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Abstract 

 

For the testing of modern electronic control unit (ECU) software, different test-platforms like Software-in-the-Loop (SIL) 

and Hardware-in-the-Loop (HIL) but also in vehicle testing are used. To ensure a realistic behavior of the software in SIL 

and HIL testing, models of the environment as well as residual bus simulation are required. A detailed representation of 

other controllers in the vehicle network that feeds into the residual bus simulation is needed to test complex functions of 

the software and to close distributed control loops. We present a novel approach, where a virtual ECU designed for SIL 

testing is reused to generate the input to the residual bus simulation. For export from the SIL tool and import into the HIL 

modelling environment, a C-Code functional mockup unit is used. To show the benefit of this approach, the setup is 

compared to an existing setup, which uses both a simplified model of an ECU or the real ECU. In addition, drawbacks of 

the presented approach are presented and the potential of other methods is discussed. 

 

1. Introduction  

 

For the testing of modern electronic control units (ECU), multiple test environments exist. In the early stage, these include 

software in the loop (SIL) and hardware in the loop (HIL) testing. In SIL environments, the ECU code is executed on a 

standard PC, which requires virtualization of the ECU [1]. In HIL testing, the ECU code is executed on the target 

hardware, which is connected to a simulator for stimulating input signals and measuring output signals. In both cases, a 

complex simulation of the environment of the device under test (DUT) is required, which consists of plant models and a 

simulation of the communication also known as residual bus simulation (RBS). The RBS stimulates the communication 

interfaces of the DUT using both static fixed values as well as dynamic signals. This is necessary to ensure that the test 

conditions match the conditions in the real application, which in this case, is the control of an automatic transmission in a 

passenger car by a transmission control unit (TCU). Additional features of a RBS are the manipulation of signals, 

messages, message counters and various other mechanisms that control the data flow in an ECU network. 

A major task in the development of a HIL test environment is to provide a mechanism to generate the dynamic signals for 

the RBS. One approach is to provide the dynamic signals through the test automation that executes test scripts. However, 

for complex controllers with multiple parallel control loops, this approach is unfeasible. An alternative can be simulated 

ECUs, where the basic functionality of an ECU is modeled in the same fashion as a plant. For an aggregate component 

HIL environment, multiple simulated ECUs provide the dynamic signals to the RBS to satisfy the DUT with adequate 

stimulus. While simulated ECUs allow for a more detailed representation of the DUT environment, their implementation 

effort is high: the ECU to be modeled has to be analyzed, the targeted functionality reengineered and the result tested on 

the HIL with the DUT. Additional challenges are the need for parameter management based on the specific variant of the 

simulated ECU and the incessant demand by testers to add further functionalities to the simulated ECU. In this paper, we 

present a novel approach where virtual and real ECUs are combined in a HIL simulator for component testing. 

2. Previous Work 

 

Because of the shortcomings of the simulated ECU concept, multiple approaches have been made to replace them with a 

more desirable design. Common goal of all these approaches is to reduce the engineering effort by reusing code or 

precursors of the code of the targeted real ECU. One approach is to import fragments of the models, which are the base for 

the ECU code into the HIL model development tools. While this approach is straightforward, it leaves the developer with 

the problem that the interfaces of these fragments do not directly correspond to the dynamic signals of the RBS. For proper 

integration, wrapper models are necessary. However, this approach faces the same challenges as the simulated ECU 

approach. In turn, the reuse of the code for smaller ECUs as discussed in [2] is carried out in the same fashion by building 

a wrapper around the ECU code. This process resembles the process of virtualizing ECUs for SIL applications mentioned 

above but is specific to the specific HIL environment. Another approach, presented by [3], employs a SIL that runs on a 
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standard PC in parallel to a HIL. The SIL communicates with the HIL and the DUT via bus systems. This represents a 

distributed RBS, where the part represented by the PC is not a hard real time system but runs in a standard Windows setup 

with additional tweaks that ensure acceptable stability. In this scenario, full reuse of an existing SIL reduces the effort for 

providing dynamic signals to the RBS. At the same time, this approach leads to more complexity, as the test automation 

has to control two environments and special mechanisms for manipulating signals in both RBSs are necessary. [4] discuss 

a similar scenario, where a virtual ECU is executed on a separate system, which communicates with a HIL and other test 

systems. A complex control system is presented that handles the resulting hybrid test system. This work does not state 

whether the virtual ECU running on a separate system is operating in real-time. Table 1 summarizes the above-mentioned 

approaches to generate dynamic signals for the RBS and their most relevant properties. 

Table 1: Types of Sources for Dynamic RBS Signals 

Signal Generation Type Relevant Properties 

script in test automation limited to non-parallel control loops 

simulated ECU high effort for reengineering 

reuse of ECU code fragments or precursors wrapper for integration required 

virtual ECU in a SIL on separate PC distributed system with stability and automatization challenges 

real ECU replaces RBS; limited ability for manipulation; late availability 

 

3. Proposed Approach 

 

The approach presented in this paper combines the reuse of existing code in a SIL by [3], while maintaining the integrity 

of the RBS as described by [2]. A C-Code based virtual ECU of a powertrain control unit (PCU) that was originally 

designed for the usage on a Windows PC was adapted for platform independence. The effort and cost for adapting a virtual 

ECU for platform independence depend on the specific virtual ECU and can vary drastically. In addition, cost and effort 

are hard to estimate in advance and the complete virtual ECU has to be available as C-Code. The resulting platform 

independent virtual ECU represents a pretested black box for the HIL developer and can be parameterized for different 

variants before the export from the SIL environment.  

The C-Code functional mockup unit (FMU), which was originally designed for plant model exchange, is chosen as a 

container for the exchange of the platform independent virtual PCU [5]. An important argument for using a C-Code FMU 

in this scenario is the support by many different simulator platforms. The ability of FMUs to be used as a container for 

ECU code by exporting a plant model to an actual ECU is shown in [6], while in [7] FMU is only used to import models 

into a HIL environment and a proprietary format is used to import controller code that is not further described. For future 

applications, the FMU for embedded systems (eFMU), as described by [8], can also be a potential container for the code of 

a virtual ECU. Like FMU, eFMU are designed for plant models as well but with the goal of integration in an embedded 

real time target. Specifically the features to add information that is relevant for the build process, e.g. target compiler 

options, can be useful when it comes to integrating a virtual ECU in a HIL environment. 

After importing the virtual PCU in its FMU container into the build environment of the HIL application, all rest bus 

relevant signals are routed to the respective RBS model interfaces. The real PCU that is replaced by the virtual PCU uses 

CAN, Flexray and LIN as bus systems. An overview of the challenges faced when integrating the virtual PCU with the 

existing RBS model is presented below. Some of these challenges result from the characteristics of the RBS models, while 

others result from the characteristics of the different bus systems. 

4. Generation of Virtual ECU FMU 

 

The virtualized PCU is a level two virtual ECU according to [9]. It contains the full application layer and a simulation 

basic software providing necessary functionality to increase test coverage of the software under test. The tool for creating 

and simulating the virtual ECU is Synopsys Silver®, a virtual ECU tool available for Windows and Linux PCs. Notable 

components of the simulated basic software layer are signal and PDU based COM for multiple bus systems including 

network routing, NVM for nonvolatile memory and a replacement OS. This level of abstraction of this ECU was chosen as 

it provides high complexity with multiple bus systems and large target code size in application layer, without involving 

multiple stakeholders in the code to be virtualized. Integrating target code deeper in the ECU stack should pose little 

additional challenge provided it is microcontroller independent. 

 



The move from a PC simulation to a platform independent virtual model can be seen in Figure 1. The challenge during 

FMU generation is removing dependencies on the compiler and linker toolchain as well as automatically generating 

platform independent C-Code for all required features and components provided by Synopsys Silver®. Developing the 

methodology initially required in depth compiler knowledge as well as a profound understanding on modern operating 

systems and CPU architectures. Once the tooling was developed subsequent updates of the target software or the 

simulation basic software require little effort. 

 

 
Figure 1: Porting a PC based simulation to be platform independent. 

While the approach is conceptionally straight forward and the project was successfully integrated, the team gained key 

insights which influenced the initial favorability assumptions. The use of open C-Code can be problematic when 

integrating intellectual property from multiple parties. This issue was limited by keeping the number of involved parties 

small but must be kept in mind when applying this method to future projects. 

 

There are mandatory virtual ECU features which cannot simply be provided as platform independent code. One example is 

the parametrization of ECU CHARACTERISTICs using production parameter and A2L files. Exporting such a feature as 

C-Code requires that certain assumptions like endianness or type sizes are known about the platform the FMU is later 

executed on. This is natural as this information is also required by industry measurement tools and is encoded in the ECU 

A2L. Removing such a feature to achieve true platform independence would drastically reduce the useability of the 

resulting FMU, so these assumptions were verified on the HIL platform and introduced into the export process. Doing so 

voids the platform independence of the FMU, as it is now compatible to the two specific PC and HIL platforms.  

 

The use of pure source code to become compiler/linker independent shifts the build process to the HIL environment. To 

minimize the frequency of feedback loops related to the build step, the compiler toolchain of the HIL and the PC were 

aligned, as it is available for both platforms. Even then it is only possible to functionally verify the FMU built for PC 

without consuming HIL resources. A high-quality acceptance test on PC kept the number of functional errors and the time 

spent validating the FMU on the HIL system to a minimum. However, even validation using source level debugging on the 

PC system only assures the quality of the PC-built binary and due to the mandatory rebuild on the HIL it is possible that 

the different HIL platform introduces side effects.  

 

In general, there are not many hard limitations. One is the computing power of the HIL system. In this case it was a multi 

core HIL x86 CPU and the FMU runs on a single HIL core without encountering task overruns. The second limitation is 

some required compatibility between the HIL and PC architecture, as true platform independence would have only been 

achieved with an unreasonable amount of engineering. When designing the complexity of such a virtual ECU export to the 

HIL it is advisable to evaluate level of detail versus the potential gain to avoid lengthy and costly iterations in the HIL 

environment. 

  



5. Integration 

 

In order to integrate the virtual PCU in the HIL model, the FMU is imported into the build environment. In our setup the 

build environment consists of two main components: 1. The tool Configuration Desk® that is used to configure the 

dSpace® HIL hardware, the task configuration and the signal routing between plant models or FMUs and the IO of the 

HIL and 2. The modeling tool Simulink® that is used to implement plant models as well as the RBS. Figure 2 shows the 

structure of the overall setup after integrating the virtual PCU. As the PCU only interacts through bus systems, only the 

parts relevant to the integration of bus systems is visualized in Figure 2. All other parts that a HIL system normally 

requires like power supplies and multi IO are omitted. 

 

Figure 2: Integration of Real, Simulated and Virtual PCU in the HIL System with Focus on Bus Systems 

Like the plant model as well as the RBS model and the operating system, the FMU is executed on a dedicated core of the 

HIL simulator’s processor. The cores exchange signals through an inter-core communication mechanism. FMU do not 

allow calling portions of their code from different tasks. The virtual PCU integrated into the HIL setup handles task 

scheduling by using internal subtasks and is called by the HIL by an external 5 ms task. For applications with time critical 

tasks, a design that imports multiple FMU and calling them by separate tasks would be required. Note that the setup allows 

running either a simulated, a real or a virtual PCU with the same executable by configuring the model through the HIL 

automation. The TCU is always kept as a real component and is the DUT, as described above. 

The signal routing for the three implementations real, virtual and simulated PCU integrated into the HIL model is 

fundamentally different and in the case of the simulated and the virtual PCU depends on the way the RBS is implemented. 

Figure 3 shows an example for the signal routing for all three PCUs in a minimal example. Only the different 

implementations of the PCU, the real TCU as well as an additional simulated ECU are displayed for the implementation of 

signal routing of CAN bus signals.  



 

Figure 3: Signal Routing for a Setup with a) Real PCU, b) Simulated PCU and c) Virtual PCU 

Figure 3 a) shows the case where the real PCU communicates with the real TCU and one additional simulated ECU. In this 

setup, three physical bus controllers are connected on the bus lines. The controller of the real TCU, the controller of the 

real PCU and the controller of the HIL RBS. In the case of the real TCU and the real PCU all signals are calculated in their 

respective application and are then transferred to the controller and vice versa. In the case of the simulated ECU, only a 

subset of the signals that require dynamic changes during the HIL simulation are calculated in the model of the simulated 

ECU. These signals are then merged with static default signals in the RBS and the resulting values are then transferred to 

the communication stack of the HIL and the HIL bus controller. The same is true for incoming signals from the bus. Only 

signals that are required for the computations in the simulated ECU are selected in the HIL communication stack for 

transfer to its model.  

Figure 3 b) shows the case where the simulated PCU communicates with the real TCU and one additional simulated ECU. 

What was described above for the generalized simulated ECU is also true for the simulated PCU. Dynamic signals from 

the simulated PCU model are merged with static default signals, are processed by HIL communication stack and then sent 

on the bus via the bus controller. The switching between the setup from Figure 3 a) and the one from Figure 3 b) requires 

deactivating the power supply as well as activating the nodes for the simulated PCU in the HIL RBS. When modifying the 

physical setup of the bus, proper CAN termination must be ensured as well. 

Figure 3 c) in turn shows the case where the virtual PCU communicates with the real TCU and one additional simulated 

ECU. Compared to the setup in Figure 3 b), all signals are computed by the virtual PCU and merging with static default 

signals is only required for the simulated ECU. As the virtual PCU runs on a separate core, signal routing to the Simulink® 

model containing the RBS is required. The RBS model implementation accepts signals of the type double and converts 

these internally to the required data type. As the virtual PCU provides all signals in the equivalent data type real, no 

additional handling of datatypes is required. While this simplifies the implementation, drawbacks regarding performance 

have to be accepted due to usage of unnecessarily expensive data types for some signals. The large amount of signals in a 

vehicle network requires an automated process to generate the signal routing parts of the model. The automated process 

requires naming of the virtual ECU input and output signals based on the description files of the bus systems. Due to 

differences between the implementations of RBS models for the bus types CAN, LIN and Flexray, both the signal routing 

as well as the merging with static default signals requires variants of the approach presented above. 

 

  



6. Experiment and Results 

 

The resulting HIL setup can execute tests with the newly integrated virtual PCU, the simulated PCU that allows 

manipulation but limited features and the real PCU. The DUT in all three scenarios is the TCU as mentioned above. To 

show the validity of our approach and to compare the three different implementations of the PCU, a test scenario is 

executed on the HIL. A common test scenario is to use a vehicle speed profile such as the worldwide harmonized light 

vehicles test procedure (WLTP) and to use a speed controller to set accelerator and brake pedals accordingly. This 

approach has the disadvantage that the speed controller can mask the differences in the behavior of the PCU on the vehicle 

speed level. To ensure that the differences in the behavior stay unmasked, a simple test scenario with a fixed sequence of 

inputs to accelerator and brake pedal is executed on the HIL. Figure 4 shows the stimulus as well as an example of the 

resulting rescaled dimensionless vehicle and engine speed. 

 

Figure 4: Stimulus and Reference Result for Comparison 

At the beginning of the sequence, the combustion engine of the vehicle is started and the gear selector lever is set to drive. 

In the next step, the brake pedal is released and the vehicle starts to creep (t = 10 s). After reaching a steady creep velocity, 

the accelerator pedal is set to a constant value of 30 %, which leads to a rising vehicle velocity with moderate acceleration 

(t = 20 s). After a fixed wait time that is sufficient for the vehicle to reach a constant velocity, the accelerator pedal is 

released and the brake pedal is set to 5 % (t = 320 s), which causes the vehicle to reduce the velocity to creep velocity 

(t = 355 s). Finally, after another wait time, the vehicle comes to a stop by fully applying the brake pedal (t = 420 s). 

During the phases of accelerating and decelerating the vehicle, multiple up- and downshifts are visible in the engine speed 

profile. They stand out as steep decreases or increases of engine speed. The engine speed level at which a gearshift occurs 

is relevant for the overall powertrain strategy, as the shift levels affect the ability of the combustion engine to produce 

torque as well as its fuel consumption. The ECUs in the powertrain network negotiate the shift levels during runtime, 

which makes them ideal for a comparison of the performance of simulated and virtual PCU versus real PCU. 

Figure 5 shows the rescaled dimensionless vehicle and engine speed for virtual, simulated and real PCU when executing 

the stimulus from above. The close matching of virtual and real PCU are visible, while the results of the run with the 

simulated PCU deviate. The reasons for these deviations are in the limited functionality of the simulated PCU as well as in 

a simplified variant dependent parameterization. The difference of the results with the simulated PCU become even more 



apparent when comparing the shift points for upshifts while accelerating the vehicle. The reasons for the deviation in 

Figure 5 lie in the simplified representation of functions for torque coordination. This can be addressed by adding more 

detailed functions to the simulated PCU and parameterizing them as required for the specific variant. If this action is 

carried out until no deviations occur in any scenario, the effort for implementing the simulated PCU will match the effort 

for implementing the real PCU. The reuse of the code of the real PCU in a virtual PCU yields the same result with limited 

effort, which makes it much more attractive. 

 

 

Figure 5: Results for Virtual, Simulated and Real ECU 

For the further discussion, the results acquired with the simulated PCU are set aside and we focus on the deviations 

between the virtual and the real PCU. For both setups, three runs of the scenario shown in Figure 4 are carried out. 

Subsequently, the recorded vehicle speed is used to compare the fluctuations between runs for the same setup to assess the 

reproducibility, as well as the deviations between the setups to assess the accuracy of the representation of the real PCU by 

the virtual PCU. The scope of the scenario used covers the most important functionalities in a drive train and is useful for 

characterizing the accuracy of the representation. However, functionalities of the PCU software that are not active in this 

scenario cannot be assessed by this analysis. 

 

Columns two and three of Table 2 show the root mean square errors (RMSE) acquired from the three runs with real and 

simulated PCU. The RMSE is calculated between first and second run, second and third run, as well as third and first run 

for each setup. The results show that the RMSE representing the variations of repeated runs with real PCU is higher than 

the RMSE for runs with virtual PCU. This is true both for all three calculated values of RMSEs as well as for the mean of 

the RMSEs shown in the last row of Table 2. On average, the RMSE of the vehicle speed calculated with real PCU with a 

value of 0.18 km/h is almost double the average RMSE of the one calculated with the virtual PCU with 0.1 km/h. This 

analysis itself only shows that the setup with real PCU varies more between repeated executions than the setup with virtual 

PCU. It does not give any indication of the accuracy of the representation of the real PCU by the virtual PCU.  

 

  



 

Table 2: RMSE of Vehicle Speed for repeated Executions with Real and Virtual ECU 

Run 

real PCU 

RMS Vehicle 

Speed [km/h] 

virtual PCU 

RMS Vehicle 

Speed [km/h] 

1 vs. 2 0.22 0.09 

2 vs. 3 0.18 0.09 

3 vs. 1 0.13 0.11 

mean 0.18 0.10 

 

Reasons for the higher fluctuations between runs with real PCUs become apparent when comparing the nature of the two 

setups. In the setup with the real PCU, the code runs on a separate processor with its own clock. Drift and jitter between 

the clocks of the HIL and the PCU are one example for a source of deviation if they are not compensated for by special 

methods [10], which is not the case in our setup. In addition, the communication via bus systems like CAN is not 

deterministic and the dataflow between the real PCU and the TCU can vary between executions. The same is true for other 

I/O interfaces. For example, analog I/O with noise can introduce additional variance in the behavior. Most of the 

abovementioned effects are absent for the virtual ECU, as it runs on the HIL processor and does not possess any real I/O. 

The remaining sources of variance between the runs are the CAN communication with the TCU, the loopback through the 

communication controllers of the HIL, as described above, as well as the fluctuations introduced by the TCU. In summary, 

the setup with a virtual PCU shows a better reproducibility than the setup with a real PCU, which satisfies the minimum 

requirement that using a virtual PCU may not negatively affect the reproducibility. 

 

Table 3 lists the RMSEs calculated between runs with real and virtual PCU and allows us to assess the accuracy of the 

representation of the real by the virtual PCU. The RMSEs in this assessment are in the same range as the RMSEs for 

repeated runs of the real PCU in Table 2. This shows that the error introduced by using a virtual PCU instead of a real 

PCU is below the level for repeated executions of the real PCU. In other words, the difference between one test execution 

with a real PCU and one test execution with a virtual PCU does not exceed the difference witnessed when executing a test 

twice with the real PCU. This means, that for this specific implementation and scenario, the virtual PCU suffices the 

reproducibility as well as accuracy expectations if the reproducibility with the real PCU is satisfactory. 

 

Table 3: RMSE of Vehicle Speed for Comparison between Executions with Real and Virtual ECU 

Run 
real vs. virtual PCU 

RMS Vehicle Speed [km/h] 

1 0.22 

2 0.10 

3 0.19 

mean 0.17 

 

The data used for the discussions in the last paragraphs is both limited in the number of datasets and in its variation. For a 

more detailed analysis, more executions with more complex scenarios are required. However, the limited analysis already 

shows that a high level of reproducibility, as well as accuracy can be achieved when replacing real ECUs with virtual 

ECUs. 

 

7. Summary and Outlook 

 

In this work, we were able to show, that virtual ECU can be reused to enhance dynamic inputs to a HIL residual bus 

simulation and to thus enable a more realistic representation of the DUT environment. The results obtained with this novel 

approach are not distinguishable from results obtained when using a real ECU instead. Regardless of the good results 

during runtime, some drawbacks remain during the implementation phase of the HIL executable. These include the large 



number of signals that have to be routed to the RBS, the workarounds necessary in order to combine the virtual ECU 

signals with signals of other simulated or virtual ECUs, as well as the complex process to make the C-Code FMU 

buildable in the modelling environment of the HIL simulator.  

While the first two items can only be addressed by completely automated signal routing and by redesigning the model 

structure, the latter requires a change in the process of the generation of the virtual ECU in a FMU container. In the most 

recent version 3.0 of FMU that will be released in 2022, additional features for specifying the process for compiling and 

linking of the sources will be available [11]. Furthermore, other new features like events for the triggering of sub functions 

can be useful for extending the approach to virtual ECUs that are more complex. With the current tool chain, only FMUs 

of the Version 2.0 are supported and the new features should be evaluated once full support for FMUs of the version 3.0 is 

available. 

A different approach to address the build issues discussed above can be to work with precompiled object files, which need 

to be compatible to the x86-based platform and compiler of the HIL modeling environment. In addition to moving the 

compile process out of the complex HIL modeling environment, this change in the process also ensures protection of 

intellectual property. Particularly larger ECU software projects, where supplier and OEM software modules are combined 

to create the ECU software, can benefit from this. 
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