Gilles Audemard
email: audemard@cril.fr

Jean-Marie Lagniez
email: lagniez@cril.fr

Marie Miceli
email: miceli@cril.fr

Olivier Roussel
email: roussel@cril.fr

Identifying Soft Cores in Propositional Formulae

Keywords: SAT, Explanation, #SAT, Max#SAT

In view of the emergence of explainable AI, many new concepts intend to explain why systems exhibit certain behaviors while other behaviors are excluded. When dealing with constraints, explanations can take the form of subsets having few solutions, while being sufficiently small for ensuring that they are intelligible enough. To make it formal, we present a new notion, called soft core, characterizing both small and highly constrained parts of GCNF instances, whether satisfiable or not. Soft cores can be used in unsatisfiable instances as an alternative to MUSes (Minimal Unsatisfiable Subformulae) or in satisfiable ones as an alternative to MESes (Minimal Equivalent Subformulae). We also provide an encoding to translate soft cores instances into MAX#SAT instances. Finally, we propose a new method to solve MAX#SAT instances and we use it to extract soft cores.

INTRODUCTION

Nowadays, SAT is well known and used for solving many different problems such as planning, verification, cryptography or mathematical conjectures [START_REF] Biere | Symbolic model checking without bdds[END_REF], [START_REF] Heule | Solving and verifying the boolean pythagorean triples problem via cubeand-conquer[END_REF]. Solvers become increasingly efficient and new applications emerge frequently. When a problem is modeled as a SAT instance, it is often observed that its set of solutions may differ from the one that was expected. It may be due to errors in modeling, or result from the fact that the problem is too constrained. In both cases, it is worth providing the user with some form of explanation clearing up why the expected solutions are impossible.

In the particular case when the set of constraints is unsatisfiable, a MUS (Minimally Unsatisfiable Subset) can be extracted and reported to the user as an explanation of the discrepancy between the solutions obtained and those being expected. A MUS is a subset of constraints which is unsatisfiable but whose each proper subset of it is satisfiable [START_REF] Bruni | Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae[END_REF]. It can be seen as a minimal (for inclusion) part of the formula which is unsatisfiable. As instances may contain an exponential number of MUSes com-pared to their number of elements, one element from each MUS has to be modified or removed to make the instance satisfiable. In some practical applications like hardware and software verification [START_REF] Liffiton | Algorithms for computing minimal unsatisfiable subsets of constraints[END_REF], finding all MUSes is valuable to get the best diagnostic in order to repair errors. However, when it comes to explaining to human users, returning an exponential number of MUSes does not make sense. As in extreme cases its size edges toward the size of the formula, returning a single MUS may also overwhelm the user. Accordingly, the search for a smallest MUS (SMUS) has been the central topic of several papers [START_REF] Ignatiev | Smallest MUS extraction with minimal hitting set dualization[END_REF], [START_REF] Mneimneh | A branch-andbound algorithm for extracting smallest minimal unsatisfiable formulas[END_REF]. Obviously, generating a smallest MUS of a CNF formula is more computationally difficult than extracting any MUS, as these problems are in FP NP and FP Σ p 2 respectively [START_REF] Ignatiev | Smallest MUS extraction with minimal hitting set dualization[END_REF]. However, a SMUS may still be not succinct enough or may pinpoint a part of the formula that would be irrelevant when taking into account the entire problem.

When the set of constraints at hand is satisfiable, the notion of MUS trivializes and the notion of Minimal Equivalent Subformula (MES) [START_REF] Belov | Algorithms for computing minimal equivalent subformulas[END_REF] can be more suited. Given a set of constraints C , a MES is a minimal (for inclusion) subset of constraints C ′ ⊆ C which is equivalent to C . Even if computing a MES might gather interesting information, it does not help in detecting which part of the formula is hard to solve. Moreover, like MUSes, a MES and even a smallest MES (SMES) may not be small enough to be handled by users.

To deal with these issues, we introduce in the following a generalization of the notion of MUS to both satisfiable and unsatisfiable formulae. A soft core is a subset of constraints which is both small and highly constrained, meaning it has a limited number of models. Identifying a soft core is clearly a bi-criteria optimization problem, where both the size of the soft core and its number of models matter. Depending on the context, it may be more important to reduce the size of the soft core, even if we obtain more models. Alternatively, in other cases, reducing the number of models will be the main objective, even if this gives larger soft cores.

Soft cores can be proven useful in different application scenarios. They pinpoint the most constrained parts of the formula, and determinate which constraints prevent expected solutions from being possible. For example, they can be used in scheduling problems to find which part needs to be relaxed, or in the analysis of mathematical conjectures [START_REF] Heule | Solving and verifying the boolean pythagorean triples problem via cubeand-conquer[END_REF]. Indeed, for such case, once the parameters of a conjecture (e.g. a number of colors) are instantiated, the problem can often be encoded by constraints. Except for small values of the parameters, the resulting formula is hard to be solved. Besides, if the formula is unsatisfiable, a MUS is expected to be quite large, since conjectures generally use a minimum number of hypotheses. Thus, soft cores may provide information and can become the start of mathematical proof if the models admitted have specific characteristics or are not numerous.

Soft cores can also be used in debugging tools, as in [START_REF] Dodaro | Debugging non-ground ASP programs: Technique and graphical tools[END_REF], whose purpose is to help the user to model problems. Generally, problems are not modeled directly into SAT, but first in higher level modeling languages and then transformed into SAT instances. When encoded as CNF formulae, problems loose a lot of structural information, and a simple natural constraint (for example, "we want at least participate in three sessions among the five available", as s 1 + s 2 + s 3 + s 4 + s 5 ⩾ 3) might become a large set of clauses, whose decision variables are not distinguishable from auxiliary ones, and which, if not gathered into groups, can be lost among other clauses. Then, using a Group CNF (GCNF) formula instead of a CNF formula can be preferred to keep structural information, and to treat together clauses issued from a former higher-level constraint.

We propose using soft cores to determine, when modeling a problem into SAT, which parts of the formula would be hard to explore, in order to either change modeling or use the information when solving the generated instance.

The paper is organized as follows. First, we formally define soft cores, and show that the decision problem related to soft cores is an NP PPhard problem by printing out a reduction from E-MAJSAT [START_REF] Pipatsrisawat | A new d-dnnf-based bound computation algorithm for functional E-MAJSAT[END_REF]. Afterwards, we demonstrate how to turn instances of the soft cores problem into instances of MAX#SAT, an NP PP -complete problem [START_REF] Fremont | Maximum model counting[END_REF]. Finally, from a practical side, we present an exact MAX#SAT solver. We show how to leverage it for computing soft cores and we compare it to the approximate MAX#SAT solver Maxcount, [START_REF] Fremont | Maximum model counting[END_REF], the only available tool for solving MAX#SAT instances up to now.

PRELIMINARIES

Boolean Logic.

We consider standard Boolean logic. Let L P be a language of formulae over an alphabet P of Boolean variables also called atoms, denoted by a, b, c, . . . The symbols ∧, ∨, ¬, ⇒ and ⇔ represent the standard conjunctive, disjunctive, negation, material implication and equivalence connectives, respectively. Propositional formulae are built in the usual way from variables, connectives and parentheses. They are denoted by greek letters as α, β, Γ, ∆, . . . We denote by Var(Γ) the set of variables appearing in a formula Γ. For convenience we sometimes write Γ(X) to represent that Γ is assumed to be defined on variables X. A literal is a variable or its negation. A term is a conjunction of literals (ℓ 1 ∧ . . . ∧ ℓ s) while a clause is a disjunction of literals (ℓ 1 ∨ . . . ∨ ℓ s). A unit clause is formed of one literal.

Interpretation and Model.

An interpretation (or an assignment) ω to P is a mapping from P to {true, false}. ω is complete when all variables are assigned, otherwise it is partial. A variable not assigned is said to be free. The set of all interpretations is denoted by Ω. An interpretation ω is a model of a formula Γ ∈ L P if and only if it makes it true in the usual truth functional way. On the contrary, an interpretation is a countermodel if it does not satisfy the formula. The set of models admitted by Γ is denoted Mod(Γ), with Mod(Γ) = {ω ∈ Ω | ω is a model of Γ}. |= and ≡ denote respectively logical entailment and logical equivalence. Let Γ and ∆ be two distinct propositional formulae, Γ |= ∆ if and only if Mod(Γ) ⊆ Mod(∆) and Γ ≡ ∆ if and only if Mod(Γ) = Mod(∆).

CNF and DNF. A propositional formula is in

Conjunctive Normal Form (CNF) (resp. in Disjunctive Normal Form (DNF)) when it is written as a conjunction of clauses (resp. a disjunction of terms). Alternatively, CNF (resp. DNF) can be represented by their set of clauses (resp. set of terms). The size of the CNF Ψ (resp. DNF), denoted by |Ψ|, is its number of clauses (resp. terms). The conditioning of a CNF formula Ψ by a consistent term γ is the CNF formula Ψ| γ , obtained from Ψ by first removing each clause containing a literal ℓ ∈ γ and then removing all occurrences of ¬ℓ from the remaining clauses. When a CNF formula contains a unit clause {ℓ}, Ψ and Ψ| ℓ are equisatisfiable. The unit propagation of clause {ℓ} is the conditioning of Ψ on ℓ. A CNF formula with no unit clause is said to be closed under propagation. The Boolean Constraint Propagation (BCP), is an algorithm that, given a CNF formula, returns an equivalent CNF closed under unit propagation.

Related problems. Many problems revolve around solutions (or lack thereof) of a given CNF formula Ψ. The decision problem determining whether a model of Ψ exists is the Boolean Satisfiability Problem (SAT) (Biere et al., 2009). A more general problem is the counting problem #SAT [START_REF] Thurley | Sharpsat -counting models with advanced component caching and implicit BCP[END_REF], [START_REF] Lagniez | An improved Decision-DNNF compiler[END_REF] which returns the number of models of Ψ over its own set of variables, denoted by ∥ Ψ ∥. When Var(Ψ) is a proper subset from the initial alphabet P, i.e. there are free variables that are omitted in Ψ, we denote its model count over P by ∥ Ψ ∥ P . When Ψ ∈ L P and X ⊆ P, ∃X.Ψ is a quantified Boolean formula denoting (up to logical equivalence) the most general consequence of Ψ which is independent from the variables of X [START_REF] Lang | Causal theories of action: A computational core[END_REF]. Observe that Var(∃X.Ψ) ⊆ Var(Ψ) \ X. The problem #∃SAT [START_REF] Aziz | #∃SAT: Projected model counting[END_REF] is to determine the number of models of a quantified CNF formula ∃X.Ψ.

Transforming a propositional formula into a CNF form.

Tseitin encoding scheme is a linear-time query-equivalent encoding scheme to translate any propositional formula Γ into a CNF formula Ψ [START_REF] Tseitin | On the complexity of derivation in propositional calculus[END_REF]. To do this, auxiliary variables are added in order to represent subformulae. Since each additional variable is defined from the input variables, both formulae have the same number of models [START_REF] Lagniez | Definability for model counting[END_REF]. More precisely, the models of the resulting CNF encoding are extensions of the models of the input formula, but no model is created nor removed. It is also possible to use a more compact encoding that does not consider equivalence but only implication. This encoding, called Plaisted&Greenbaum encoding [START_REF] Plaisted | A structure-preserving clause form translation[END_REF], does not preserve the number of models but is equivalent modulo forgetting on the auxiliary variables.

Group CNF. Given a CNF formula, clauses can be semantically linked and thus gathered into groups [START_REF] Liffiton | Algorithms for computing minimal unsatisfiable subsets of constraints[END_REF].

G = {G 1 , G 2 , . . . , G m }
Concretely, each group is associated with an identifier which is assigned to the clauses that compose it. In some problems, it is also relevant to gather integrity constraints into a dedicated group denoted by

D. A group CNF (GCNF) formula Φ = D ∪ G with G = {G 1 , G 2 , . . . , G m } can be interpreted as D ∧ G 1 ∧ . . . ∧ G m .
Thus, all notions introduced so far on CNF naturally extend on GCNF by considering D∧G 1 ∧. . .∧G m . Considering GCNF instead of CNF becomes really crucial when the solution of the modeled problem must satisfy some integrity constraints and when we have to select some groups, which taken together with D respect some interesting properties [START_REF] Nadel | Boosting minimal unsatisfiable core extraction[END_REF], [START_REF] Liffiton | Algorithms for computing minimal unsatisfiable subsets of constraints[END_REF], [START_REF] Belov | Algorithms for computing minimal equivalent subformulas[END_REF].

PROBLEM STATEMENT AND COMPUTATIONAL COMPLEXITY

In this section, we first introduce the new notion of soft core, whose objective is to determine a small set of groups that constrains the most a GCNF formula. Then, we will show that computing a soft core whose size is predetermined is an NP PP -hard problem by proposing a reduction from E-MAJSAT (Pipatsrisawat and Darwiche, 2009), which is the prototypical NP PP -complete problem [START_REF] Littman | The computational complexity of probabilistic planning[END_REF].

Definition of a soft core

Informally, a soft core is a subset of a propositional formula, that is small both in size and in the number of models admitted. More formally, it is defined as an element of the Pareto frontier of the problem whose purpose is to find a subset of the formula with two objective functions to be minimized: (a) its size and (b) its number of models. This is detailed in Definition 1.

Definition 1. Given a GCNF formula Φ = D ∪ G, G ′ is a soft core of Φ if and only if: 1. G ′ ⊆ G ; 2. ∀G ′′ ⊆ G, with G ′ ̸ = G ′′ and |G ′′ | ≤ |G ′ |, ∥ D ∪ G ′′ ∥ Var(Φ) ≥∥ D ∪ G ′ ∥ Var(Φ) .
To simplify, we restrict the bi-criteria problem to a single criterion optimization problem by fixing the size of the subset. This size k is chosen by the user. Then, a k-soft core is a subset of the formula of size k with a minimum number of models. We note that, in general, a k-soft core is not a soft core because k may not appear on the Pareto frontier of the bi-criteria optimization problem.

Definition 2. Given a GCNF formula Φ = D ∪ G and an integer k with k ≤ |G|, G ′ is a k-soft core if
and only if:

1. G ′ ⊂ G and |G ′ | = k ; 2. ∀G ′′ ⊆ G and G ′′ ̸ = G ′ , with |G ′′ | = k, ∥ D ∪ G ′′ ∥ Var(Φ) ⩾∥ D ∪ G ′ ∥ Var(Φ) .
We also define the decision problem associated to the optimization problem.

Definition 3. Given a GCNF formula Φ = D ∪ G, k ∈ N and m ∈ N, a subset G ′ of G is said to be a ⟨k, m⟩-soft core if |G ′ | ≤ k and ∥ D ∪ G ′ ∥ Var(Φ) ≤ m.
As already mentioned in the introduction, it is easy to demonstrate that soft cores generalize both SMES and SMUS notions. Indeed, given a CNF formula Ψ, the problem of minimizing k for ⟨k, 0⟩-soft core can be seen as a generalization of SMUS when treating unsatisfiable formulae and minimizing k for ⟨k, ∥ Ψ ∥⟩-soft core can be seen as a generalization of SMES when treating satisfiable formulae.

In the following section, we analyze the computational complexity of the decision version of the k-soft core problem.

Reduction from E-MAJSAT to ⟨k, m⟩-soft core

We prove that ⟨k, m⟩-soft core is NP PP -hard by considering a reduction in polynomial time from the NP PPcomplete problem E-MAJSAT [START_REF] Littman | The computational complexity of probabilistic planning[END_REF]. This problem is defined as follows. Let Ψ be a propositional formula in CNF defined over X ∪Y , where X and Y are two disjoint sets of propositional variables. Does there exist an assignment ω over X such that the majority of assignments over Y satisfies Ψ|w? In other words, E-MAJSAT determines if an assignment ω over X such as

∥ Ψ(ω,Y) ∥ Var(Ψ) > 1 2 × 2 |Y | exists. Proposition 1. Finding a ⟨k, m⟩-soft core is NP PP - hard.
Proof. Let us consider a CNF formula Ψ defined over the set of propositional variables X ∪ Y , with X = {x 1 , x 2 , . . . , x n }. Without loss of generality we suppose that Ψ is not a tautology. Now, let us associate with Ψ the GCNF formula Φ = D ∪ G, with:

G.

G simulates the choices of variables x i ∈ X thanks to 2 × n propositional variables C = {c x 1 , c ¬x 1 , . . . , c x n , c ¬x n }. Each pair {c x i , c ¬x i }, that we note c ℓ , represents the choice of a literal ℓ in the chosen assignment of X. If x i is true, then c x i and therefore c ℓ are also true. Otherwise, if x i is false, then c ¬x i is true and c ℓ is false.

G = {G ℓ s.t. Var(ℓ) ∈ X and G ℓ = {c ℓ }} (1)
We denote by G ′ the set of groups whose unitary clause c ℓ (either c x i or c ¬x i) are fixed to true. In order to select a well constructed interpretation ω of X, such as it does not contain both c x i and c ¬x i , we want to fix k = n, ensuring that exactly n choices are made.

To do this, we have to add constraints to D.

D. Nothing ensures that x i and its complementary ¬x i will not be chosen together. To detect this situation, we add a first constraint to D:

s ⇔ x∈X (c x ⇔ c ¬x) (2)
Equation 2 introduces a new propositional variable s which is logically defined by C. Then, s indicates if ω is consistent (meaning well constructed): if at least one pair x i and ¬x i is set to true, then s is true, otherwise s is false. We use this new variable to make impossible the selection of an inconsistent ω by adding to D the following constraint:

s ∨ ((c x ⇒ x) ∧ (c ¬x ⇒ ¬x) ∧ ¬Ψ) (3)
Then, given the selected interpretation ω, Equation 3 either states the number of models of ¬Ψ conditioned by ω if ω is well constructed or if not, states 2 |Var(Ψ)| models. In the E-MAJSAT problem, we search for an assignment of X such that we get at least 1 2 × 2 |Y | models, whereas when computing a ⟨k, m⟩-soft core, we search for k groups such that we have at most m models. Thus, we use the fact that minimizing the number of models of Ψ is maximizing the number of counter models of Ψ and we consider the negation of Ψ. We obtain the following GCNF:

Φ = G ∧ s ⇔ x∈X (c x ⇔ c ¬x) ∧ (s ∨ ((c x ⇒ x) ∧ (c ¬x ⇒ ¬x) ∧ ¬Ψ)) (4)
For the sake of simplicity, we chose to not translate Equations 2 and 3 into CNF formulae. However, and as pointed out in Section 2, this translation into a CNF formula with the same number of models can be done in polynomial time using Tseitin encoding. Now, let us demonstrate that by fixing m = (2 n -1) × 2 |Var(Ψ)| + 1 2 × 2 |Y | -1, we intend to prove that there is an assignment w over X such that the majority of assignments over Y satisfies Φ|w, if and only if there exists a

G ′ ⊆ G s.t. |G ′ | ≤ k and ∥ D ∪ G ′ ∥ Var(Φ) ≤ m.
First, let us remark that after selecting n groups, n variables of C are units and the remaining n variables of C are free. From now on, two cases have to be considered: (a) the selected groups are inconsistent in a sense that there exists a literal ℓ of X such that G ℓ and G ¬ℓ have been selected and (b) the selected groups are consistent in a sense that there does not exist such a literal ℓ. The remaining case, which consists in the situation where there exists a literal ℓ of X such that neither G ℓ or G ¬ℓ has been selected, is a consequence of case (a). Indeed, since |G| = 2 × |X| and only one group is associated with each literal of X, if there exists a literal ℓ of X such that neither G ℓ or G ¬ℓ have been selected, then there exists ℓ ′ of X such that G ℓ ′ and G ¬ℓ ′ has been selected (Dirichlet's drawer principle).

a. Then, let us show that whatever the selected groups G ′ which fall in case (a), we have

∥ D ∪ G ′ ∥ Var(Φ) = 2 n × 2 |Var(Ψ)| .
If there exists a literal ℓ of X such that G ℓ and G ¬ℓ have been selected, then s is necessary true by Equation 2. By both replacing s by ⊤ in Equation 3 and simplifying Equation 2 we get D = ⊤. Consequently, the number of models of D ∪ G ′ is given by the number of free variables in D ∪ G ′ over Var(Φ), which are the variables of Ψ as well as half of the variables of C, thus n + |Var(Ψ)| free variables. Then, whatever the n selected groups, we always have in case (a):

m 1 = ∥ D ∪ G ′ ∥ Var(Φ) = 2 n × 2 |Var(Ψ)| = (2 n -1) × 2 |Var(Ψ)| + 2 |Var(Ψ)| (5) Since we supposed that Ψ ̸ ≡ ⊤, then ∥ Ψ ∥ Var(Ψ) < 2 |Var(Ψ)| and we have m < m 1 . Consequently, we can not find out a subset G ′ ⊆ G that is a ⟨k, m⟩-soft core of Φ for k = n and m = (2 n -1) × 2 |Var(Ψ)| + 1 2 × 2 |Y | -1 if we are in case (a).
b. Let us consider the second case (b). By Dirichlet's drawer principle, G ′ will only consider one group for each literal,

G ′ = {G ℓ 1 , G ℓ 2 , . . . , G ℓ n }, such that Var(ℓ i) = x i and x i ∈ X. Then, D ∪ G ′ is equal to D ∪ {c ℓ 1 , c ℓ 2 , . . . , c ℓ n }, which is equivalent to Γ = D ∧ c ℓ 1 ∧ c ℓ 2 ∧ . . . ∧ c ℓ n .
We can show that the only situation where s is not true by Equation 2 is when c ¬ℓ 1 , c ¬ℓ 2 , . . . , c ¬ℓ n are all set to false. Indeed, for all remaining 2 n -1 cases, there exists ℓ i such that c ℓ i and c ¬ℓ i are true, which makes s = ⊤. For each w c assignment of c ¬ℓ 1 , c ¬ℓ 2 , . . ., c ¬ℓ n , in these 2 n -1 cases we have Γ| w c = ⊤. Thus, all variables from Ψ are free and the number of models is 2 |Var(Ψ)| . When we consider the interpretation w ′ c that makes all c ¬ℓ 1 , c ¬ℓ 2 , . . . , c ¬ℓ n set to false, s would also be set to false by Equation 2. Thus, we get:

Γ| w ′ c ≡ D ∧ c ℓ 1 ∧ c ℓ 2 ∧ . . . ∧ c ℓ n ∧ ¬c ¬ℓ 1 ∧ ¬c ¬ℓ 2 ∧ . . . ∧ ¬c ¬ℓ n ≡ ¬s ∧ ℓ 1 ∧ ℓ 2 ∧ . . . ∧ ℓ n ∧ ¬Ψ ∧ c ℓ 1 ∧ c ℓ 2 ∧ . . . ∧ c ℓ n ∧ ¬c ¬ℓ 1 ∧ ¬c ¬ℓ 2 ∧ . . . ∧ ¬c ¬ℓ n (6)
Since all the variables except those of Y are units, then

∥ Γ| w ′ c ∥ Var(()Φ) =∥ (¬Ψ)| ℓ 1 ,ℓ 2 ,...,ℓ n ∥ Var(Ψ)
. Consequently, in case (b) we have:

m 2 = ∥ D ∪ G ′ ∥ Var(Φ) = (2 n -1) × 2 |Var(Ψ)| + ∥ (¬Ψ)| ℓ 1 ,ℓ 2 ,...,ℓ n ∥ Var(Ψ) (7)
Finally, G ′ is a ⟨k, m⟩-soft core of Φ if and only if G ′ falls in the case (b) and

m 2 ≤ (2 n -1)×2 |Var(Ψ)| + 1 2 × 2 |Y | -1 which implies that ∥ (¬Ψ)| ℓ 1 ,ℓ 2 ,...,ℓ n ∥ Var(Ψ) ≤ 1 2 × 2 |Y | -1.
Since all variables of X are assigned, the last assertion is true only when (¬Ψ)| ℓ 1 ,ℓ 2 ,...,ℓ n has a minority of models over Y , which is the case when Ψ| ℓ 1 ,ℓ 2 ,...,ℓ n has a majority of models over Y . We have proven that there is an assignment w over X such that the majority of assignments over Y satisfies Ψ| w if and only if there exists a ⟨k, m⟩-soft core of Φ.

Proposition 1 shows that it is theoretically possible to leverage an E-MAJSAT solver in order to compute a k-soft core. However, in practice, the transformation of an instance of k-soft core into an instance of E-MAJSAT is not straightforward and more importantly (to the best of our knowledge) no E-MAJSAT solver is available. In the next section, we propose a more convenient transformation from an instance of the soft core problem to an instance of MAX#SAT, another NP PP -complete problem. MAX#SAT is to determine an assignment of some variables that max-imizes the number of models of a given CNF formula. The possibility of using an available tool to approximate MAX#SAT (https://github.com/dfremont/ maxcount) is also an argument for using such translation.

EXTRACTING A k-soft core

A naive way to extract a k-soft core from a GCNF formula would be to enumerate all possible combinations of k groups, extract the selection from the formula and call a model counter to compute its number of models over the whole alphabet. Obviously, in practice this is feasible only on very small instances. Then, we propose an alternative procedure, which also guarantees completion, that encodes the problem as an instance of the problem MAX#SAT.

Translation to MAX#SAT

MAX#SAT is a recent optimization problem, defined as an extension of the #SAT problem and useful in different applications, such as planning and probabilistic inference [START_REF] Fremont | Maximum model counting[END_REF]. Let Ψ be a CNF formula defined on three distinct sets of variables, X, Y , and Z, respectively called maximization, counting and existentially quantified variables. The MAX#SAT problem is to find the truth assignment ω X over the variables X that maximizes ∥ ∃Z.Ψ(ω X ,Y, Z) ∥ Y . In other words, ω X is the assignment that maximizes the number of assignments to Y such that Ψ(ω X ,Y, Z) is satisfiable. Thus, MAX#SAT can succinctly be summarized as max X #Y ∃Z.Ψ(X,Y, Z). Its decision version is NP PP -complete [START_REF] Fremont | Maximum model counting[END_REF].

To the best of our knowledge, the only implementation of MAX#SAT is Maxcount [START_REF] Fremont | Maximum model counting[END_REF], an approximate solver that takes upon entry a CNF formula and a (X,Y, Z)-partition of its variables, Z being possibly empty. Maxcount returns the best truth assignment found over X, alongside its approximate projected model count. As it is, it can not be used to extract a k-soft core. Then, we propose an encoding to transform linearly any k-soft core instance into a MAX#SAT one.

Addition of selectors.

Let Φ = D ∪ {G 1 , G 2 , . . . , G m } be a GCNF formula. First, to be able to extract groups from Φ, a new variable x i called a selector is added to every clause from the same group G i ∈ Φ. For each i ∈ {1 . . . m}, we obtain the augmented group

G * i = |G i | j=1 (α j ∨ ¬x i).
Thus, selectors have the same behavior than identifiers in GCNF: we can interpret groups as sets of clauses gathered together via selectors and the augmented formula as a CNF. Let Y be Var(Φ) and X = {x 1 , . . . , x m } the set of selector variables. Then, we note Ψ the CNF formula obtained, with

Ψ(X,Y) = D ∧ m i=1 G * i .
When a selector x i is fixed to false, the set of clauses associated is satisfied and thus, said to be deactivated. Otherwise, the selector is removed and the set of clauses is activated. Conditioning Ψ(X,Y) on any truth assignment ω X over X removes all groups whose selectors have been set to false and extracts the remaining.

Negation of the formula. Let Θ be (ω X (x i)=1 G i), i.e., the subset of groups selected by the assignment to X. Then, Ψ(X,Y)| ω X = D ∧ Θ. To make Θ a soft core, we want to find ω X that minimizes ∥ D ∧ Θ ∥ Y . As minimizing the number of models of a propositional formula corresponds to maximizing its number of counter-models, we can use MAX#SAT to compute a soft core from a CNF formula, provided it has been negated first. By De Morgan's law, negating Ψ results in the DNF formula Ψ * (X,Y) = ¬D ∨ m i=1 ¬G * i . Thus, solving max X #Y (¬Ψ * (X,Y)) extracts a soft core. However, Maxcount asks for a CNF input.

Transformation into a CNF. As pointed out in Section 2, a DNF formula can be linearly transformed into a CNF formula by adding auxiliary variables. To keep the correct number of models, all the auxiliary variables that are not logically defined by Var(Ψ(X,Y)) are put into Z, which we recall is the set of variables to be existentially quantified. To be more precise, this applies when the Plaisted&Greenbaum scheme is used. As Tseitin scheme ensures that the number of models is kept, auxiliary variables can either be in Y or Z. Whatever the encoding selected, let us call Ψ(X,Y, Z) the CNF formula that encodes Ψ * (X,Y).

Activation of k selectors.

Solving max X #Y ∃Z. Ψ(X,Y, Z) results into an assignment ω X over X that selects the set of groups minimizing ∥ Ψ(ω X ,Y) ∥ Y , which without further constraint, would correspond to all groups of Φ. To guarantee that exactly k groups are selected, we add over the selectors X the cardinality constraint ∑ m i=1 x i = k, translated into a CNF formula Γ [START_REF] Asín | Cardinality networks: a theoretical and empirical study[END_REF] defined over X and Z ′ , with X ∩ Z ′ = / 0, Z ′ being the set of auxiliary variables mandatory to generate the selected encoding. The resulting formula is

Ψ k (X,Y, Z ′′) = Ψ(X,Y, Z) ∧ Γ(X, Z ′), with Z ′′ = Z ∪ Z ′ . Whenever ω X falsifies Γ(X, Z ′), ∥ ∃Z ′′ .Ψ k (ω X ,Y, Z ′′) ∥ Y
would be equal to zero. Therefore, ω X can not be the solution to maximizing the number of models and solving max X #Y ∃Z ′′ .Ψ k (X,Y, Z ′′) has to return a k-soft core.

To sum up, given a GCNF formula Φ = D ∧ m i=1 G i , we compute a k-soft core by considering the following MAX#SAT formulation, τ being the transformation chosen to get a CNF from a DNF and χ the CNF encoding of the cardinality constraint :

max X #Y ∃Z ′′ .(τ(¬(m i=1 |G i | j=1 (α j ∨¬x i))) ∧ χ(m ∑ i=1 x i = k))
As already mentioned, there exists only one software able to handle the MAX#SAT problem, and it returns only an approximation. In the next section, we propose a new and exact approach to tackle the MAX#SAT problem.

Algorithm for Computing MAX#SAT

Algorithm 1 provides the pseudo-code of Function max#SAT that solves exactly MAX#SAT and which takes upon entry a CNF Ψ and a (X,Y, Z)-partition of its variables, respectively the counting, optimization and existentially quantified variables. It returns a term t, corresponding to an assignment of some variables of X, and the projected number of models of ∃Z.Ψ(t,Y, Z) over Y .

By construction, t is such that all complete interpretations w of X extending t respect

∥ ∃Z.Ψ(t,Y, Z) ∥ Y =∥ ∃Z.Ψ(w,Y, Z) ∥ Y .
Based on the model counter d4 [START_REF] Lagniez | An improved Decision-DNNF compiler[END_REF], max#SAT is a top-down tree-search algorithm which is, in our case, decomposed into two parts: (a) as long as the current formula contains variables from X, we branch on such variables. We keep the assignment that maximizes the number of projected models, ∥ ∃Z.Ψ(t,Y, Z) ∥ Y , which is computed in the second part (b) of the tree as soon as there is no more variables from X to select and by considering in priority variables from Y .

We also take advantage of the dynamic decomposition and cache implementation of d4. Let Ψ be the current formula. Ψ can be partitioned into disjoint subformulae {Ψ 1 , . . . , Ψ d }, when for each i, j ∈ {1, . . . , d} with i ̸ = j, Ψ i and Ψ j do not share any variable (i.e. Var(Ψ i) ∩ Var(Ψ j) = / 0). Then, each subformula Ψ i is treated separately and their solutions aggregated af-terwards. Furthermore, we use a cache to avoid computing once more an already encountered subformula. Each time a new value of ⟨t, ∥ ∃Z.Ψ(t,Y, Z) ∥ Y ⟩ is computed, it is stored in a map. If a previously computed formula is found again, then the cache would return the combination saved. First, at line 1, one tests whether the formula Ψ is satisfiable. If not, whatever the interpretation considered on X is, the number of models corresponding would be equal to zero and max#SAT returns ⟨ / 0, 0⟩. BCP simplifies Ψ at line 2 and returns an equivalent formula Ψ ′ alongside the unit literals which were propagated. If Ψ ′ has already been cached, max#SAT returns cache[Ψ ′] (line 3). Afterwards, we construct ret (line 4), the temporary result that will be returned at line 21 and which initially contains an empty term with a neutral number of models.

connectedComponent partitions Ψ ′ into a set of disjoint connected components at line 8. If there are more than one component, then at line 8, the current solution is equal to the aggregation of the solutions of all its sub-components. As they do not share any variables,

Ψ ′ ≡ Ψ 1 ∧ . . . ∧ Ψ n . Then, ∃Z.Ψ ′ ≡ ∃Z.(Ψ 1 ∧. . .∧Ψ n) ≡ ∃Z.(Ψ 1)∧. . .∧∃Z.(Ψ n). There- fore, the number of projected models ∥ ∃Z.Ψ ′ ∥ Y is equal to ∥ ∃Z.Ψ 1 ∥ Y × . . . × ∥ ∃Z.Ψ n ∥ Y ,
and the assignments over X are concatenated.

If Ψ ′ can not be partitioned into more than one component (j = 1), a variable from X (or if X is empty, Y) is selected (lines 11-13). If Y is also empty, then the only remaining variables are existentially quantified and the current branch can be stopped, as we already know that the current assignment has an extension on Z that satisfies Ψ ′ . Otherwise, regardless of whether the decision variable is from X, we compute via two recursive calls to max#SAT the solutions for either conditioning Ψ ′ by v or ¬v (lines 15 and 16). If v is a maximization variable (line 17), then the current number of models is equal to the one given by the conditioning that resulted the higher number of models. If v is a counting variable (line 18), then the current number of models is equal to the sum of the two solutions, as in normal model counters. In line 19, we replace ret by the computed result we just stored in cache[Ψ ′].

Finally, at line 20, we update the current result stored in ret by extending its term with the unit literals of X that have been computed by BCP, and by multiplying its number of models with the free variables of Ψ ′ belonging to Y .

Input: Ψ: a CNF formula, (X,Y, Z): a partition of Var(Ψ). Output: ret = ⟨t, c⟩ s.t. any interpretation of X that extends t is a solution for MAX#SAT, and c the number of models obtained.

if Ψ is unsat then return ⟨ / 0, 0⟩ ; (Ψ ′ , units) ← BCP(Ψ) if cache[Ψ ′] ̸ = / 0 then return cache[Ψ ′] ; ret ← ⟨ / 0, 1⟩; {Ψ 1 , . . . , Ψ j } ← connectedComponent(Ψ ′) if j > 1 then for Ψ i ∈ {Ψ 1 , . . . , Ψ j } do ret ← ret × max#SAT(Ψ i , X, Y, Z) end else if j = 1 then v ← undef if Var(Ψ ′) ∩ X ̸ = / 0 then v ← selectVar(Var(Ψ ′) ∩ X) else if var(Ψ ′) ∩ Y ̸ = / 0 then v ← selectVar(Var(Ψ ′) ∩Y) end if v ̸ = undef then ⟨t 1 , v 1 ⟩ ← max#SAT({Ψ ′ ∧ v}, X, Y , Z) ⟨t 2 , v 2 ⟩ ← max#SAT({Ψ ′ ∧ ¬v}, X, Y , Z) if v ∈ X then cache[Ψ ′] ← (v 1 > v 2) ? ⟨t 1 , v 1 ⟩ : ⟨t 2 , v 2 ⟩ else cache[Ψ ′] ← ⟨ / 0, v 1 + v 2 ⟩ end ret ← cache[Ψ ′] end end return ret × ⟨ {ℓ ∈ units | Var(ℓ) ∈ X}, 2 |(Var(Ψ)\(var(Ψ ′)∪Var(units)))∩Y | ⟩
Algorithm 1: Function max#SAT.

EXPERIMENTAL RESULTS

We experimentally evaluated our MAX#SAT encoding of k-soft core instances on both the state-of-art approximate solver Maxcount and our complete solver based on the algorithm to compare their performance. To the best of our knowledge, as there is no similar notion of soft cores in the literature, we can not rely on existing benchmarks to experiment on. Thus, as performance was not the primary concern in this paper, we only considered small satisfiable instances crafted by a random 3-CNF formulae generator, with ten different variables and a clause-to-variables ratio of 4.2. Afterwards, we translated all problems into MAX#SAT instances using the encoding presented in the previous section, with one clause per group. We considered three variants, depending on the transformation selected to get back a CNF. If the Plaisted&Greenbaum scheme was used, then all auxiliary variables were existentially quantified. Otherwise, with the Tseitin scheme, auxiliary variables were added on one side to the counting set, and on the other to the existentially quantified one, which we denote respectively by Tseitin(Y) and Tseitin(Z).

For each instance, we measured the time in (seconds) required by max#SAT and Maxcount to terminate, as well as the number of models found. While max#SAT is exact, Maxcount is an approximate model counter. Thus, the estimated number of models is important to evaluate correctly the soft cores selected by Maxcount. Furthermore, Maxcount takes upon entry the number of copies n of the formula to use in the self-decomposition. We have tested each instance with a n set to 0, 3 and 5. When n is equal to zero, the assignment to X is given at random with no constraints, and during our experiments, it always returned a solution that violated the cardinality constraint. However, setting n to a much higher integer (n = 5) did not result into a better estimated count, and increased significantly the runtime. To be fair, we only report Maxcount with n = 3, the best parameter from all tested.

All the experiments have been conducted on a cluster of Intel XEON X5550 (2,66 Ghz) bi-core processors with 32 GiB RAM. Each solver was run with a time-out of three hours and a memory limit of 32 GiB of per input instance.

Table 1 reports the results for each considered variant.

As each instance contains 42 clauses and thus, 42 selectors, we set k equal to 5 in order to restrict the number of possible combinations, 42 5 being already equal to 859, 668. Yet, the naive method proposed in the introduction of Section 4 did not terminate within the specified time. As the structure stays the same, i.e., instances are all composed of 42 ternary clauses, all formulae after translation were up to 462 variables, with respectively 1625 and 1667 clauses for the Plaisted&Greenbaum or Tseitin transformations. As max#SAT is complete, it returns the assignment on X that maximizes the number of models of the negated formula. We did not report the number of models computed, as it is always the same, which is here equal to 640 models.

The experiment shows that Maxcount only terminates when auxiliary variables are put into Z, and is slightly faster if the encoding variables are equivalent to the subformulae they represent, as in the Tseitin scheme. The results given with max#SAT are a mirror image of Maxcount: besides giving a solution when counting the auxiliary variables, selecting the Plaisted&Greenbaum scheme is faster than using the Tseitin transformation. In most cases, Maxcount is faster than max#SAT but it also always returns an estimated count that is lower than the optimum solution. Obviously, this experiment is only an outline of what could be solved by Maxcount and max#SAT, the primary objective being to show that on small instances, max#SAT is rather competitive with Maxcount. However, on larger instances, Maxcount may scale up better than MAX#SAT, as it is an approximate solver.

CONCLUSION AND PERSPECTIVES

In order to explain results from CNF formulae, we introduced a new notion called soft core, which is a sufficiently small and highly constrained part of a formula. Soft cores can be used to identify which constraints should be relaxed in order to obtain other solutions, to select the most relevant constraints in the formula or to help when modeling. Identifying soft cores is a bi-criteria optimization problem where both the size and the number of models of the subformula have to be minimized. In this article, we focused on the restricted problem k-soft core where the size of the soft core is given by the user, thus becoming a single objective function problem. We showed the NP PP -hardness of the decision version of the k-soft core problem by considering a reduction from E-MAJSAT, and proposed an encoding to transform k-soft core instances into MAX#SAT ones, as well as a first exact MAX#SAT solver. At last, an experimental evaluation on randomly small generated CNF formulae has been realized.

As expected, even the restricted version k-soft core is a difficult problem. At the present time, as long as the cardinality constraint is considered globally, only small instances can be envisioned. Indeed, the major part of the tree search corresponds to assignments that falsify the cardinality constraint. Thus, pruning them would improve the performance. Furthermore, the cardinality constraint, in addition to increase the size of the formula, may prevent it to be partitioned into disjoint components, which would also fasten the runtime. Thus, to be more effective when searching for k-soft cores, a first improvement is to handle directly the cardinality constraint. A second perspective is to stop considering the problem as a MAX#SAT instance, but to use a dedicated solver whose purpose would be to minimize directly the number of models, and use the input formula without transforming it. Finally, we could also compute approximately soft cores by considering local search: we first pick k groups from the formula, and we switch elements one by one until no switch decreases the number of models admitted.

Table 1 :

 1 Computing soft cores from random 3-CNF formulae.

		P&G		Tseitin (Y)		Tseitin (Z)	
	max#SAT	Maxcount	max#SAT	Maxcount	max#SAT	Maxcount
	time(s)	#mod	time(s)	time(s)	#mod	time(s)	time(s)	#mod	time(s)
	102	560	92	135	timeout	107	536	77
	91	560	84	147	timeout	101	560	86
	91	576	99	136	timeout	111	560	85
	99	547	81	151	timeout	95	544	80
	85	560	89	130	timeout	105	564	89
	105	536	99	148	timeout	100	544	84
	95	576	99	137	timeout	125	576	105
	107	576	102	153	timeout	102	576	92
	94	560	92	137	timeout	115	560	85
	107	576	102	142	timeout	97	532	90