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Abstract 11 

Rheumatoid Arthritis (RA) is an autoimmune disease of unknown aetiology involving complex 12 

interactions between environmental and genetic factors. Its pathogenesis is suspected to arise from 13 

intricate interplays between signalling, gene regulation and metabolism, leading to synovial 14 

inflammation, bone erosion and cartilage destruction in the patients' joints. In addition, the resident 15 

synoviocytes of macrophage and fibroblast types can interact with innate and adaptive immune cells 16 

and contribute to the disease's debilitating symptoms. Therefore, a detailed, mechanistic mapping of 17 

the molecular pathways and cellular crosstalks is essential to understand the complex biological 18 

processes and different disease manifestations. In this regard, we present the RA-Atlas, an SBGN-19 

standardized, interactive, manually curated representation of existing knowledge related to the RA's 20 

onset and progression. This state-of-the-art RA-Atlas includes an updated version of the global RA-21 

map covering relevant metabolic pathways and cell-specific molecular interaction maps for CD4+ 22 

Th1 cells, fibroblasts, and M1 and M2 macrophages. The molecular interaction maps were built 23 

using information extracted from published literature and pathway databases and enriched using omic 24 

data. The RA-Atlas is freely accessible on the webserver MINERVA (https://ramap.uni.lu/minerva/), 25 

allowing easy navigation using semantic zoom, cell-specific or experimental data overlay, gene set 26 

enrichment analysis, pathway export or drug query. 27 

1. Introduction 28 

RA is an autoimmune, systemic disease affecting approximately 1% of the world population. It is the 29 

most common type of autoimmune arthritis and causes pain, swelling, and stiffness in the joints 30 

(McInnes and Schett, 2011; Smolen, Aletaha and McInnes, 2016). RA is considered a complex 31 

disease and is suspected to arise from several factors (Glocker et al., 2006), including genetic 32 

(Korczowska, 2014), environmental (Deane et al., 2017; Sigaux et al., 2019), epigenetic (Frank-33 

Bertoncelj, Klein and Gay, 2017), but also infectious (Balandraud, Roudier and Roudier, 2004) or 34 

hormonal factors (Talsania and Scofield, 2017). RA's pathogenesis is governed by complex 35 

interactions between components at different scales of the immune system, affecting signalling, 36 
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metabolic and regulatory networks. Summarizing this scattered and fragmented knowledge in a 37 

formal and standardized representation can significantly facilitate understanding the underlying 38 

disease mechanisms. 39 

In this direction, some efforts have already been made to assemble the available knowledge in 40 

molecular interaction maps. In 2010, a comprehensive RA-specific map (Wu et al., 2010) was 41 

published based on high throughput experiments (mRNA, miRNA), literature, publicly available 42 

datasets and the pathway database KEGG (Ogata et al., 1999) to establish the connections between 43 

different components of the map. A decade later, in 2020, a second effort to formalize RA knowledge 44 

was published using Wu et al.’s map as a basis, the RA-map (Singh et al., 2020). For this map, the 45 

researchers used the Systems Biology Graphical Notation (SBGN) standard and, more precisely, the 46 

Process Description (PD) language (Le Novère, 2015) to represent the molecular pathways 47 

implicated in the disease. The map was built as a global map using information from human-specific 48 

studies related to RA, focusing on small-scale experiments in various cell and tissue types (e.g., 49 

fibroblasts, macrophages, synovial tissue, and peripheral blood mononuclear cells (PBMC). The RA-50 

map was manually curated for each component and reaction, with defined cellular pathways and 51 

molecular signatures under expert validation. In addition to manual curation of the scientific 52 

literature, other sources such as the Ingenuity Pathway Analysis (IPA) (Krämer et al., 2014), 53 

DISNOR (Lo Surdo et al., 2018), or KEGG databases were used to obtain RA related information 54 

regarding molecular pathways and phenotypic signatures.  55 

While the previously published RA-map offers a formalized representation of the major pathways 56 

implicated in the disease, it does not cover metabolic pathways. It has been shown experimentally 57 

that unbalanced metabolic pathways accumulate metabolic intermediates, driving immune response 58 

to aggravate chronic inflammation (Pucino et al., 2020). Targeting specific metabolic pathways has 59 

been seen to reduce inflammation in both in-vitro and in-vivo studies of arthritis (Fearon et al., 60 

2019). Recent studies have also highlighted metabolic reprogramming as a possible mechanism 61 

involved in disease pathogenesis (Aghakhani, Zerrouk and Niarakis, 2020). Considering these 62 

advances, adding metabolic information to the RA-map becomes necessary. In this perspective, we 63 

identified four metabolic pathways to include in the RA-map for their involvement in the disease 64 

(Fearon et al., 2019), namely glycolysis, pentose phosphate pathway, citric acid cycle and oxidative 65 

phosphorylation.  66 

Moreover, the RA-map, a global map constructed as a generic blueprint of a cell, contains 67 

information from multiple cellular types. In RA, immune cells such as T cells and B cells invade the 68 

synovial tissue and produce high amounts of cytokines such as tumour necrosis factor α (TNFα), 69 

interferon γ (IFNγ), interleukin (IL)-1β, IL-6, IL-17, and cause inflammation (Guo et al., 2018). 70 

Immune cells also interact with tissue-resident cells (e.g., fibroblasts and macrophages), leading to 71 

osteoclasts' proliferation, bone erosion, and cartilage damage (Guo et al., 2018). In addition, dendritic 72 

cells produce vascular endothelial growth factors and promote extensive angiogenesis in RA (Bosisio 73 

et al., 2018). The representation of cell-specific molecular interactions helps understand the complex 74 

interplay between various cells and factors in the inflamed joint. In this direction, we selected three 75 

cell types of interest: fibroblast, macrophage (including the pro-inflammatory M1 and the anti-76 

inflammatory M2), and CD4+ T helper cell 1 (Th1). These cell types are abundant in RA patients' 77 

joints (Huber et al., 2006; Li et al., 2017), and produce high amounts of cytokines (Bartok and 78 

Firestein, 2010; Schulze-Koops and Kalden, 2001), resist apoptosis and proliferate at high rates 79 

(Krämer et al., 2014; Yang, Chang and Wei, 2020). The cell type selection was also based on 80 

literature availability, including already existing cell-specific maps, specific signalling pathways, and 81 

gene expression datasets. 82 
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This paper introduces an attempt to create a multicellular atlas of the rheumatic joint to recapitulate 83 

existing knowledge related to the disease's onset, progression, and pathogenesis. The RA-Atlas 84 

includes an updated version of the RA-map: the RA-map V2 (with metabolic pathways' addition), a 85 

fibroblast-specific map, two maps for the M1 and M2 macrophages, and a CD4+ Th1 map. Our 86 

ambition is to expand the RA-Atlas in the future by including other relevant cell types like B cells, 87 

CD4+ regulatory T cells, dendritic cells, chondrocytes, osteoblasts, and osteoclasts. 88 

The maps can be used to provide high-quality curated information for disease-related pathways, a 89 

template for omic data analysis, and a starting point for dynamic computational models. The 90 

following sections outline our efforts to integrate low and high throughput experiments, combining 91 

prior knowledge, manual curation of scientific literature, omic data analysis, and systems biology 92 

standards to create state-of-the-art mechanistic representations of disease-related pathways. 93 

2. Methodology and Data 94 

2.1.    A Common Strategy for Global and Cell-Specific Maps 95 

2.1.1. Map Construction 96 

The original RA-map paper thoroughly describes the general methodology for constructing the 97 

different RA-Atlas maps (Singh et al., 2020). Briefly, we used the CellDesigner software (Funahashi 98 

et al., 2003) to construct the molecular interaction maps in the PD format, one of the three standard 99 

languages of SBGN (Le Novère, 2015). The various components of the maps (i.e., phenotype, 100 

protein, gene, RNA, simple molecule, ion, complex) were distinguished in the form of specific 101 

glyphs and notations according to the said standards. Cellular compartments featured in each map 102 

differ according to their specificities. They are designed to reflect the molecular architecture of each 103 

map (e.g., extracellular space, plasma membrane, cytoplasm, nucleus, mitochondrion, endoplasmic 104 

reticulum, phenotypes, secreted compartment, and transmembrane domain). In addition, HUGO Gene 105 

Nomenclature Committee identifiers (HGNC) (Tweedie et al., 2021) were used for signalling and 106 

gene regulatory pathways components. The CellDesigner maps are available in Systems Biology 107 

Markup Language (SBML) format (Hucka et al., 2003). We provide a schematic representation of 108 

the major steps in Figure 2. 109 

2.1.2. Curation Criteria 110 

All the RA-Atlas maps underwent the first step of manual curation based on a broad study of 111 

literature and pathway databases to search for components and interactions involved in RA's 112 

pathogenesis. We focused on small-scale experimental studies and added animal-based studies where 113 

the human-related information was not adequate to validate the role of components or interactions. 114 

However, the information based on animal studies remains limited and completely traceable (four 115 

molecules are involved in the Th1 map, four in macrophage maps and two in the fibroblast map). 116 

Including a component or a reaction in a map followed precise curation criteria: first, we included all 117 

components experimentally proven to be expressed in RA's pathogenesis (and in a cell-specific 118 

manner for the cell-specific maps). Then, we included all reactions experimentally proven to occur in 119 

RA's pathogenesis (and cell-specifically for the cell-specific maps). General pathway interactions 120 

were then added to complete specific pathways where disease-specific information was unavailable. 121 

2.1.3. Annotations 122 
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Annotations were added to provide references for all species, reactions, and compartments present in 123 

the maps using MIRIAM (Minimal Information Requested In the Annotation of Models) (Novère et 124 

al., 2005), a standard for annotating and curating computational models and maps. MIRIAM 125 

annotations are added through the dedicated section of CellDesigner with the relation "bqbiol: is 126 

describedby", which is used to link a component or a reaction to the literature or data that describes it 127 

(e.g., PubMed references (PMIDs), DOI, GEO, KEGG identifier). Annotated maps provide 128 

information about the various sources of information and help assess the maps' specificity. 129 

2.1.4. Visualization and Accessibility  130 

All RA-Atlas maps presented in this work are available as online interactive maps on the standalone 131 

web server MINERVA (Molecular Interaction NEtwoRks VisuAlization) (Gawron et al., 2016). 132 

MINERVA platform allows for visual exploration, analysis and management of molecular networks 133 

encoded in systems biology formats, including CellDesigner, SBML and SBGN. MINERVA also 134 

provides automated content annotation and verification and overlaying experimental data. Our maps 135 

integrate data from various sources. We provide cell-specific overlays (cf. the overlay section) 136 

extracted from the literature and publicly available datasets to visualize cellular signatures on the 137 

different RA-Atlas maps. 138 

2.2.    RA-map V2 139 

2.2.1. Evaluation of the Prior RA-map 140 

The components and reactions present in the previous version of the RA-map were assessed, and 141 

bibliographical references were added wherever required to increase the overall confidence level of 142 

the map and limit false positives. 143 

2.2.2 Metabolic Pathways Addition 144 

Metabolic pathways of interest (i.e., glycolysis, pentose phosphate pathway, citric acid cycle and 145 

oxidative phosphorylation) were extracted from the PANTHER pathway database (Mi and Thomas, 146 

2009), adapted to SBGN PD standards when required and added to the original RA-map. Metabolites 147 

and metabolic enzymes were named following BiGG IDs (King et al., 2016). In addition, 148 

considerable bibliographical work was conducted to find evidence linking the newly added metabolic 149 

pathways to the already present signalling and gene regulatory pathways. 150 

2.2.3. Annotation Score 151 

Thorough annotations throughout the manual curation process allowed us to calculate an annotation 152 

score for each compound present in the RA-map V2 based on the number of bibliographic references 153 

describing it. 154 

2.3.    Cell-specific Maps 155 

To build cell-specific maps for M1 and M2 macrophages, fibroblasts, and Th1, we screened literature 156 

(small scale experiments, GWAS) for signalling pathways, genes or transcription factors associated 157 

with RA. If available, we also integrated pre-existing maps. We used cell/disease-specific markers or 158 

gene expression datasets to retrieve signalling pathways involved in RA pathogenesis. To define gene 159 

signatures and primary RA cellular outcomes, we used databases such as the MSig database 160 

(Liberzon et al., 2015), KEGG and biocuration. The retrieved gene signatures were used to connect 161 
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secreted molecules to the cellular phenotypes included in the map. The cellular phenotypes include 162 

angiogenesis, apoptosis, bone erosion, cell chemotaxis, recruitment and infiltration, cell growth, 163 

survival and proliferation, hypoxia, inflammation, matrix degradation and osteoclastogenesis. 164 

Two proprietary software were used to enrich the maps: IPA and MetaCore (Clarivate) version 22.1 165 

build 70800, both displaying vast map databases. In MetaCore, we mapped the list of DEG to the 166 

internal map database using the "Pathway maps" option through the "One-click analysis" tab. The 167 

number of overlapping DEGs is displayed next to each identified map. The same analysis was done 168 

using IPA's "canonical pathways" analysis. Highlighted DEG and their associated pathways were 169 

identified, added to the corresponding RA-Atlas map and further annotated with PMIDs or GEO 170 

accession numbers. 171 

2.3.1. Datasets 172 

Regarding the datasets, for the RA macrophage map, we used GSE97779, a publically available 173 

microarray dataset from the GEO database (Edgar, 2002). The dataset contains nine RA synovial 174 

macrophages sample from nine patients and five peripheral blood monocyte-derived macrophages 175 

samples from five healthy donors. Gene expression was quantile normalized using the 176 

preprocessCore package (Bostald, 2021). GSE164498, a RNA-seq single-cell dataset from the GEO 177 

database, was used to provide M1 and M2 macrophage signatures. It contains 1766 M1 macrophage 178 

cells and 2063 M2 macrophage cells. M1 macrophages were polarized using LPS, and IFN-Gamma 179 

and M2 macrophage cells were polarized using IL-4 and IL-13. We used GSE109449, a RNA-seq 180 

single cell dataset available in the GEO database for the RA fibroblast map. It contains 384 freshly 181 

isolated fibroblasts in two RA and two osteoarthritis patients. For the RA Th1 map, we used 182 

SDY998, a single-cell RNA-seq dataset from the Immport database (Bhattacharya et al., 2018) 183 

containing 19 samples from RA patients and two synovial samples from osteoarthritis patients with 184 

three cell types: 1142 B cells, 1844 fibroblasts, 750 monocytes, and 1529 T cells. The gene 185 

expression was normalized using log2 (CPM). For the GSE analysis, we used four datasets: SDY998, 186 

GSE32901, GSE107011 and GSE135390. The first dataset is the same one used for DEA. The 187 

second is a microarray gene expression dataset containing PBMC samples from 5 healthy donors. It 188 

includes four CD4+ T cells subtypes: naive CD4+ T cells, Th1, Th17 rich, and Th17 poor memory 189 

CD4+ T cells. Gene expression was normalized using the log2 RMA method. The third dataset is 190 

bulk RNA-seq transcriptome profiling of 29 immune cell types, including Th1 and extracted from 191 

PBMC sorted from 4 healthy individuals. The counts were normalized using the Transcripts Per 192 

Million (TPM) method. The last dataset is RNA-seq gene expression profiling. It contains PBMC 193 

samples coming from 3 healthy donors. Several subtypes of CD4+ T cells are in the samples: Th1, 194 

TH2, TH22, Treg, naive CD4+ and Th17. Count data were normalized using TMM. In addition, we 195 

used GSE172188, a microarray gene expression dataset of synovial samples from ten patients with 196 

active RA treated with Abatacept. For each patient, synovial biopsies were obtained from the same 197 

affected joint before (W0) and 16 weeks after (W16) starting treatment with Abatacept. 198 

2.3.2 Macrophage Maps 199 

2.3.2.1. Macrophage Map Integration 200 

The macrophage map was constructed as a PD graph on CellDesigner by integrating three maps as a 201 

base. The initial map was the RA-specific macrophage map from IPA including 44 molecules and 47 202 

interactions associated with PMIDs. The second and third macrophage-specific maps (but not RA 203 

specific) were retrieved from the published literature (Oda et al., 2004; Wentker et al., 2017).  204 
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As the second and third macrophage maps were not RA-specific, we used the RA-specific marker 205 

gene lists from IPA as an overlay in MINERVA to identify disease-specific molecules and 206 

submodules. The Stream export plugin (Hoksza et al., 2019) in MINERVA allowed us to export 207 

these submodules of interest from the macrophages maps. We identified corresponding signalling 208 

pathways in the extracted submodules and completed them by adding molecules from the literature 209 

and pathway databases like KEGG. 210 

2.3.2.2. RA Macrophage Map Splitting into M1 and M2 Macrophage Maps 211 

We split the RA macrophage map into two maps according to the M1 or M2 phenotype. We included 212 

Msig gene signatures for M1 and M2 macrophages and information available in the literature for 213 

each signalling pathway in the map. However, it was impossible to assign a phenotype for some 214 

pathways due to both phenotypes' lack of information or expression. These pathways were kept in 215 

both M1 and M2 maps. 216 

2.3.2.3. M1 and M2 Macrophages Map Enrichment 217 

Differential Expression Analysis (DEA) was performed using the preprocessCore and Limma 218 

packages (Ritchie et al., 2015) in R on the GSE97779 dataset (cf. dataset section). The list of DEG 219 

was used for enrichment with IPA and MetaCore. To assign the newly identified pathways to the M1 220 

or the M2 phenotype, DEA was performed on GSE164498 (cf. dataset section) using Bioturing 221 

software (Le et al., 2020) with the Venice method (Vuong et al., 2020) and M1 versus M2 222 

macrophage cells to identify signature genes for both M1 and M2 phenotypes. The percentage of 223 

shared genes between each newly identified signalling pathway and M1 and M2 signatures was 224 

calculated. Based on these criteria, new pathways were assigned to the M1, M2 maps, or both. 225 

2.3.3. Fibroblast Map 226 

To build the RA fibroblast-specific map, we filtered non-fibroblast-specific components from the 227 

initial RA-map based using the up-to-date RA fibroblast overlay available in MINERVA (cf. overlay 228 

section). Non-fibroblast-specific components were only kept if necessary to transduce the signal. We  229 

used the BioTuring software and the Venice method to perform DEA on GSE109449 (cf. dataset 230 

section). The filtered DEG list was used as an overlay in MINERVA to retrieve more RA fibroblast-231 

specific components from the RA global map. 232 

2.3.3.1. Fibroblast Map Enrichment 233 

The same DEG list was used to enrich the fibroblast map with new signalling pathways using IPA 234 

and MetaCore software. 235 

2.3.4. Th1 Map  236 

Regarding the Th1 map, we did not integrate any pre-existing cell-specific map. Alternatively, we 237 

first searched the literature for the main signalling pathways expressed in the Th1 subtype and 238 

involved in RA's pathogenesis (using queries like "Th1" and "rheumatoid arthritis"). In addition, we 239 

used the multicellular map of inflammation (Serhan et al., 2020) and its not-RA-specific Th1 submap 240 

to identify transcription factors and cell-specific receptors involved in RA pathogenesis. We 241 

integrated the SDY998 gene expression dataset (cf. dataset section) to enrich the map with new 242 

pathways. Clustering was performed on the T cells using the Seurat package (Hao et al., 2021) in R 243 

(Find_neighbors and Find_clusters functions). Based on the expression of the marker genes CXCR3, 244 
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CCR7 and CCR6, the Th1 cluster was identified. We performed DEA using CXCR3+ CCR7- CCR6- 245 

Th1 cluster versus CCR7+ naive cells from RA samples using Seurat and Find_marker_genes 246 

function. The filtered DEG list was used to identify new pathways using IPA and MetaCore tools 247 

described above. To expand the Th1 map, we also performed Gene Set Enrichment Analysis (GSEA) 248 

using GSEA software (Subramanian et al., 2005), IPA gene sets and the SDY998 gene expression 249 

dataset. The list of enriched gene sets was filtered with a False Discovery Rate (FDR) less or equal to 250 

5% to keep only the statistically significant ones. To ensure that the results are Th1 specific, we 251 

performed GSEA on three other datasets: GSE32901, GSE107011 and GSE135390 (cf. dataset 252 

section), and filtered the enriched gene sets with FDR less or equal to 5%. Only gene sets identified 253 

with the SDY998 dataset shared at least by one of the GSE32901, GSE107011 or GSE135390 254 

datasets were kept. Only gene sets sharing less than 80% of their core enrichment genes were kept to 255 

avoid redundancy. 256 

2.3.    Overlays 257 

We provide nine different sample-specific overlays, namely fibroblasts, synovial fluid, synovial 258 

tissue, PBMC, blood components, serum, chondrocytes, macrophages, and Th1 to calculate the cell-259 

specificity of the RA-Atlas maps or visualize the cell-specific pathways in MINERVA.  260 

Most overlays (i.e. synovial fluid, synovial tissue, PBMC, blood components, and chondrocytes) are 261 

updated versions of the overlays provided in the initial RA-map with the addition of new 262 

bibliographical references. The fibroblast overlay is also an updated version of the overlay provided 263 

in the initial paper with the addition of bibliographical references and the list of DEG obtained from 264 

DEA (see RA fibroblast map enrichment section). The overlay file now consists of 2409 fibroblast-265 

specific components. The macrophage overlay includes the RA macrophage-specific components 266 

identified in the literature, the DEG list obtained from DEA (cf. M1/M2 macrophages map 267 

enrichment with gene expression datasets section), and the 44 molecules present in the IPA RA-268 

specific macrophage map (cf. Macrophage maps integration. It consists of 648 RA macrophage-269 

specific molecules. The Th1 overlay consists of 523 molecules, including the list of DEG obtained 270 

previously, the core enrichment genes from the GSEA (cf. Th1 map section), and information found 271 

in the literature. Finally, the serum overlay was created to account for a new source of information 272 

used in the maps. 273 

3. Results 274 

3.1.    RA-map V2 275 

The RA-map V2 illustrates signalling pathways, gene regulation, metabolic pathways, molecular 276 

mechanisms and phenotypes involved in RA's pathogenesis. The map is compartmentalized in a way 277 

to represent the flow of information from the extracellular space (ligands) to the plasma membrane 278 

(ligands-receptors or metabolic transporters complexes) through the cytoplasm (signalling and 279 

metabolism), the nucleus (gene regulation) and the secreted compartments (phenotype activation).  280 

The map is fully compliant with SBGN PD standards. It includes 720 species (329 proteins, 135 281 

genes, 136 RNAs, 54 simple molecules, 1 ion and 65 molecular complexes), 9 phenotypes 282 

(angiogenesis, apoptosis, bone erosion, cell chemotaxis/recruitment/infiltration, cell 283 

growth/survival/proliferation, hypoxia, inflammation, matrix degradation and osteoclastogenesis) and 284 

602 reactions. This new version of the map represents an update regarding the number of 285 

components. We have added 158 species, primarily involved in metabolic pathways, 156 reactions, 286 

primary interconnecting metabolic pathways with signalling and gene regulation pathways, and the 287 
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hypoxic phenotype. We have included 225 additional references that make a total of 575 PMIDs for 288 

the whole map. The high number of references enhances confidence in the presented mechanisms. 289 

Indeed, 87% of the components included are supported with more than one experimental evidence 290 

and 65% more than 2 (Figure 3).  291 

In several cases, the map includes compounds with no bibliographic reference. For example, many 292 

simple molecules act as products or reactants of well-known biological reactions whose expressions 293 

are rarely highlighted in disease-specific experimental studies (e.g., ATP, ADP, NADH, NADPH, 294 

H2O, O2, CoA, and FADH). Also, molecules that act as pathway intermediates do not present 295 

bibliographical references. In this case, we have evidence that a pathway is expressed in a disease-296 

specific manner, but not all intermediates have been studied experimentally. For instance, specific 297 

metabolic pathways are found to be expressed, however, experimental evidence is not available for 298 

every component.  299 

Beyond the considerable effort of the initial RA-map to include the disease hallmarks (e.g., 300 

cytokines, chemokines, growth factors, toll-like receptors) and molecular pathways (e.g., JAK-STAT 301 

pathway, NF-KB pathway, MAPK pathway), we aimed to expand the coverage in disease-specific 302 

metabolic dysregulated pathways. In particular, we focused on adding glycolysis, citric acid cycle, 303 

pentose phosphate pathway, and oxidative phosphorylation pathways as their interplay with 304 

inflammation and immunity mechanisms, among others, have been proven in RA (Weyand and 305 

Goronzy, 2017; Pucino et al., 2020). In addition, non-metabolic functions of metabolites and 306 

metabolic enzymes were illustrated, such as their transcription regulation function (e.g., Hexokinase 307 

2 or Phosphoglycerate Kinase 1 (Kim and Dang, 2005)) or their involvement in disease-specific 308 

signalling pathways or phenotypes (e.g., Lactate (Yi et al., 2022), Glucose-6-Phosphate Isomerase 309 

(Zong et al., 2015) or Pyruvate (CHANG and WEI, 2011)). 310 

The RA-map V2 integrates information from several sources and cell types (Figure 4). The user can 311 

take advantage of its extensive annotation and assess the map's coverage by opting for a specific 312 

representation of a particular cell type in MINERVA. The map is mainly composed of fibroblast 313 

specific information (73%) but other cell types, tissues and fluids involved in RA's pathogenesis 314 

(Fang, Zhou and Nandakumar, 2020) are also represented, such as synovial tissue, synovial fluid, 315 

blood components, serum components, PBMC, chondrocytes and macrophages. Therefore, when 316 

interpreting those results, one must consider that a specific component can be common to several cell 317 

types or that this component is present only in one cell type.  318 

3.2.    RA Fibroblast Map 319 

The RA fibroblast map results from an extensive effort to make the RA-map fibroblast-specific. It is 320 

based on manual curation of the RA-map, using literature and gene expression integration. Using the 321 

list of DEG, 23 components were identified as fibroblast-specific from the RA-map V2. In addition, 322 

new pathways were identified using IPA and MetaCore. The top 5 identified signalling pathways are 323 

shown in Table 1.   324 

The enriched fibroblast-specific map comprises ten compartments from the extracellular space where 325 

the biological signal is induced to the secreted components' and transmembrane proteins' 326 

compartments. As the RA-map V2, it is SBGN PD compliant. It contains 853 species, including 411 327 

proteins, 115 genes, 115 RNAs, 96 molecular complexes, 2 simple molecules and 9 phenotypes (8 of 328 

them coming from the initial RA-map, the 9th one being T cells activation). The components interact 329 

together via 509 reactions.  330 
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77% of the map's components are RA fibroblast-specific (Figure 5). Some of the molecules that are 331 

not fibroblast-specific were added to the map to keep the signal transduction going from the 332 

extracellular part to the nucleus. Indeed, in some RA fibroblast-specific pathways, these molecules 333 

are needed to activate or inhibit intermediate proteins. Other molecules that are not RA fibroblast-334 

specific are found in the extracellular space. These molecules can come from the synovial fluid and 335 

be secreted by other cell types to activate specific signalling pathways in the RA fibroblast. In this 336 

case, the secreted molecules do not have to be RA fibroblast-specific. Supporting literature was not 337 

always available for small molecules or adaptor proteins.   338 

3.3.    RA Macrophage Maps 339 

We obtained the global macrophage map by converting the IPA cell and disease-specific map into an 340 

SBGN PD compliant map in CellDesigner. New pathways were added from the RA-specific 341 

submodules exported from the previously published maps (Oda et al., 2004; Wentker et al., 2017) 342 

like TLRs pathway, NFKB pathway, PI3K-AKT pathway, MAPK signalling pathway, and IL-18. 343 

Other pathways were identified from the literature, such as the IFN pathway, Notch pathway, IL10 344 

and IL23 pathways. 345 

KEGG, MSig database and literature screening allowed to add 8 phenotypes to the map. The 346 

phenotypes include inflammation, apoptosis, angiogenesis, extracellular matrix degradation, cell 347 

chemotaxis/migration, T cells activation, proliferation/survival and osteoclastogenesis. 348 

3.3.1. RA Macrophage M1 Map 349 

The RA macrophage M1-specific map includes all the signalling pathways from the RA macrophage 350 

map leading to the macrophage polarization into the pro-inflammatory M1 phenotype. It was 351 

enriched using gene expression dataset integration to identify new RA M1 macrophage-specific 352 

pathways using IPA and MetaCore. The top 5 identified signalling pathways are shown in Table 2. 353 

The RA macrophage M1-specific map includes 640 species: 278 proteins, 76 genes, 76 RNAs, 114 354 

molecular complexes, 8 simple molecules and the same phenotypes as the RA macrophage map. 355 

These components interact together via 448 reactions.  356 

61% of the components of this map are RA macrophage-specific (Figure 5). In addition, all the 357 

receptors and secreted components are RA macrophage-specific. Although less literature is available 358 

compared to the RA Fibroblast map, gene expression datasets integration enabled us to keep a high 359 

RA macrophage specificity in the map. 360 

3.3.2. RA Macrophage M2 Map 361 

The M2 macrophage map includes all the signalling pathways from the RA macrophage map leading 362 

to the macrophage polarization into the anti-inflammatory M2 phenotype. After the enrichment step 363 

with IPA and MetaCore, additional pathways were added. The top 5 signalling pathways are shown 364 

in table 2  365 

The enriched map includes 520 species: 243 proteins, 59 genes, 59 RNAs, 90 molecular complexes, 366 

three simple molecules and 7 of the 8 phenotypes from the RA macrophage map. Indeed, 367 

osteoclastogenesis is not associated with any of the secreted molecules in the RA M2 macrophage 368 

map. The Macrophage M2 map’s components interact together via 342 reactions.  369 
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55% of the components of this map are RA macrophage-specific (Figure 5). All the receptors and 370 

secreted components are RA macrophage-specific. We can see that fewer pathways are specific to the 371 

M2 phenotype in RA because RA disease is mainly associated with the M1 phenotype. 372 

3.4.    RA Th1 Map 373 

We built the RA Th1 cell map through literature mining to identify the main cell-specific signalling 374 

pathways involved in RA's pathogenesis. However, less information about the Th1 subtype was 375 

available in the literature than fibroblasts and macrophages. Hence, it was essential to expand the 376 

map using new methods. New signalling pathways were identified using IPA and MetaCore and the 377 

enriched gene sets from GSEA (Tables 3 and 4).  378 

The map consists of 321 species, including 167 proteins, 29 genes, 29 RNAs, 64 molecular 379 

complexes, and 7 phenotypes. The phenotypes include inflammation, apoptosis, osteoclastogenesis, 380 

cell chemotaxis, angiogenesis, matrix degradation and proliferation. RA Th1 map's components are 381 

connected through 179 reactions.  382 

58% of the components of this map are RA Th1-specific, including all the transcription factors, most 383 

of the receptors, and secreted components (Figure 5). 384 

3.5.    Applications 385 

Several options are available in MINERVA for the user to dive into the different RA-Atlas maps. 386 

Users can explore the maps using the search bar and get the locations of their compounds of interest 387 

and their associated references (Figure 6A) or visualize experimental data and cell-specific 388 

components using the appropriate overlays (Figure 6B). Users can exploit online queries for drug 389 

targets via DrugBank (Wishart et al., 2008) and CHEMBL (Gaulton et al., 2017). 390 

Users can also use plugins available in MINERVA, such as the Stream-export, to export parts of the 391 

network upstream and downstream of a node. GSEA plugin can be used to calculate enrichment for 392 

uploaded user-provided data overlays. We performed GSEA by using a list of DEG from the 393 

GSE172188 dataset (cf. dataset section) between the paired post- and pre-treatment samples as an 394 

overlay to identify enriched signalling pathways from the fibroblast map in RA patients after 395 

treatment with Abatacept compared to untreated RA patients. The list of DEG was downloaded from 396 

the supplementary materials of the associated publication (Triaille et al., 2021). Results of the GSE 397 

analysis are shown in Figure 7.  398 

4. Discussion  399 

Knowledge assembly in the form of networks is an active field in Systems Biology. Many public 400 

repositories such as KEGG (Ogata et al., 1999), Reactome (Gillespie et al., 2022), WikiPathways 401 

(Martens et al., 2021), Panther (Mi and Thomas, 2009), and proprietary platforms such as IPA 402 

(Krämer et al., 2014) and MetaCore (Clarivate) offer mechanistic insights into a variety of biological 403 

processes. However, most of the diagrams available can be generic, lack cell specificity, and without 404 

proper annotations and access to the literature used for their assembly. A key aspect of current 405 

research is to move beyond generic characterizations of biological processes toward more specific 406 

pathways considering cell, tissue, organ, and disease states. 407 

International projects such as the Human Cell Atlas (Regev et al., 2017) and the HapMap (Tanaka, 408 

2003) have significantly contributed to our understanding of the role of different cells in the human 409 
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body and the specificities linked to the anatomical or functional localization of these cells. Moreover, 410 

advancements in single-cell techniques offer insights into unprecedented specificity for various cell 411 

types and subpopulations in normal and pathological conditions.  412 

RA is a disease involving several cells and their crosstalks. Unfortunately, there is no cure, and the 413 

proposed therapies can only alleviate symptoms and increase survival. Hence, understanding the 414 

cellular interplay and intracellular cascades and their regulation could be advantageous in identifying 415 

novel therapeutic targets that could help relieve the heavy burden of the disease’s debilitating 416 

symptoms.  417 

With this aim, we built the RA-Atlas, an interactive, manually curated and enriched with extensive 418 

omic data analysis representation of molecular mechanisms involved in RA's pathogenesis. It 419 

includes an updated version of the global RA-map (Singh et al., 2020) with the addition of metabolic 420 

pathways, and cell-specific molecular interaction maps for resident fibroblasts, M1 and M2 resident 421 

macrophages and CD4+ Th1 cells. The diagrams depicting the biological mechanisms are formalized 422 

using the SBGN PD language (Le Novère, 2015). They are primarily based on high-quality manual 423 

curation of the scientific literature, enrichment, and cross-validation using expression data with either 424 

bulk or single-cell resolution. Furthermore, our group is an active player in the Disease Map 425 

consortium. This initiative aims at fostering collaborations for the creation of disease-specific maps 426 

such as The Parkinson's map (Fujita et al., 2014), the AsthmaMap (Mazein, Knowles, et al., 2018),  427 

the Atlas of Cancer Signalling Network (Kuperstein et al., 2015), The Atlas of Inflammation 428 

Resolution (Serhan et al., 2020), the Cystic Fibrosis Map: CyFi-MAP (Pereira et al., 2021), and more 429 

recently, the COVID19 Disease Map (Ostaszewski et al., 2021). In addition, the community works 430 

on developing best practices for annotation, curation, the use of systems biology standards, and the 431 

development of platforms and technology for handling complexity (Ostaszewski et al., 2019). 432 

5. Adopting FAIR principles 433 

The RA-Atlas is a project that tries to implement the FAIR principles (Wilkinson et al., 2016) for 434 

findability, accessibility, interoperability and reproducibility. The Atlas being a part of the Disease 435 

Map community project (Mazein, Ostaszewski, et al., 2018; Ostaszewski et al., 2019), it makes its 436 

dissemination among the community easier. The RA-Atlas is also freely accessible via a web 437 

browser and the platform MINERVA (Gawron et al., 2016). Its content is compliant with SBGN PD 438 

(Le Novère, 2015) for the representation, SBML (Hucka et al., 2003) for the construction, MIRIAM 439 

for the annotations (Novère et al., 2005), PMIDs and stable identifiers for the references. All entities 440 

are annotated using HGNC symbols (Tweedie et al., 2021) for signaling and gene regulation 441 

componenets and BiGG IDs (King et al., 2016) for metabolic compounds. Lastly, the extensive 442 

annotations and the access to content allow for transparent and facilitated reuse of the resource. 443 

6. Perspectives 444 

The long-term objective of this project is to construct a computational repository to decipher the 445 

interplay between cells of the innate and adaptive immunity in RA, which eventually leads to bone 446 

and cartilage breakdown. We wish to expand the RA-Atlas with molecular interaction maps of B 447 

cells, chondrocytes, osteoblasts, and osteoclasts and enrich existing cell-specific maps with relevant 448 

metabolic pathways. We will also create a top-level view focusing on mapping how the different 449 

cells interact to cope with complexity. Furthermore, intercellular interactions must be clearly defined, 450 

mapped, and described to provide a comprehensive view of the cellular interplay in RA. Lastly, our 451 

maps can serve as a basis for constructing executable disease networks (Singh et al., 2018, Aghamiri 452 
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et al., 2020; Niarakis and Helikar, 2021; Hall and Niarakis, 2021, Miagoux et al., 2021), allowing for 453 

in-silico simulations, hypotheses formation and predictions. 454 
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 655 

 656 

 657 

Figure 1. Schematic representation of the RA joint depicting the variety of actors implicated in RA's 658 

pathogenesis. Blue frames indicate the different maps included in the RA-Atlas.  659 

Figure 2. Stepwise construction of the RA-Atlas. 660 

Figure 3. Annotation score of the RA-map V2. (A) Pie-chart of the annotation score's distribution 661 

among the map's components. (B) Overlay of the annotation scores on the RA-map V2. Each 662 

component is colored according to its annotation score. 663 
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Figure 4. Cell-specificity of the RA-map V2 components. (A) Distribution of the RA-map V2 cell-664 

specificity. (B) Visualization of the fibroblast-specific overlay on the RA-map V2.  665 

Figure 5.  Percentage of cell-specific components per cell-specific maps. 666 

Figure 6. Visualization of RA macrophage M2 map in MINERVA. (A) Snapshot of the search for 667 

VEGFa. (B) Snapshot of the visualization of the macrophage overlay.  668 

Figure 7. Gene set enrichment analysis on the RA-Atlas using the GSEA plugin. Enriched pathways 669 

are presented in the right panel. Results can also be visualized in the corresponding maps (here, a 670 

zoom of the RA-map V2) to illustrate the enriched components.  671 

 672 

 673 

 674 

 675 

Table 1. Top 5 of IPA and MetaCore maps using the RA fibroblast DEG list. 676 

IPA map Overlap MetaCore map Overlap 

Antigen presentation 48.7% Immune response _Induction of the antigen 

presentation machinery by IFN-gamma 

45.2% 

Inhibition of matrix 

metalloproteinases 

39% Cell adhesion_ECM remodeling 41.8% 

Hepatic fibrosis/Hepatic 

stellate cell activation 

22.7% IL-1 beta- and Endothelin-1-induced fibroblast/ 

myofibroblast migration and extracellular 

matrix production in asthmatic airways 

47.5% 

GP6 signaling pathway 20.5% TGFbeta-induced fibroblast/ myofibroblast 

migration and extracellular matrix production in 

asthmatic airways 

36.6% 

Axonal guidance 

signaling  

15% Glucocorticoid-induced elevation of intraocular 

pressure as a glaucoma risk factor 

32.2% 

 677 

 678 

 679 
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 680 

Table 2. Top 5 of IPA and MetaCore maps using RA macrophage DEG list. 681 

IPA map Overlap MetaCore map Overlap 

DNA methylation and 

transcriptional repression 

signaling  

32.3% Development_Role of proteases in 

hematopoietic stem cell mobilization 

22.2% 

transcriptional regulatory 

network in embryonic stem 

cells 

19.6% Colorectal cancer (general schema) 20% 

NER (nucleotide excision 

repair , enhanced pathway)  

10.1% Cigarette smoke components TCDD and 

Benzo[a]pyrene and receptor AHR signaling 

in lung epithelial cells 

13.8% 

Xenobiotic metabolism 

AHR signaling pathway  

6.6% Cigarette smoke-mediated regulation of 

NRF2-antioxidant pathway in airway 

epithelial cells 

13.7% 

LPS/IL1 mediated 

inhibition of RXR function 

4.1% Inhibition of Ephrin receptors in colorectal 

cancer 

13.3% 

 682 

 683 

 684 

 685 

 686 

 687 

 688 

 689 

 690 

 691 

 692 

 693 
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 694 

Table 3. Top 5 of IPA and MetaCore maps using RA Th1 DEG list. 695 

IPA map Overlap MetaCore map Overlap 

Antigen 

presentation 

pathway 

30.8% Generation of cytotoxic CD8+ T cells in COPD 24% 

B cell development  22.7% Maturation and migration of dendritic cells in skin 

sensitization 

19.5% 

Th1 pathway  10.7% Immune response_Induction of the antigen 

presentation machinery by IFN-gamma 

18.8% 

TH2 pathway  10.2% COVID-19: immune dysregulation 17% 

Th1 and TH2 

pathway 

9.3% Chemokines in inflammation in adipose tissue and 

liver in obesity, type 2 diabetes and metabolic 

syndrome X 

14.5% 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 
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Table 4. List of enriched gene sets in RA Th1 after filtering. 710 

Gene set FDR 

ICOS-ICOSL SIGNALLING IN T HELPER 

CELLS 

0.003 

CDC42 SIGNALLING 0.003 

COMMUNICATION BETWEEN INNATE 

AND ADAPTIVE IMMUNE CELLS 

0.004 

Th1  ACTIVATION PATHWAY 0.004 

PKC  SIGNALLING IN T LYMPHOCYTES 0.005 

ANTIGEN PRESENTATION PATHWAY 0.005 

PROTEIN UBIQUITINATION PATHWAY 0.007 

ALTERED T CELL AND B CELL 

SIGNALLING IN RHEUMATOID 

ARTHRITIS 

0.007 

CROSSTALK BETWEEN DENDRITIC 

CELLS AND NATURAL KILLER CELLS 

0.009 

INTERFERON SIGNALLING 0.01 

OXIDATIVE PHOSPHORYLATION 0.01 

REGULATION OF CELLULAR 

MECHANICS BY CALPAIN PROTEASE 

0.013 

REMODELLING OF EPITHELIAL 

ADHERENS JUNCTIONS 

0.014 

GRANULOCYTE ADHESION AND 

DIAPEDESIS 

0.016 
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POLYAMINE REGULATION IN COLON 

CANCER 

0.023 

ROLE OF IL-17F IN ALLERGIC 

INFLAMMATORY AIRWAY DISEASES 

0.027 

HYPOXIA SIGNALLING IN THE 

CARDIOVASCULAR SYSTEM 

0.031 

PTEN SIGNALLING 0.032 

ACTIVATION OF IRF BY CYTOSOLIC 

PATTERN RECOGNITION RECEPTORS 

0.034 

IL-8 SIGNALLING 0.038 

TCA CYCLE II (EUKARYOTIC) 0.038 

ROLE OF CYTOKINES IN MEDIATING 

COMMUNICATION BETWEEN IMMUNE 

CELLS 

0.039 

PD-1, PD-L1 CANCER IMMUNOTHERAPY 

PATHWAY 

0.049 

 711 


