotation
parameter ϕ0 in Eq. (39), though this angle is typically extremely small.

Since Sect. 2.9, we have used “photon ring shape” to refer to
the simplest observational target for a measurement of the n = 2
ring: its projected diameter d(2)

ϕ , which matches that of a circlipse
(Eq. (24a)). In this section, we study the full geometric shape of
the n = 2 ring, which typically includes centroid motion effects
(Eq. (24b)) and is therefore not a circlipse in general. Instead, we
expect this geometric shape to be close to a phoval (Eq. (24));
that is, the n = 2 ring’s projected position should closely match

fph(ϕ; R) = R0 +

√
R2

1 sin2 (ϕ − ϕ0) + R2
2 cos2 (ϕ − ϕ0) (53)

+ (X − χ) cos (ϕ − ϕ0) + arcsin
[
χ cos (ϕ − ϕ0)

]
,

for some choice of parameters R = {R0,R1,R2, X, χ, ϕ0}. (Here,
as in Eq. (28), we have included a rotation angle ϕ0 to account for
the arbitrary orientation of the BH spin axis in the image.) This
expectation is based on the observation (reviewed in Sect. 2.8)
that the Kerr critical curve is always a phoval to high accuracy,
together with the fact that the photon rings converge very rapidly
(exponentially fast in n) to the critical curve (Eq. (13)).

Since we expect the geometric shape of the n = 2 photon ring
to be that of a phoval, it is interesting to consider the range of all
phoval shapes that can possibly fit inside the n = 2 lensing band.
Since phovals are described by six parameters, it is convenient to
project this 6D region of allowed phoval shapes down onto the
2D plane of diameters (d+, d−) via Eq. (52). The resulting region
in the (d+, d−) plane gives a good sense of the allowed range of
possible n = 2 ring shapes.

For the two choices of BH spin and inclination in our survey
of emission profiles, this projection results in the blue regions
displayed in Figs. 10 and 11. Their numerical computation is
nontrivial and we relegate the details to Appendix B. We note
that since d− ≤ d+, these regions must lie below the diagonal8.

As expected, all the emission profiles in our survey produce
n = 2 photon rings that lie within the n = 2 lensing band, with
diameters (d+, d−) lying within the blue region of allowed pho-
val shapes that fit inside the band. The band’s outer and inner
edges can themselves be fitted to the phoval shape (Eq. (53))
with excellent agreement, and their diameters (d+, d−) – shown
in Figs. 10 and 11 as blue and orange dots, respectively – lie
on opposite corners of this blue region. Remarkably, all of our
astrophysical source profiles produce phovals whose diameters
(d+, d−) lie within a surprisingly narrow subregion of the full
allowed region.

More precisely, these diameters (the gold dots in Figs. 10
and 11) form a relatively straight line connecting the corners of
the blue region that correspond to the outer and inner edges of
the lensing band. In addition, they are not uniformly scattered
along this line; rather, they are tightly grouped near its center.
Both of these facts may be intuitively understood as follows. We
recall from Sect. 2.5 that the inner and outer edges of the nth
lensing band are the nth lensed images of the equatorial circles
of radius r = r+ (the event horizon) and r → ∞, respectively.
Images of intermediate radii r+ < r < ∞ form curves that fill the
lensing band and interpolate between its inner and outer edges.
From Fig. 6 of Gralla & Lupsasca (2020a), these curves roughly
appear to be dilated versions of each other (with γ(ϕ) control-
ling the angular-dependent dilation) and indeed, we find that they

8 We also note that these regions are in general different from the set
of (d+, d−) corresponding to the circlipse shapes that fit within the n = 2
lensing band. These two notions only coincide at low inclination, where
the centroid motion is negligible and the allowed phovals essentially
reduce to circlipses – this explains the square shape of the blue region in
the i = 17◦ case of Fig. 11. At higher inclinations, the lensing band is no
longer circlipse-shaped, so the set of circlipses it can contain becomes
an increasingly smaller subregion of the blue region of allowed phovals.
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Table 2. Mean values and standard deviations for the inferred n = 2
ring diameters d± in the “intermediate” case a = 0.5 and i = 45◦.

Mean value Standard deviation

d+/M 10.338 0.014
d−/M 10.250 0.009

Notes. The critical curve has d‖ = 10.319M and d⊥ = 10.236M.

Table 3. Mean value and standard deviations for the inferred n = 2 ring
diameters d± for the “best guess for M87*” case a = 0.94 and i = 17◦.

Mean value Standard deviation

d+/M 9.849 0.022
d−/M 9.751 0.022

Notes. The critical curve has d‖ = 9.834M and d⊥ = 9.733M.

Table 4. Lower bounds on the uncertainties that we can expect from
a measurement of BH spin and inclination using the n = 2 ring
diameters.

Spin Inclination

Intermediate case (a = 0.5, i = 45◦) ±0.07 ±22◦
M87* “best guess” (a = 0.94, i = 17◦) ±0.04 ±1.5◦

map to a series of points in the (d+, d−) plane tracing a diagonal
line that connects the blue and orange dots (shown in gray in
Figs. 10 and 11): the same line that the gold dots are concen-
trated around (see Appendix B for details of its computation).

Since an equatorial disk is a superposition of equatorial
rings, the n = 2 photon ring is also a superposition of the n = 2
images of said rings. That is, its position in the (d+, d−) plane
should be a weighted average of points along the diagonal line,
and must therefore also lie on this line. Moreover, this position
may be associated to an “effective” radius of equatorial emission
lying somewhere in the line’s middle, away from its extremities.
We intend to further explore this connection in future work.

6. Parameter survey for BH spin and inclination

6.1. Choice of parameters for the survey

To better assess the robustness of the GLM method described in
Sects. 2 and 3, we also conducted a parameter survey over BH
spins and inclinations (a, i). Simulating 100 different emission
models for each (a, i), as we did in Sect. 5.2, would have been
prohibitively expensive here; instead, we focused on a handful
of “representative” emission profiles of the form of Eq. (50) that
spanned the full range of outcomes observed in that survey:

– A “typical 1” profile for which the diameters (d+, d−) of the
n = 2 ring tended to be near their average value (that is, near
their mean value averaged over all emission models);

– An “overestimated” profile for which the diameters (d+, d−)
of the n = 2 ring were among the largest;

– An “underestimated” profile for which the diameters (d+, d−)
of the n = 2 ring were among the smallest;

– A “typical 2” profile for which they were slightly subaver-
age;

Table 5. Parameters of the five representative emission profiles selected
for the survey over BH spins and inclinations.

Profile µ γ σ/M

Typical 1 r+ 0 1
Overestimated r− −2 1.5
Underestimated r+ 2 0.5
Typical 2 r− 2 1
Narrow 3

2 r+ 2 0.25

– A “narrow” profile with a sharp peak (small σ) for which
the circlipse fit was more difficult (required longer baselines)
and led to the smallest values for (d+, d−) when successful.

Table 5 lists the parameters {µ, γ, σ} of these emission profiles.
In this survey, we considered all the combinations (a, i)

with a ∈ {0, 0.25, 0.5, 0.75, 0.99} and i ∈ {1◦, 22◦, 45◦, 67◦, 89◦}
(avoiding the fine-tuned cases 0◦ and 90◦). In the Schwarzschild
case a = 0, the inclination is defined relative to the equatorial
disk, whose spin is always aligned with the BH spin.

6.2. Results

We investigated these models to address the two questions posed
in Sect. 5.3. Our survey led us to the following answers:

A1. Yes, up to i . 45◦. In all the models considered here, we
identified a regime in which the n = 2 ring dominates the
visamp and extracted the projected ring diameter d(2)

ϕ from
the signal’s periodicity. For reasons discussed in Sect. 4, the
diameters inferred from images at inclinations of i = 67◦ and
i = 89◦ sometimes presented features that did not allow for
a full circlipse fit as described in Sects. 2 and 3. However,
for low-to-moderate inclinations i . 45◦, we always found
an excellent fit to the circlipse shape (Eq. (39)) as measured
by the normalized RMSD (Eq. (40)): in all such cases,

RMSDϕ(Rfit) < 5 × 10−4. (54)

For most configurations, these best fits were obtained in a
window u ∈ [1000, 1100] Gλ. However, the “narrow” profile
produced n = 2 rings that were so thin that they only became
dominant on much longer baselines, requiring the fit to be
carried out in a baseline window uw ≈ 2000 Gλ. This also
became necessary at i = 45◦ for the “underestimated” profile.

A2. As in Sect. 5.3, we extracted a pair of diameters (d+, d−) for
each emission model. This enabled us to produce, for each
BH spin and inclination, a plot like the one shown in Fig. 12
for the case of spin a = 0.5 and inclination i = 45◦. Since our
models were handpicked to form a “representative” sample
spanning the range of possible diameters (d+, d−) that one
can obtain for each spin and inclination, it is informative to
draw a bounding box containing them (like the green box in
Fig. 12) and then measure its size. The dimensions of these
bounding boxes are listed for each (a, i) in Table 6 below. As
we explain in Sect. 6.3, this analysis bears relevance for the
“inverse problem” of how to infer BH spin and inclination
from the n = 2 photon ring shape.

We first note that this survey over BH spins and inclinations con-
firms one of our crucial observations from Sect. 5.4: for each
choice of (a, i), all our emission models produce n = 2 rings with
diameters (d+, d−) that are very tightly clustered near the line
connecting the inner and outer edges of the n = 2 lensing band.
In other words, the five observed ring shapes corresponding to
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Fig. 12. Parametrization of the region in the (d+, d−) plane containing all the astrophysical photon ring shapes (here, for a = 0.5 and i = 45◦).

Table 6. Triplets (smin, smax, |δ|max/M) describing the region of the (d+, d−) plane containing all the models computed with Gyoto.

Spin i = 1◦ i = 22◦ i = 45◦

a = 0 (0.23, 0.59, 3 × 10−3) (0.19, 0.57, 9 × 10−4) (0.18, 0.56, 5 × 10−3)
a = 0.25 (0.21, 0.58, 2 × 10−3) (0.19, 0.58, 5 × 10−4) (0.19, 0.57, 4 × 10−3)
a = 0.5 (0.23, 0.60, 5 × 10−3) (0.20, 0.59, 9 × 10−4) (0.19, 0.58, 6 × 10−3)
a = 0.75 (0.19, 0.61, 1 × 10−4) (0.20, 0.60, 2 × 10−3) (0.19, 0.43, 3 × 10−3)
a = 0.99 (0.23, 0.73, 4 × 10−4) (0.23, 0.75, 8 × 10−3) (0.06, 0.94, 2 × 10−3)

Notes. smin and smax are affine parameters along the line connecting the edges of the lensing band, while δ is a distance perpendicular to this line.

the models in Table 5 occupy a very small subregion (green box
in Fig. 12) of the full region of allowed phoval shapes (blue box).
As explained in Sect. 5.4, diameters along this line correspond to
n = 2 images of equatorial circles of different radii rs ∈ [r+,∞),
so we may equivalently say that the n = 2 rings produced
by our emission models have the same diameters (d+, d−) as
images of equatorial rings of emission concentrated near a fixed
radius rs.

Rather than pursue this association with “effective” emission
radii, we employed a more agnostic parameterization of this line
in the (d+, d−) plane and used an affine parameter s such that
s = 0 corresponds to the inner edge of the lensing band and
s = 1 to its outer edge. We also introduced δ, a perpendicular
distance from the line, thereby defining a map (d+, d−) ↔ (s, δ).
Then, the diameters produced by our models are all contained
in a bounding box extending from some smin to some smax in
the direction parallel to the line, with a perpendicular width of
|δ|max on each side on the line. For each (a, i), the resulting triplet
(smin, smax, |δ|max) characterizes the spread of the ring diameters
obtained from our models. These triplets are listed in Table 6.

We note that, aside from the extreme case with a = 0.99,
i = 45◦, we typically have smin & 0.18 and smax . 0.75. Hence,
our models produce rings that are concentrated away from the
edges of the lensing band, as already observed in Sect. 5.4. This

is consistent with an “effective” emission radius 2M . rs . 7M,
in line with the choice of emission peak locations in Table 5.

6.3. Inferring BH spin and inclination from photon ring shape

In this survey, we have solved the “forward problem” of how to
compute the diameters (d+, d−) of the n = 2 photon ring given a
choice of emission profile, and a BH spin and inclination (a, i).
Purely geometric considerations constrain the observed photon
ring to lie within the n = 2 lensing band, which corresponds to
the blue regions in Figs. 10–12. Perhaps suprisingly, we have
found that the ring shapes produced by our emission models
occupy a much smaller subregion (the green bounding box in
Fig. 12) of this full region of geometrically allowed shapes.

This observation is highly relevant to the “inverse problem”
of how to infer BH spin and inclination from a measurement of
the n = 2 ring diameters (d+, d−). Given such a data point, one
could try to determine which blue regions (n = 2 lensing bands)
it is contained within. The answer would provide the set of (a, i)
for which lensing would allow the observed photon ring shape.

Evidently, given the considerable size of these blue regions,
these purely geometric constraints on (a, i) (which are derived
from lensing alone) are relatively weak. However, if one were
to make additional assumptions about the astrophysics of the
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source (such as the class of emission models being considered),
then one would obtain narrower subregions for each (a, i) (the
smaller green boxes), and a given data point would therefore be
compatible with a smaller range of BH spins and inclinations.

Since our five models were picked to span the full range of
s observed in our survey over emission profiles in Sect. 5, we
expect smin and smax to be close to the values they would take
in more general situations, at least so long as the emission peaks
near an equatorial source ring at small radius outside the horizon.
On the other hand, our values of |δ|max are probably less reliable,
and would likely increase if we were to consider geometrically
thick models in which the emission is not well-approximated by
an equatorial source ring.

Thus, we do not claim here to have definitively computed the
bounding boxes for “realistic” choices of astrophysical profiles.
Rather, we hope to have provided useful organizing principles
for tackling the problem of spin inference: the choice between
blue and green boxes clarifies the interplay between geometric
and astrophysical assumptions, with the additional constraining
power provided by the latter made manifest in the much smaller
size of the green regions relative to the blue ones.

An additional benefit of this framework is that it enables us
to quantify the uncertainty in a given spin estimate by computing
the range of (a, i) that produce green or blue boxes containing a
given measurement (d+, d−) of the n = 2 photon ring shape. We
leave a more detailed examination of this problem to the future.

7. Discussion

7.1. Limitations of this work

We have revisited the proposal made by Gralla et al. (2020) for
a test of the Kerr hypothesis based on the photon ring shape. We
have established the robustness of their proposed test in a large
class of models, provided that the BH inclination is not too high.
This confirms that M87* holds great promise as an observational
target for this test. However, as pointed out in the introduction,
this conclusion remains subject to some caveats.

First, we have only considered simple equatorial emission
models. It is important to test whether the GLM method remains
viable in the presence of more realistic accretion flows (such
as fluctuating, geometrically thick structures), for which effects
such as absorption can become very significant (for instance, the
interferometric signature of the photon ring is suppressed as the
emission region grows thicker and more opaque). Encouraging
preliminary results in this direction will be reported elsewhere
(Vincent et al. 2022).

Second, we have not presented a complete, quantitative study
of the range of baseline lengths for which the method works. In
particular, we have not identified an “ideal” baseline window in
which the GLM test succeeds for the largest set of configurations
(astrophysical profiles, BH spins, and inclinations), and we have
largely ignored practical concerns in our theoretical study of the
baseline domain. With the current wavelength of observations
(1.3 mm), a space antenna would have to be almost 1.5 million
km away from Earth – close to L2! – to sample the visibility at
uw ∼ 1000 Gλ (Johnson et al. 2020).

Third, we have not included any noise in our simulations.
Generating mock data with both instrumental and astrophysical
noise is crucial, not only for demonstrating the feasibility of this
proposed test, but also for developing a more robust, Bayesian
approach to the multi-fit method described in Sect. 3. In their
original analysis, Gralla et al. (2020) included instrument noise
but not did not model astrophysical fluctuations, which can have

a considerable impact on the photon ring signatures present
in instantaneous snapshots. A new code tailored to include
such fluctations – AART, for “Analytic Adaptive Ray Trac-
ing” – has recently been developed (Cárdenas-Avendaño et al.
in prep.) to tackle this specific problem and will inform the
requirements for (incoherent) time-averaging.

While amplitude gain errors can be problematic for VLBI
data analyses (e.g., Event Horizon Telescope Collaboration
2019d,f), it is worth noting that they may not pose a significant
problem for a measurement of the photon ring diameter, which
would only require measuring the periodicity of oscillations in
the visibility amplitude (rather than their absolute scale).

7.2. Perspectives: Inferring black hole spin and inclination

If a future space mission targeting M87* successfully measured
the shape of its n = 2 photon ring and confirmed that it matched
the Kerr prediction (Eq. (39)), then the natural next step would
be to assume the Kerr nature of the source and try to infer the BH
spin and inclination (a, i) from the measured photon ring shape.

Our survey over emission profiles in Sect. 5 shows that this
shape displays a residual dependence on the astrophysical source
profile (even for the n = 2 ring). Though small, this dependence
nonetheless introduces significant uncertainty in estimates of the
spin based on the n = 2 ring shape alone, as evidenced by the
lower bounds in Table 4. (This uncertainty is undoubtedly much
greater for spin estimates based on the n = 1 ring shape.)

Spin estimates can be tightened with additional assumptions
about the nature of the emission. As discussed in Sects. 5.4
and 6.2, the photon ring shapes produced by our emission mod-
els inhabit only a small subset of the full range of geometric
shapes allowed by BH lensing. Thus, assuming that an observed
photon ring shape is produced by a model within this class con-
siderably narrows down the set of BH spins and inclinations
compatible with the measurement, excluding many more val-
ues of (a, i) than could be ruled out based on the Kerr geometry
alone.

It would be extremely interesting to quantify the reduction in
uncertainty enabled by different astrophysical assumptions. This
requires one to tackle the inverse problem of how to determine
the values of (a, i) that are compatible with a given photon ring
shape; we hope that our framing of this problem in Sect. 6.3 will
prove useful for future discussions of spin inference. We note
that other approaches based on the identification of the photon
ring with the critical curve either fail to quantify the significant
systematic error in their spin estimates (see Figs. 10 and 11), or
else they effectively incorporate some version of our analysis.

Finally, spin estimates can also be substantially improved by
combining the constraints derived from multiple image features.
Early work suggests that measuring both the photon ring shape
and that of the central brightness depression could significantly
constrain BH spin and inclination (Chael et al. 2021). Of course,
simultaneously resolving more than one ring (such as the n = 1
and n = 2 subrings, for instance) should also enable sharper spin
estimates, though this question has so far only been explored in
the simplest cases with circular subrings (Broderick et al. 2022).

7.3. Perspectives: Other photon ring tests

The prospect of measuring multiple subrings naturally opens the
door to even more stringent tests of the Kerr hypothesis (or more
precise techniques for determining the BH parameters).

For instance, comparing the widths of successive subrings
at different angles around the image could in principle provide
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a measurement of the angle-dependent demagnification fac-
tors e−γ(ϕ), and therefore of the Lyapunov exponents γ(r̃) that
offer a direct probe of the Kerr geometry (Johnson et al. 2020;
Gralla & Lupsasca 2020a). If the demagnification factors were
not e−γ(ϕ), then this might suggest that the spacetime is not Kerr
(Wielgus 2021). Conversely, if γ(ϕ) did match the form pre-
dicted from Kerr, then these exponents would provide a func-
tion’s worth of constraints on the BH spin and inclination (a, i),
which could allow these parameters to be inferred with great
precision.

Likewise, polarimetric imaging of successive subrings could
also be used to test the Kerr hypothesis, or conversely, to
yield an estimate of the BH parameters (a, i) (Himwich et al.
2020), while also providing a probe of the plasma and magnetic
field around the BH (Event Horizon Telescope Collaboration
2021b). Lastly, the photon ring substructure predicts a charac-
teristic pattern of autocorrelations whose detection could also
provide a window into the Lyapunov exponents γ (and other
Kerr critical exponents τ and δ), even if the rings themselves
remain unresolved (Hadar et al. 2021). A related promising idea
involves timing signatures such as quasi-periodic oscillations
(Johannsen & Psaltis 2010).

Finally, a wide variety of other techniques for testing the Kerr
hypothesis and strong-field GR via VLBI observations have been
proposed (e.g., Psaltis 2019), many of which do not rely upon
the photon ring. Similarly, some constraints on BH inclination
can be derived from other image features, such as its brightness
asymmetry (Medeiros et al. 2022).

7.4. Open questions and future directions

We have thoroughly investigated the shape of the n = 2 photon
ring and its corresponding interferometric signature in a certain
class of equatorial models. We can now confirm the prediction
that the ring should follow a circlipse shape at low-to-moderate
inclinations, but have yet to obtain a precise characterization of
its shape at high inclinations, where its image can display kinks
or discontinuities (Fig. 7) that produce characteristic jumps in
its signature in the visibility domain (Fig. 6). Understanding
these patterns is crucial for devising a test of the Kerr hypoth-
esis based on the photon ring shape that remains valid at high
inclinations.

Reversing the logic, one can assume the Kerr nature of the
source and try to infer its parameters from the photon ring shape.
We hope to further explore the question of spin inference by
solving the inverse problem described in Sect. 6.3. This approach
could most likely also be used to infer the BH mass with much
greater precision than the EHT has so far achieved without being
able to probe higher spatial frequencies.

As discussed in Sect. 7.1, it is important to determine
whether our conclusions generalize to models with geometri-
cally thick emission, with noise created by inevitable source fluc-
tuations, with different astrophysical conditions (e.g., a radially
infalling flow rather than a circularized one), and also with tilted
disks that are misaligned with the BH spin. For instance, our
observation that the measured diameters (d+, d−) of the n = 2
ring lie on a straight line connecting the inner and outer edges of
the n = 2 lensing band could well depend sensitively on any one
of these assumptions, with direct consequences for estimates of
BH spin.

Finally, the most pressing task is to revisit all these questions
in the context of the first (n = 1) subring, which is likely to be
observed first. What is the predicted shape of the n = 1 ring?
How well can the BH parameters be recovered from its shape?

From a theoretical standpoint, these questions are harder to
tackle because the n = 1 ring is likely too thick to display a uni-
versal regime (Eq. (20)); that is, its width-to-diameter ratio w/d
is likely not small enough for the separation of scales (Eq. (20))
to arise. If so, then there is no baseline regime in which its inter-
ferometric signature follows the universal form (Eq. (22)), and
it may well be necessary to compute the subleading correction
in w/d to this visibility amplitude. We take a first stab at these
issues in Appendix C.

8. Summary

Images of a BH are typically dominated by a bright, narrow ring
encircling a central brightness depression. This “photon ring”
decomposes into a sequence of self-similar subrings indexed
by half-orbit number n, with each subring consisting of a full,
lensed image of the main emission surrounding the BH (Sect. 2).
Here, we analyzed a method proposed by Gralla et al. (2020) to
test the Kerr hypothesis via an interferometric measurement of
the n = 2 ring shape. To check the viability of this shape test,
we applied it to a wide range of simulated images of a Kerr
BH surrounded by a thin, equatorial disk (Sect. 3), varying both
the emission profile (Sect. 5) and the BH spin and inclination
(Sect. 6). These two parameter surveys confirm the robustness of
the test at low-to-moderate inclinations i . 45◦, indicating that
M87* (which likely lies at an inclination i ≈ 17◦ from Earth) is
a promising target for such a test via space-VLBI observation.

At higher inclinations i & 45◦, our study uncovers the
emergence of qualitatively new phenomena that complicate ring
shape measurements (Sect. 4). These effects arise because the
ring width develops significant angular variation, which impacts
the range of baselines dominated by the ring’s interferometric
signature. In particular, we find that observations made at fixed
baseline length in the visibility domain cannot measure the shape
of a single ring at every angle: such observations are sensitive to
a fixed ring width and must therefore either jump between the
n = 1 and n = 2 rings (at moderately high inclinations; Fig. 6), or
else pick up the signature of a “hybrid n = 1&2 ring” of roughly
uniform width (at very high inclinations; Fig. 7). A more refined,
sophisticated shape test has yet to be devised for these situations.

Our investigation also reveals that for a given choice of BH
spin and inclination, the observable photon ring shape depends
noticeably on the astrophysical properties of the emitting source.
In particular, the most directly accessible (n = 1 and n = 2)
rings can differ significantly from the theoretical critical curve,
and in many models they are in fact closer to the critical curves
of neighboring BH spins and inclinations (Figs. 10 and 11). As
such (and as discussed throughout Sects. 5 and 6), the lensing
bands introduced in Sect. 2.5 are more relevant than the critical
curve to the problem of BH spin inference from the photon ring
shape. We have outlined a promising approach for tackling this
problem in Sect. 6.3, with some encouraging preliminary results
(Fig. 12).
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Appendix A: Computing Kerr lensing bands

We consider a null geodesic connecting a source at (ts, rs, θs, ϕs)
to an observer at (to, ro, θo, ϕo). Its behavior can be characterized
by its conserved quantities (λ, η) [Eq. (2) above] via the radial
and angular potentials (e.g., Gralla & Lupsasca 2020b)

R(r) =
(
r2 + a2

∗ − a∗λ
)2
− ∆(r)

[
η + (λ − a∗)2

]
, (A.1a)

Θ(θ) = η + a2
∗ cos2 θ − λ2 cot2 θ, (A.1b)

whose zeros define the radial and angular turning points of the
ray. Integrating the geodesic equation along the trajectory gives

Ir ≡

? ro

rs

dr
±r
√
R(r)

=

? θo

θs

dθ
±θ
√

Θ(θ)
≡ Gθ, (A.2)

where the signs ±r and ±θ switch at radial and angular turning
points, respectively. These expressions keep track of the total
Mino time τ = Ir = Gθ elapsed along the trajectory.

We consider the case of a distant observer (ro = D � M) at
an inclination θo = i from the BH spin axis who shoots photons
backwards into the geometry from a polar position (ρ, ϕρ) in the
sky. Such a photon has conserved quantities

λ = −Dρ cosϕρ sin i, η = (Dρ)2 − λ2 − a2
∗ cos2 i, (A.3)

in terms of which the four roots r j of the quartic radial poten-
tial R(r) are given by [Eqs. (79)–(95) of Gralla & Lupsasca
(2020b)]:

r j = −z − ε j

√
−
A

2
− z2 + ε̃ j

B

4z
,

ε j =

{
1 if j ∈ {1, 3} ,
−1 if j ∈ {2, 4} , ε̃ j =

{
1 if j ∈ {1, 2} ,
−1 if j ∈ {3, 4} ,

A = a2
∗ − η − λ

2, B = 2M
[
η + (λ − a∗)2

]
, C = −a2

∗η,

P = −
A2

12
− C, Q = −

A

3

(A6
)2

− C

 − B2

8
,

ω± =

−Q2 ±
√
P3

27
+
Q2

4

1/3

, z =

√
ω+ + ω− −A/3

2
.

Letting ri j = ri − r j, we define A =
√

r32r42, B =
√

r31r41, and
introduce the antiderivatives of Ir (Gralla & Lupsasca 2020a,b):

I+
r (r) =

2
√

r31r42
F

(
arcsin

√
r − r4

r − r3

r31

r41

∣∣∣∣∣∣ r32r41

r31r42

)
, (A.4)

I−r (r) =
1
√

AB
F

arccos

1 − r−r2
r−r1

B
A

1 + r−r2
r−r1

B
A


∣∣∣∣∣∣∣ (A + B)2 − r2

21

4AB

 . (A.5)

– If ρ > ρ̃(ϕρ), so that the photon is shot from a position outside
the critical curve, then all its roots are real and ordered as
r4 > r3 > r+ > r− > r2 > r1. As such, it must encounter a
radial turning point at r = r4 and eventually be deflected back
to infinity. The Mino time τ(r) elapsed along its trajectory is

IC
+

r (r) = I+
r (ro) ∓ I+

r (r), (A.6)

with upper/lower sign before/after reaching the turning point.
The total Mino time elapsed along the full light ray is

Itotal
r =

4
√

r31r42
F

(
arcsin

√
r31

r41

∣∣∣∣∣∣ r32r41

r31r42

)
. (A.7)

– If ρ < ρ̃(ϕρ), so that the photon is shot from a position inside
the critical curve, then it cannot encounter a radial turning
point and must therefore asymptotically reach the horizon at
r = r+. The Mino time τ(r) elapsed along its trajectory is

IC
−

r (r) = I±r (ro) − I±r (r), (A.8)

with the upper sign when all roots are real (in which case
r+ > r− > r4 > r3 > r2 > r1) and the lower sign when r3 = r̄4
are complex conjugate roots with r+ > r− > r2 > r1.9 The
total Mino time elapsed along the full light ray is

Itotal
r = IC

−

r (r+). (A.9)

Regardless of where the photon is shot back from, it crosses
the equatorial plane a maximum number N + 1 of times given by

N =

 Itotal
r

√
−u−a2

∗ + sign(sinϕρ)Fo

2K

 − H(sinϕρ), (A.10)

u± = ∆θ ±

√
∆2
θ +

η

a2
∗

, ∆θ =
1
2

(
1 −

η + λ2

a2
∗

)
,

K = K
(

u+

u−

)
, Fo = F

(
arcsin

(
cos(i)
√

u+

)∣∣∣∣∣∣ u+

u−

)
,

where H, F, and K respectively denote the Heaviside function,
the incomplete elliptic integral of the first kind F(u|k), and its
completion K(k) ≡ F(π/2|k). u± are zeros u = cos2 θ of the
angular potential Θ(θ); when evaluated on critical geodesics with
(λ, η) = (λ̃, η̃) [Eq. (6)], they reproduce ũ± in Eq. (5).

The photon intersects the equatorial plane for the (n + 1)th

time (for n ≤ N) when the Mino time τ(θ) elapsed along its
trajectory is [Eq. (81) of Gralla & Lupsasca (2020a)]

Gθ(n) =
2mK − sign(sinϕρ)Fo√

−u−a2
∗

, (A.11)

where m = n + H(sinϕρ) is the number of angular turning points
encountered along the trajectory. We note that N is by definition
the non-negative integer such that Gθ(N) ≤ Itotal

r ≤ Gθ(N + 1).
The nth image of an equatorial source ring of constant radius

rs is the set of points (ρ, ϕρ) in the observer sky that satisfy

IC
±

r (rs) = Gθ(n) (A.12)

with Gθ(n) given in Eq. (A.11) and IC
±

r (rs) given in Eqs. (A.6)
and (A.8) for points outside and inside the critical curve. These
points always trace a closed, continuous curve Cn(rs).

The contours C0(rs) and C1(rs) corresponding to a selection
of radii rs are shown for various BH spins and inclinations in
Fig. 6 of Gralla & Lupsasca (2020a). While all these curves are
continuous, some of them may cross the critical curve, in which
case they are stitched together from segments solving Eq. (A.12)
with opposite signs. Aside from this minor inconvenience, it is
straightforward to numerically solve Eq. (A.12) for any Cn(rs).

In particular, as explained in Sec. 2.5, the nth lensing band is
the annular region in the sky bounded within the contours Cn(r+)
and Cn(∞), which respectively trace its inner and outer edges.
These contours are relatively simple to compute because they
can never cross the critical curve: trajectories that are deflected
back to infinity must obey Eq. (A.6), so the outer edge Cn(∞)
is obtained by solving Eq. (A.12) with a + sign only; likewise,

9 There also exist vortical (η < 0) rays with both r1 = r̄2 and r3 = r̄4,
but we may ignore them here as they cannot reach the equatorial plane.
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trajectories that reach the BH must obey Eq. (A.8), so the inner
edge Cn(r+) is obtained by solving Eq. (A.12) with a − sign only.

We note that when crossing the inner and outer edges Cn(r+)
and Cn(∞) of the nth lensing band, the maximal number N + 1
of equatorial crossings (Eq. (A.10)) must by definition change by
1. This provides a means of checking that Cn(r+) and Cn(∞) have
been correctly computed (or an alternative way to compute them).

Finally, we note that Eq. (A.2) may also be directly solved
for rs(Ir) using a single “unified inversion formula” given in
Gralla & Lupsasca (2020b). Then r(n)

eq (ρ, ϕρ) ≡ rs(Gθ(n)) are
transfer functions that give the radii at which light rays shot back
from position (ρ, ϕρ) cross the equatorial plane for the (n + 1)th

time. Contours of these functions are precisely the Cn(rs) defined
above. Hence, lensing bands may also be computed using these
transfer functions, as described in App. A of Chael et al. (2021).

Appendix B: Computing the range of allowed
phovals within a lensing band

Here, we provide a detailed solution to the following problem.
Given a lensing band B ( R2, how do we compute the subregion
A of the (d+, d−) plane spanned by the phovals that fit within B?

We glossed over this question after introducing it in Sec. 5.4,
but its answer is crucial for obtaining the blue regions in Figs. 10,
11, and 12. At first glance, this problem seems straightfor-
ward: we could scan the 6D space of phovals (Eq. (53)) and
ask, for each R = {R0,R1,R2, X, χ, ϕ0} in this parameter space
P6, whether the associated phoval fits inside the lensing band
B. The phovals that fit inside the lensing band would form a
6D region A6 ( P6 whose 2D projection Π : P6 → R2

via Eq. (52),

Π : R 7→ (d+, d−) = 2(R0 + R1,R0 + R2), (B.1)

would give precisely the sought-after region in the (d+, d−) plane:

A = Π(A6). (B.2)

In practice, however, the computational cost of this “brute force”
approach is too high to achieve sufficient precision in reasonable
time: the high-dimensionality of the parameter space P6 makes
any detailed scan too slow. Hence, another approach is needed.

The tractable method we came up with is quite general and
consists of two parts. First, we recast the question of whether a
given point (d+, d−) belongs in A into a minimization problem,
which is easier to solve. Second, we devised an efficient way
to scan across regions of the (d+, d−) plane while solving this
minimization problem. We now describe each part separately.

Part 1: Minimization method

Let B ( R2 denote an annular subregion of the plane with inner
edge I and outer edge O. We can define a separation function
characterizing the distance from a closed curve C to B as

δB(C) = max
z∈C

d(z,B), (B.3)

where d is the usual distance between a point and a set, namely:

d(z,B) =


mina∈I |z − a| if z lies inside of I,

mina∈O |z − a| if z lies outside of O,

0 if z ∈ B.
(B.4)

For us, C will be a phoval shape [Eq. (53)] and B a Kerr lensing
band with inner edge I = Cn(r+) and outer edge O = Cn(∞), as
in App. A.

With this definition, δB(C) = 0 if and only if C lies within the
lensing band B. Thus, to check if a point (d+, d−) corresponds to
a phoval C in the lensing band B, we can minimize the function

∆ : (d+, d−, r) 7→ δB

(
C

(
R0,

d+

2
− R0,

d−
2
− R0, X, χ, ϕ0

))
,

where C(R) is the phoval with the projected position given by
Eq. (53), over the 4D space P4 of parameters r = (R0, X, χ, ϕ0).
In other words, we compute m : R2 → R defined as

m : (d+, d−) 7→ min
r∈P4

∆(d+, d−, r). (B.5)

If m(d+, d−) vanishes (or stays below a tolerance threshold that
accounts for numerical artifacts), then there exists a phoval with
diameters (d+, d−) that lies within the lensing band, and thus,

A =
{
(d+, d−) ∈ R2 : m(d+, d−) = 0

}
. (B.6)

We have thus recast the problem of determining whether a given
(d+, d−) belongs to A to a problem of minimization over P4,
which is only a 4D space. This completes part 1.

Part 2: Random walk

To computeA, it now suffices to define a grid of values (d+, d−)
(typically, between the values found for I and O) and compute
m(d+, d−) for each point on the grid. Since the computational
cost of the minimization method in part 1 is still quite high, we
must still devise an efficient method to scan across a large grid,
ideally without having to evaluate m for each point. This can be
done using a random walk with a reflecting barrier:
1. We start from the parameters R ∈ A6 ⊂ P6 of some phoval

that we know to lie in the lensing band: for instance, some
intermediate phoval between those approximating I and O.

2. We randomly pick one of the radii {R0,R1,R2} and add to this
parameter a predefined increment ±b, with the sign picked
at random (we recall our convention that R1 ≥ R2; if this
changes, then we must interchange R1 ↔ R2 to maintain it).

3. After the increment, we test if the resulting phoval (with the
same values of X, χ, and ϕ0) still lies within the lensing band.
If that is the case, then we store (d+, d−) = 2(R0 +R1,R0 +R2)
as an accepted value in the region A and then proceed with
the random walk by repeating step 2. If not, then we compute
m(d+, d−), with two possible outcomes:

– m(d+, d−) = 0 (or the minimum is under threshold), in which
case we store (d+, d−) = 2(R0 + R1,R0 + R2) as an accepted
value in the region A and return to step 2 to continue the
random walk; otherwise,

– m(d+, d−) > 0 (or the minimum is above threshold), in which
case we store (d+, d−) = 2(R0 + R1,R0 + R2) as a rejected
value, then restore the values of {R0,R1,R2} to their previous
state and return to step 2 to take another step of the random
walk in a new direction.
Steps 2 and 3 can be repeated any number of times, resulting

in a set of rejected values {(d+, d−)}rejected and a set of accepted
values

A = {(d+, d−)}accepted . (B.7)

One advantage is that the minimization routine m is only
evaluated in the rejected region of the (d+, d−) plane, or inside
the allowed region but very near its boundary. This boundary
acts as a reflecting barrier: each time it is crossed, the random
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walk returns to a previous position in A. Thus, it cannot escape
far in the rejected region, where the computational cost is higher.

The boundaries of the region A (which corresponds to the
blue boxes in Figs. 10, 11, and 12) can be computed to arbitrary
precision by tuning the value of the increment b that controls
the step size in the random walk, and also by running several
instances of the random walk starting from different positions.

Appendix C: Shape of the n = 1 photon ring

The n = 1 ring of M87* will almost certainly be the first photon
subring to be measured (since its signal dominates the visibility
on the shortest baselines to space), and it is therefore interest-
ing to predict its geometric shape and interferometric signature.
Does the n = 1 ring also follow the circlipse shape (Eq. (39))? If
so, to what precision? Can its projected diameter d(1)

ϕ be recov-
ered from the periodicity of the visibility amplitude |V(u, ϕ)|?

Answering these questions in detail would be the subject of
a whole other paper. Here, we merely record some observations
that arose from our study and should inform future analyses:
1. Only narrow rings with a very small width-to-diameter ratio

w/d � 1 admit a universal regime (Eq. (20)). For thicker
rings, there is not a large enough separation between the
scales 1/d and 1/w for universality to set in. The n = 1
ring tends to be rather thick in most models (though not all,
since there can be substantial variation in its width with the
choice of astrophysical profile, as discussed below Eq. (46)
and in Sec. 5), with a typical width of w1 ≈ 1M and diame-
ter d ≈ 10M. Hence w1/d ≈ 10%, implying that subleading
corrections to the universal visamp profile (Eq. (22)) may
be substantial. Indeed, in most of our n = 1 visamps, we
observed a much faster decay than the predicted u−1/2 uni-
versal power-law fall-off.

2. Geometrically, this also means that the periodicity d(1)
ϕ of the

n = 1 visamp no longer admits a simple interpretation as
the projected diameter of the n = 1 ring in the image, as its
diameter is not sharply defined to better than w1/d ≈ 10%.

3. Even in the absence of a universal regime 1/d � u � 1/w
with simple interferometric signature (Eq. (22)), the n = 1
ring can still dominate the visamp on some baselines b1 �

u � b2 where we may hope to measure the periodicity of
|V(u, ϕ)|, and thus d(1)

ϕ , but only so long as the visamp dis-
plays enough periods within this baseline domain of width
∆u = b2 − b1.

While these issues may complicate a measurement of the n = 1
ring and its interpretation, none of them seems insurmountable
(see Fig. C.1), and we briefly address them in reverse order.

Regarding point 3: a baseline region of width ∆u contains a
number of visamp hops N = ∆u/T , where T is the period of a
hop, which for a ring is T = 1/dϕ. Hence, the number of visamp
hops in the n = 1-dominated regime b1 � u � b2 is

N1(ϕ) ≈
[
b2(ϕ) − b1(ϕ)

]
dϕ. (C.1)

Likewise, for higher-order rings n & 2, using Eq. (45), we have

Nn(ϕ) ≈
[
bn+1(ϕ) − bn(ϕ)

]
dϕ ≈ eγ(ϕ)Nn−1(ϕ), (C.2)

so that the number of visamp hops within the regime dominated
by the nth ring grows exponentially with n at a rate controlled by
the image demagnification factor eγ. Thus, the numbers of hops
Nn(ϕ) for higher-order rings are predicted by Kerr lensing once
the number of hops N1(ϕ) for the first ring is known, but this
latter number depends on astrophysical details. For instance, for
the model in Fig. C.1, we have ∆u = b2−b1 ≈ 80 Gλ at ϕ = 135◦.
Since the photon ring of M87* has an expected diameter of

dϕ ≈ 40 µas ≈
1

5 Gλ
, (C.3)

where we manipulated units as in Eq. (37), it follows that

N1(135◦) ≈ 16, (C.4)

and indeed, we count 16 visamp nulls within the gray region in
Fig. C.1. This is in principle a sufficient number of hops to obtain
a good estimate of the periodicity, and hence of d(1)

ϕ , which in the
example of Fig. C.1 follows a circlipse shape, albeit with larger
error bars than for the n = 2 ring.

Regarding point 2: in the limit w/d → 0, a ring’s projected
diameter dϕ becomes sharply defined in its image. Otherwise,
it is only defined up to ambiguities of order w/d. If the n = 1
ring displays a visamp periodicity 1/d(1)

ϕ , which feature of the
ring image does that correspond to? A natural guess would be
the distance dpeak

ϕ between peaks of the ring’s intensity profile,
but in simple models (such as the Gaussian ring below) one can
prove that d(1)

ϕ < dpeak
ϕ , with the difference vanishing as w/d → 0.

This effect can be attributed to the everywhere-positive curvature
of a ring, which implies that its Radon transform has its center of
mass shifted inward relative to its peaks, with the corresponding
1D Fourier transform |V(u, ϕ)| displaying a slightly smaller d(1)

ϕ .
Regarding point 1: it is helpful to consider an axisymmetric

ring with purely radial intensity profile I(ρ, ϕ) = I(ρ), such as

I(ρ) =
1

2πw2 e−
d2

8w2 I0

(
dρ
2w2

)
e−

ρ2

2w2 , (C.5)

with I0 denoting the 0th modified Bessel function of the first kind.
This is known as the Gaussian ring because I0(x)

x→∞
≈ (2πx)−

1
2 ex,

so that as d → ∞ the radial profile approaches a Gaussian of
width w centered as ρ = d/2, with normalization chosen such
that the total flux is unity, V(0) = 1. The visibility is exactly

V(u, ϕ) = V(u) = J0(πdu)e−2π2w2u2
. (C.6)

The key point is the following. If the ring is very thin, then
there is a wide range of baselines u � 1/w in which the
exponential is negligible and the visibility is simply V(u) ≈
J0(πdu), which matches the universal prediction (Eq. (22))
as soon as du & 1 � wu. If the ring is thick, then we
may never ignore that exponential term, yet we still expect
to see the universal visamp (Eq. (22)), only multiplied by
that exponential; in general, we expect |V(u, ϕ)| to take the
form of Eq. (22) times e−c(ϕ)up

(with p = 2 for a Gaussian
ring).

A11, page 27 of 28



A&A 668, A11 (2022)

0 200 400 600 800 1000

Baseline (Gλ)

10−6

10−5

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

vi
sa

m
p

p
ro

fil
e

al
on

g
d

ir
ec

ti
on

ϕ
=

13
5°

Approximate dominance regime

n = 0

n = 1

n = 2

0 25 50 75 100 125 150 175 200

Baseline (Gλ)

10−4

10−3

10−2

10−1

100

N
or

m
al

iz
ed

vi
sa

m
p

p
ro

fil
e

al
on

g
d

ir
ec

ti
on

ϕ
=

13
5°

33 34 35 36 37 38 39

Inferred diameter dϕ (µas)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

G
oo

d
n

es
s

of
fit
g

(d
ϕ
)

fo
r

an
gl

e
ϕ

=
13

5°

0 25 50 75 100 125 150 175

Baseline angle ϕ (°)

9.9

10.0

10.1

10.2

10.3

10.4

10.5

D
ia

m
et

er
in

fe
rr

ed
fr

om
p

er
io

d
ic

it
y

(M
)

d+ = 10.242M ; d− = 10.143M . Normalized RMSD = 2.833 ×10−4

30 40 50 60 70

10−2

3× 10−3

4× 10−3

6× 10−3

Upper envelope

Lower envelope

Best fit visamp

Fig. C.1. Kerr hypothesis test using the GLM method applied to the n = 1 subring. An image was simulated for a BH of spin a = 0.94 and
inclination i = 17◦, with equatorial emission profile parameters µ = r−, γ = − 3

2 , σ = 0.5. (Upper left) Amplitude |V(u, ϕ)| of the visibility
at ϕ = 135◦, with baselines colored according to which subring dominates the signal (Sec. 2.7). (Upper Right) Visibility amplitude fit (with
envelope) in the n = 1-dominated baseline window uw ∈ [30, 70] Gλ (Sec. 3). (Lower left) Goodness of fit (Eq. (36)) as a function of fitting
diameter d(1)

ϕ . The dot corresponds to the diameter with maximal goodness of fit gmax = e−RMSDu,min . The error bar includes nearby diameters such
that RMSDu(dϕ) ≤ 2 RMSDu,min, or equivalently g(dϕ) ≥ g2

max. (Lower Right) Fitting d(1)
ϕ to a circlipse using the multi-fit method (Sec. 3.2.4), with

the same prescription for the error bars. Angles ϕ = 125◦ and 130◦ were removed because the visamp fit in the chosen baseline window was too
poor.
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