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1. Introduction

Computing the super-hedging prices of a European option in presence of
transaction costs is a difficult task. Indeed, the classical results of the litera-
ture focus on linear transaction costs and only dual characterizations of the
super-hedging prices are formulated, see the FTAP theorems (Fundamental
Theorem of Asset Pricing) by [14], [13], [20] among others. These results are
formulated under rather strong no-arbitrage conditions (see [15], [18]) and
the super-hedging prices are estimated through dual characterizations based
on the so-called consistent price systems, see [4], [10].

The interesting question is how to implement the FTAP theorem and de-
duce numerical estimation of the prices. Few attempts have been achieved in
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that direction, e.g. [27] in the case of a finite probability space. The general
case is difficult as we have first to identify the dual elements, i.e. the con-
sistent price systems, which are martingales evolving in the positive duals
of the solvency cones. The second step is to propose a numerical procedure
to evaluate the possible super-hedging prices. There is no such a numerical
method in the literature. Moreover, if the transaction costs are non linear,
there is a priori no dual elements characterizing the no-arbitrage condition.

The methods we develop in this paper are based on the recent paper [22]
where the super-hedging prices are characterized for a large class of transac-
tion cost models which are not necessary linear. Indeed, using a new approach
based on a weak no-arbitrage condition, mainly the prices of the non neg-
ative claims are supposed to be non negative, we prove that the infimum
prices of a European claim are solutions to a dynamic programming problem
it is possible to solve backwardly, at least in discrete-time. However, in [22],
the results are merely theoretical. The authors do not provide algorithms
to compute the super-hedging costs in practice. In this paper, we address
this problem. To be precise, we consider financial markets with transaction
costs defined by a cost process (Ct)0≤t≤T depending on traded volumes and
a process (St)0≤t≤T that includes the asset prices. We shall consider the case
of countably infinite t-conditional supports for St+1 where an exact charac-
terization of the super-hedging costs is given. The randomized procedure we
propose is based on the simulation of conditionally identically distributed
random variables which share the same conditional support as the price pro-
cess (St)0≤t≤T . We formulate a limit theorem, see Theorem 3.15, that proves
the efficiency of our method.

The paper is organized as follows. In Section 2, we recall the market model
studied in [22] and the dynamic programming theorem. In Section 3, we de-
scribe the numerical scheme and the main convergence theorems. We present
in Section 4 the special case of a model with one risky asset and a piecewise
cost process (Ct)0≤t≤T . In Section 5, we also give the exact solution of the
super-hedging cost in the models with proportional costs and with and with-
out fixed cost. Finally, in Section 6, we prove a limit theorem for a sequence
of financial markets defined by convex cost processes.
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2. The model

Let ξ ∈ L0(Rd,FT ) be a contingent claim. Our goal is to characterize the
set of all self-financing portfolio processes (Vt)

T
t=−1 such that VT = ξ. Recall

that a portfolio process is by definition (see [22]) a stochastic process (Vt)
T
t=−1

where V−1 ∈ Re1 is the initial endowment expressed in cash that we may
convert immediately into V0 ∈ Rd at time t = 0. By definition, we suppose
that

∆Vt = Vt − Vt−1 ∈ −Gt, a.s., t = 0, · · · , T,
where, for every t ≤ T , Gt is the random set of all solvent positions.

Our general model is defined by a set-valued process (Gt)
T
t=0 adapted to

the filtration (Ft)Tt=0. Precisely, we suppose that for all t ≤ T , Gt is Ft-
measurable in the sense of the graph Graph(Gt) = {(ω, x) : x ∈ Gt(ω)} that
belongs to Ft×B(Rd), where B(Rd) is the Borel σ-algebra on Rd and d ≥ 1
is the number of assets.

We suppose that Gt(ω) is closed for every ω ∈ Ω and Gt(ω)+Rd
+ ⊆ Gt(ω),

for all t ≤ T . The cost value process C = (Ct)
T
t=0 associated to G is defined

as:

Ct(z) = inf{α ∈ R : αe1−z ∈ Gt} = min{α ∈ R : αe1−z ∈ Gt}, z ∈ Rd.

We suppose that the right hand side in the definition above is non empty a.s.
and −e1 does not belong to Gt a.s. where e1 = (1, 0, · · · , 0) ∈ Rd. Moreover,
by assumption, Ct(z)e1 − z ∈ Gt a.s. for all z ∈ Rd. Note that Ct(z) is the
minimal amount of cash one needs to get the financial position z ∈ Rd at
time t. In particular, we suppose that Ct(0) = 0.

If we define the liquidation value process  Lt(z) = −Ct(−z), we get that
Gt = {z ∈ Rd :  Lt(z) ≥ 0} and, as Gt is supposed to be closed a.s.,
 Lt(z) is upper semicontinuous (u.s.c.) in z, see [24], or equivalently Ct(z) is
lower semicontinuous (l.s.c.) in z. Naturally, Ct(z) = Ct(St, z) depends on the
available quantities and prices for the risky assets, described by an exogenous
vector-valued Ft-measurable random variable St of Rm

+ , m ≥ d, and on the
quantities z ∈ Rd to be traded. Here, we suppose that m ≥ d as an asset
may be described by several prices and quantities offered by the market, e.g.
bid and ask prices, or several pair of bid and ask prices of an order book and
the associated quantities offered by the market.

Some examples of models are given in [22]. In the following, we are inter-
ested in the infimum cost one needs to super-hedge ξ, i.e. the infimum value
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of the initial capitals V−1 ∈ R among the portfolios (Vt)
T
t=−1 super-replicating

ξ.

In the following, we use the notation z = (z1, z2, ..., zd) ∈ Rd and we denote
z(2) = (z2, ..., zd) ∈ Rd−1. Recall that the Ft-measurable conditional essential
supremum of a family of random variables is the smallest Ft-measurable
random variable that dominates the family with respect to the natural order
between [−∞,∞]-valued random variables, i.e. X ≤ Y if P (X ≤ Y ) = 1, see
[20, Section 5.3.1].

2.1. The one step hedging problem between time t − 1 and t

Recall that Vt−1 ≥Gt Vt by the definition of portfolio process. Then, the
hedging problem Vt = ξ is equivalent at time t− 1 to:

 Lt(Vt−1 − ξ) ≥ 0 ⇐⇒ V 1
t−1 ≥ ξ1 −  Lt((0, V

(2)
t−1)),

⇐⇒ V 1
t−1 ≥ ess supFt−1

(
ξ1 −  Lt((0, V

(2)
t−1 − ξ(2)))

)
,

⇐⇒ V 1
t−1 ≥ ess supFt−1

(
ξ1 + Ct((0, ξ

(2) − V (2)
t−1))

)
,

⇐⇒ V 1
t−1 ≥ F ξ

t−1(V
(2)
t−1),

where

F ξ
t−1(y) = ess supFt−1

(
ξ1 + Ct((0, ξ

(2) − y))
)
. (2.1)

By virtue of [22, Proposition 5.7], we may suppose that F ξ
t−1(ω, y) is jointly

Ft−1 × B(Rd−1)-measurable, a.s. l.s.c. (lower semi-continuous) as a function
of y and convex in y if Ct(s, y) is convex in y. As Ft−1 is supposed to be com-
plete, we conclude that F ξt−1 is an Ft−1-normal integrand, see [26][Theorem
Corollary 14.34].

2.2. The multi-step hedging problem

We denote by Pt(ξ) the set of all portfolio processes starting at time t ≤ T
that replicates ξ at the terminal date T :

Rt(ξ) :=
{

(Vs)
T
s=t : Vs ∈ L0(Rd,Fs),∆Vs ∈ −Gs, ∀s ≥ t+ 1, VT = ξ

}
.
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The set of replicating prices of ξ at time t is

Pt(ξ) :=
{
Vt = (V 1

t , V
(2)
t ) : (Vs)

T
s=t ∈ Rt(ξ)

}
.

We define the the infimum replicating cost by:

ct(ξ) := ess infFt {Ct(Vt), Vt ∈ Pt(ξ)} .

By Section 2.1, we know that VT−1 ∈ PT−1(ξ) if and only if

V 1
T−1 ≥ ess supFT−1

(
ξ1 + CT (0, ξ(2) − V (2)

T−1)
)

a.s.

Similarly, VT−2 ∈ RT−2(ξ) if and only if there exists V
(2)
T−1 ∈ L0(Rd−1,FT−1)

such that

V 1
T−2 ≥ ess supFT−2

(
ess supFT−1

(
ξ1 + CT (0, ξ(2) − V (2)

T−1)
)

+ CT−1(0, V
(2)
T−1 − V

(2)
T−2)

)
.

By the tower property satisfied by the conditional essential supremum, we
deduce that VT−2 ∈ RT−2(ξ) if and only if there is V

(2)
T−1 ∈ L0(Rd−1,FT−1)

such that

V 1
T−2 ≥ ess supFT−2

(
ξ1 + CT (0, ξ(2) − V (2)

T−1) + CT−1(0, V
(2)
T−1 − V

(2)
T−2)

)
.

Recursively, we get that Vt ∈ Pt(ξ) if and only if, for some V
(2)
s ∈ L0(Rd−1,Fs),

s = t+ 1, · · · , T − 1, and with V
(2)
T = ξ(2), we have

V 1
t ≥ ess supFt

(
ξ1 +

T∑
s=t+1

Cs(0, V
(2)
s − V (2)

s−1)

)
.

In the following, for u ≤ T − 1, ξu−1 ∈ L0(Rd,Fu−1), and ξ ∈ L0(Rd,FT ),
we define the sets:

ΠT
u (ξu−1, ξ) := {ξ(2)

u−1} × ΠT−1
s=uL

0(Rd−1,Fs)× {ξ(2)}

of all families (V
(2)
s )t+1

s=u−1 such that V
(2)
u−1 = ξu−1, V

(2)
s ∈ L0(Rd−1,Fs) for all

s = u, · · · , T − 1 and V
(2)
T = ξ(2). We set ΠT

u (ξ) := ΠT
u (0, ξ) = ΠT

u (ξu−1, ξ)

5



when ξ
(2)
u−1 = 0. When u = T , we set ΠT

T (ξT−1, ξ) := {ξ(2)
T−1}×{ξ(2)}. Therefore,

the infimum replicating cost at time 0 is given by

c0(ξ) = ess infF0

V 2∈ΠT
0 (ξ)

ess supF0

(
ξ1 +

T∑
s=0

Cs(0, V
2
s − V 2

s−1)

)
.

For 0 ≤ t ≤ T and Vt−1 ∈ L0(Rd,Ft), we define γξt (Vt−1) as:

γξt (Vt−1) := ess infFt

V (2)∈ΠT
t (Vt−1,ξ)

ess supFt

(
ξ1 +

T∑
s=t

Cs(0, V
(2)
s − V (2)

s−1)

)
. (2.2)

Note that γξt (Vt−1) is the infimum cost to replicate the payoff ξ when

starting from the initial position (0, V
(2)
t−1) at time t. Observe that γξt (Vt−1)

does not depend on the first component V 1
t−1 of Vt. Moreover,

γξT (VT−1) = ξ1 + CT (0, ξ(2) − V (2)
T−1).

As GT + Rd
+ ⊆ GT , we also observe that γξT (VT−1) ≥ γ0

T (VT−1) if ξ ∈
L0(Rd

+,FT ). At last, observe that c0(ξ) = γξ0(0).

We recall the following result from [22]:

Proposition 2.1 (Dynamic Programming Principle). For any 0 ≤ t ≤ T −1
and Vt−1 ∈ L0(Rd,Ft−1), we have

γξt (Vt−1) = ess infFt

Vt∈L0(Rd,Ft)

ess supFt

(
Ct(0, V

(2)
t − V (2)

t−1) + γξt+1(Vt)
)
. (2.3)

Assumption 1. The payoff ξ is hedgeable, i.e. there exists a portfolio process
(V ξ

u )Tu=0 such that ξ = V ξ
T .

The dynamic programming principle (2.3) allows to get γξt (Vt−1) from the
cost function Ct and from γξt+1. In the paper [22], we have shown that γξt
is l.s.c. for any t and convex, or piecewise linear, if γξt+1 satisfies the same
properties.

As the term Ct(0, V
(2)
t −V

(2)
t−1) in (2.3) is Ft−1-measurable, we consider the

conditional supremum

θξt (Vt) := ess supFt
γξt+1(Vt)
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to compute the essential supremum of (2.3). In the following, we shall use
the following notations:

Dξ
t (Vt−1, Vt) = Ct((0, V

(2)
t − V (2)

t−1)) + θξt (Vt), (2.4)

Dξ
t (St, Vt−1, Vt) = Ct(St, (0, V

(2)
t − V (2)

t−1)) + θξt (St, Vt). (2.5)

The second notation is used when we stress the dependence on St. Observe
that γξt (Vt−1) = ess infFt

Vt∈L0(Rd,Ft)

Dξ
t (Vt−1, Vt).

In order to numerically compute the minimal costs, we need to impose
the finiteness of γξt (Vt−1), i.e. γξt (Vt−1) > −∞ a.s., at any time t and for all
Vt−1 ∈ L0(Rd,Ft−1). This is why, we consider the following condition, see
[22]:

Definition 2.2. We say that the financial market satisfies the Absence of
Early Profit condition (AEP) if, at any time t ≤ T , and for all Vt ∈ L0(Rd,Ft),
γ0
t (Vt) > −∞ a.s..

3. Numerical schemes

In the following, we suppose the following assumptions on the cost process C.
For any t ≤ T , the cost function Ct is a lower-semi continuous Borel function
defined on Rk ×Rd such that

Ct(s, 0) = 0, ∀s ∈ Rk
+,

Ct(s, x+ λe1) = Ct(s, x) + λ, λ ∈ R, x ∈ Rd, s ∈ Rk
+ (cash invariance),

CT (s, x2) ≥ CT (s, x1), ∀x1, x2 s.t. x2 − x1 ∈ Rd
+ (CT is increasing w.r.t.Rd

+).

Note that CT is increasing w.r.t. Rd
+ is equivalent to GT + Rd

+ ⊆ GT . More-
over, for some a ≥ 0, we say that Ct is a- super homogeneous if the following
property holds:

Ct(s, λx) ≥ λCt(s, x),∀λ ≥ a, s ∈ Rk
+, x ∈ Rd.

3.1. The one period model

In this section, we consider two complete sub σ-algebras Ft and Ft+1 such
that Ft ⊂ Ft+1 ⊂ F and an adapted price process (Ss)s=t,t+1 satisfying the
following assumption.

7



Assumption 2. Suppose that there is a family of Ft-measurable random
variables (αmt )m≥1 such that St+1 ∈ {αmt : m ≥ 1} a.s. and suppose that
P (St+1 = αmt |Ft) > 0 a.s. for all m ≥ 1. Moreover, we suppose that there
exists continuous functions on Rm, that we still denote by αmt with an abuse
of notation, such that αmt = αmt (St).

In [22], we have shown the following:

Lemma 3.1. Suppose that Assumption 2 holds. Then, for any Borel function
f : Rd → R, we have

ess supFt
f(St+1) = sup

m≥1
f(αmt ), a.s..

Definition 3.2. The random variables {bit+1, i ≥ 1}, bit+1 ∈ L0(Rk,Ft+1),
are said independent and identically distributed conditionally to Ft (for short
Ft-i.i.d.) if, for all finite set J ⊂ N, and Borel sets B,Bj, j ∈ J :

P
[
bit+1 ∈ B|Ft

]
= P

[
bjt+1 ∈ B|Ft

]
, a.s. ∀i, j ≥ 1,

P

[⋂
j∈J

{
bjt+1 ∈ Bj

} ∣∣Ft] =
∏
j∈J

P
[
bjt+1 ∈ Bj

∣∣Ft] , a.s..

Lemma 3.3. Consider a family of Ft-i.i.d. random variables bit+1, i ≥ 1 and
θt ∈ L0(Rm,Ft). Let f j : Rk ×Rm → R, j = 1, · · · , n be n ≥ 1 measurable
functions such that E

[
|f j(b1

t+1, θt)||Ft
]
<∞ a.s. (resp. f j is non negative),

for all j ≤ n. Then, for any finite set J ⊂ N of cardinality n, we have:

E
[
fk(bit+1, θt)|Ft

]
= E

[
fk(bjt+1, θt)|Ft

]
, a.s., i, j, k ≥ 1,

E

[∏
j∈J

f j(bjt+1, θt)
∣∣Ft] =

∏
j∈J

E
[
f j(bjt+1, θt)

∣∣Ft] , a.s..

Proof. We prove the result by induction on n. Suppose that f j = 1Dj
where

Dj = Bj×Aj and Bj ∈ B(Rk), Aj ∈ B(Rm). Then, the claim holds by defini-
tion of the Ft-i.i.d. random variables for all n ≥ 1 and the Ft-measurability of
θt. By the monotone class argument, this holds for anyD1 ∈ B(Rk)⊗B(Rm) if
n = 1. If n > 1, we expand the product in the second claim and we use the in-
duction hypothesis. Then, we repeat the arguments for D2 ∈ B(Rk)⊗B(Rm)
and so on. By linearity, and the induction argument after having expanding
the product, we also deduce that the claim holds when f j =

∑n
h=1 c

j
h1Cj

h
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and for any cjh ∈ R, Cj
h ∈ B(Rk) ⊗ B(Rm), h ≥ 1. By standard increasing

approximations, we conclude in the case where f j ≥ 0. Otherwise, we write
f j = (f j)+ − (f j)−. In particular, we get that

E
[
|f j(bit+1, θt)||Ft

]
= E

[
|f j(b1

t+1, θt)||Ft
]
<∞, a.s.

in the case where E
[
|f j(b1

t+1, θt)||Ft
]
<∞.

Lemma 3.4. Consider a Borel function f : Rk → R and a family of Ft-
i.i.d. random variables (bmt+1)m≥1 with values in Rk and Ft+1-measurable.
Suppose that there exists Ft-measurable random variables (αnt )n≥1 such that
bmt+1 ∈ {αnt , n ≥ 1} a.s. and P (bmt+1 = αnt |Ft) > 0 a.s. for all n,m ≥ 1.

Let us define θt := supm≥1 f(αmt ) = ess supFt
f(St+1) (by Lemma 3.1) and

θmt := maxi≤m f(bit+1). The following holds:

θmt → θt, a.s. as m→∞.

In particular, supm θ
m
t = θt a.s.

Proof. We may suppose w.l.o.g. that θt < ∞. Indeed, we may consider
g(θt) and the sequence (g(θmt ))m≥1 where g is a bounded strictly increas-
ing continuous function in the contrary case. By Lemma 3.1, we get that
ess supFt

f(b1
t+1) = supm≥1 f(αmt ) = θt a.s. For any ε > 0, we deduce by

assumption that

P [θt − θmt > ε|Ft] = P [θt −max
i≤m

f(bit+1) > ε|Ft]

= P [θt − f(bit+1) > ε,∀i ≤ m|Ft]

= E

[
m∏
i=1

1{θt−f(bit+1)>ε}
∣∣Ft] , a.s..

By Lemma 3.3, we deduce that

P [θt − θmt > ε|Ft] = P [θt − f(b1
t+1) > ε|Ft]m

= P [ess supFt
f(b1

t+1)− f(b1
t+1) > ε|Ft]m, a.s.

We claim that P [ess supFt
f(b1

t+1)−f(b1
t+1) > ε|Ft] < 1 a.s. Indeed, assume

on the contrary that P [ess supFt
f(b1

t+1) − f(b1
t+1) > ε|Ft] = 1 on some non

null set Λt ∈ Ft. In other words, we have

E
[
1{ess supFt f(b1t+1)>f(b1t+1)+ε}

∣∣Ft] 1Λt = 1Λt .
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Taking the expectation, we deduce that:

E
[
1{ess supFt f(b1t+1)>f(b1t+1)+ε}1Λt

]
= E [1Λt ]

We then deduce that 1{ess supFt f(b1t+1)>f(b1t+1)+ε}1Λt = 1Λt a.s. We now define

θ̂t := ess supFt
f(b1

t+1)1Ω\Λt +(ess supFt
f(b1

t+1)− ε)1Λt . Observe that θ̂t is Ft-
measurable and θ̂t ≥ f(b1

t+1) a.s. However, θ̂t < ess supFt
f(b1

t+1) on the non
null set Λt, in contradiction with the definition of the conditional essential
supremum. Therefore,

lim
m→∞

P [θt − θmt > ε|Ft] = 0, a.s.

Finally, by the dominated convergence theorem, we have

lim
m→∞

P [θt − θmt > ε] = lim
m→∞

E
[
E[1{θt−θmt >ε}|Ft]

]
= E

[
lim
m→∞

E[1{θt−θmt >ε}|Ft]
]

= 0.

Hence θmt increasingly tends to θt in probability, i.e. supm θ
m
t = θt a.s..

Assumption 3. The payoff function ξ is of the form ξ = g(ST ), where
g ∈ Rk

+ is continuous. Moreover, ξ is hedgeable, i.e. there exists a portfolio

process (V ξ
u )Tu=−1 such that ξ = V ξ

T .

We recall here two weak no-arbitrage conditions introduced in [22]:

Definition 3.5. We say that the condition AIP holds at time t if the minimal
cost ct(0) = γ0

t (0) of the European zero claim ξ = 0 is 0 at time t ≤ T . We
say that AIP holds if AIP holds at any time.

The following condition is more technical.

Definition 3.6. We say that the condition SAIP (Strong AIP condition)
holds at time t if AIP holds at time t and, for any Zt ∈ L0(Rd,Ft), we have

D0
t (St, 0, Zt) = 0 if and only if Z

(2)
t = 0 a.s.. We say that SAIP holds if SAIP

holds at any time.

The condition SAIP states that the minimal cost of the zero payoff is 0 at
time t and this minimal cost is only attained by the zero strategy Vt = 0,
see [22]. This is intuitively clear as soon as any non null transaction implies
positive costs.
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We now introduce the sequence of functions which is defined recursively
as follows:

γ̃ξT (s, vT−1) := ξ1 + CT (s, (0, ξ(2) − v(2)
T−1)), vt−1, ξ ∈ Rd, s ∈ Rk,

θ̃ξt (s, vt) := sup
m
γ̃ξt+1(αmt (s), vt), t ≤ T − 1, vt ∈ Rd,

D̃ξ
t (s, vt−1, vt) := θ̃ξt (s, vt) + Ct(s, (v

(2)
t − v

(2)
t−1)),

γ̃ξt (s, vt−1) := cl

(
inf
vt∈Rd

D̃ξ
t (s, vt−1, vt)

)
. (3.6)

Here, the notation cl(f) designates the l.s.c. regularization of f . In this
paper, we will impose later in the sequel a condition under which we have
γ̃ξt (s, vt−1) := infvt∈Rd D̃ξ

t (s, vt−1, vt).

The introduction of the functions above is motivated by the following result
proved in [22].

Theorem 3.7. Suppose that either AIP holds and Ct(s, .) is convex for
fixed s or SAIP holds. Then, we have γξt (St, Vt) = γ̃ξt (St, Vt) a.s. and, also,
θξt (St, Vt) = θ̃ξt (St, Vt) a.s. and Dξ

t (St, Vt−1, Vt) = D̃ξ
t (St, Vt−1, Vt) for any

Vt−1, Vt ∈ L0(Rd,Ft). Moreover, γ̃ξt (s, v) is l.s.c. on Rk × Rd and convex
in v when Ct(s, .) is convex.

Recall that the family of Ft-measurable random variables (αnt (St))n≥1 is
defined in Assumption 2. We now consider an Ft-i.i.d. sample of random
variables {bit+1, i ≥ 1} that satisfies P [b1

t+1 = αnt (St)|Ft] > 0 a.s. for all n ≥ 1
and b1

t+1 ∈ {αnt (St), n ≥ 1} a.s. Now, let us define the (random) functions

D̄ξ
T (s, x, y) := γ̃ξT (s, y),

D̄ξ
t (s, x, y) := Ct(s, (0, y

(2) − x(2))) + γ̃ξt+1(s, y),

D̄n
T (ω, x, y) := D̄ξ

T (s, x, y)

D̄n
t (ω, x, y) := max

i≤n
D̄ξ
t (b

i
t+1(ω), x, y). (3.7)

Since γ̃ξt+1(s, x) is l.s.c. in s, it is Borel in s for fixed x. Then, by Lemma 3.4,
we deduce that:

lim
n→∞

max
i≤n

γ̃ξt+1(bit+1(ω), y) = sup
n
γ̃ξt+1(αnt (St(ω)), y) = θ̃ξt (St(ω), y), a.s.

In particular, limn→∞ D̄
n
t (ω, x, y) = D̃ξ

t (St(ω), x, y). We now investigate the
question whether infy∈Rd D̄n

t (ω, x, y) converge a.s.(ω) to infy∈Rd D̃ξ
t (ω, x, y)

11



as n→∞. To do so, we first recall the definition of epi-convergence, see [25,
Chapter 3] or [26, Chapter 7]. In the following, the notation B(x, r) designates
the closed ball of Rd, where d ≥ 1 depends on the context, centered a point
x ∈ Rd and of radius r ≥ 0.

Definition 3.8. Let fn : Rk → R, n ≥ 1, be a sequence of functions.
The epi-limit inferior liefn and epi-limit superior lsefn of (fn)n≥1 are
defined as:

lie[(fn)n≥1](u) := sup
k≥1

lim inf
n→∞

inf
v∈B(u,1/k)

fn(v),

lse[(fn)n≥1](u) := sup
k≥1

lim sup
n→∞

inf
v∈B(u,1/k)

fn(v).

The sequence (fn)n≥1 is said to be epi-convergent at point u if

lie[(fn)n≥1](u) = lse[(fn)n≥1](u).

We also introduce the definition of almost sure epi-convergence for random
functions.

Definition 3.9. If (fn)n≥1, is a sequence of functions fn : Ω×Rk → R such
that fn is Ft⊗B(Rd)-measurable for each n, we say that fn epi-converges to

f almost surely (notation fn
epi−→ f a.s.) if, for any ω outside a P -null set,

and for all u: lie[(fn(ω, ·))n≥1](u) = lse[(fn(ω, ·))n≥1](u) = f(ω, u).

Theorem 3.10. Suppose that AIP holds and Ct(s, y) is convex in y. We

then have D̄n
t (ω, ., .) ∨

(
−Ct(St(ω), (0, x(2)))

) epi−→ D̃ξ
t (St(ω), ., .) a.s.(ω), as

n→∞.

Suppose that SAIP holds and, for any t, Ct(s, v
1
t ) ≥ Ct(s, v

2
t ) if v1

t ≥Rd
+
v2
t .

Then, D̄n
t (ω, ., .)

epi−→ D̃ξ
t (St(ω), ., .) a.s..

Proof. We first consider the case where AIP holds and Ct(s, y) is convex in
y. Let us define L̄ξt (ω, x, y) := D̄n

t (ω, x, y) ∨
(
−Ct(St(ω), (0, x(2)))

)
. Observe

that L̄nt (ω, x, y) is l.s.c. in (x, y) as a maximum of two l.s.c. functions. As the
sequence (L̄nt )n≥1 is also non decreasing, we deduce by [26, Proposition 7.4],
that for any ω:

lie[(L̄
n
t (ω, ·, ·)n≥1)](x, y) = lse[(L̄

n
t (ω, ·, ·)n≥1)](x, y) = sup

n
L̄nt (ω, x, y).

12



We now prove that there exists a negligible set H such that for any ω ∈ Ω\H
and x, y ∈ Rd ×Rd the following holds:

sup
n
L̄nt (ω, x, y) = D̃ξ

t (ω, x, y). (3.8)

By assumption on (Ct)t≥0, we get by induction that θξt (Vt) ≥ θ0
t (Vt) a.s. for

any Vt ∈ L0(Rd,Ft). We deduce that Dξ
t (Vt−1, Vt) ≥ −Ct(St(ω), (0, V

(2)
t−1))

for any for any Vt−1, Vt ∈ L0(Rd,Ft). Indeed, under AIP, D0
t (0, Vt) ≥ 0 a.s.

hence

Dξ
t (Vt−1, Vt) = θξt (Vt) + Ct(St, (0, V

(2)
t − V (2)

t−1))

≥ θξt (Vt) + Ct(St, (0, V
(2)
t ))− Ct(St, (0, V

(2)
t−1)), (by subadditivity)

≥ θ0
t (Vt) + Ct(St, (0, V

(2)
t ))− Ct(St, (0, V

(2)
t−1))

≥ D0
t (0, Vt)− Ct(St, (0, V

(2)
t−1)) ≥ −Ct(St, (0, V

(2)
t−1)), a.s.

for any Vt−1, Vt ∈ L0(Rd,Ft).

We now deduce that D̃ξ
t (St(ω), x, y) ≥ −Ct

(
St(ω), (0, x(2))

)
for every x, y

a.s.(ω). Indeed, suppose on the contrary that the Ft-measurable set

Γt(ω) :=
{

(x, y) ∈ Rd ×Rd : D̃ξ
t (St(ω), x, y) < −Ct

(
St(ω), (0, x(2))

)}
is non-empty on the non-null set Gt := {ω : Γt(ω) 6= ∅}. We then deduce
a measurable selection (V̄t−1, V̄t) ∈ L0(Rd,Ft) × L0(Rd,Ft) such that we

have D̃ξ
t (St, V̄t, V̄t−1) < −Ct(St, (0, V̄

(2)
t−1)) on Gt and we extend to the whole

space by putting V̄t−1 = 0 = V̄t on the complementary set Ω \Gt. Moreover,

by Theorem 5.5, we then deduce that Dξ
t (V̄t, x) < −Ct(St, (0, V̄

(2)
t−1) on the

non-null set Gt, which is a contradiction.

Similarly, under AEP and Assumption 3, we have that Dξ
t (Vt−1, Vt) ∈ R

a.s. for any Vt−1, Vt ∈ L0(Rd,Ft), see [22]. Then, by a measurable selection
argument, using the fact that Dξ

t (Vt−1, Vt) = D̃ξ
t (St, Vt−1, Vt) a.s., we deduce

that D̃ξ
t (St(ω), x, y) ∈ R for any x, y, for any ω outside a negligible set.

By Lemma 3.4, L̄nt (ω, x, y) → D̃ξ
t (St(ω), x, y) ∨ (−Ct(St(ω), (0, x(2))) as

n→∞ for any ω outside a negligible set N(x, y). Moreover, by the discussion
above, we deduce a negligible set M such that for any ω ∈ Ω \ M , we
have D̃ξ

t (St(ω), x, y) ≥ −Ct(St(ω), (0, x(2))) and D̃ξ
t (St(ω), x, y) ∈ R for any

13



x, y. We set H := ∪y∈QdN(x, y) ∪ M , we claim that for any ω ∈ Ω \ H,

supn L̄
n
t (ω, x, y) = D̃ξ

t (St(ω), x, y) for all x, y ∈ Rd. Indeed, by the definition
of H, we deduce that (3.8) holds for any y ∈ Qd. Now, since D̃ξ

t (St(ω), ., .) is
convex and takes values in R, it is continuous for any ω ∈ Ω \H. Moreover,
we claim that supn L̄

n
t (ω, x, y) <∞ for any x, y ∈ Rd and ω ∈ Ω\H. Indeed,

by lower semicontinuity, we have:

sup
n
L̄nt (ω, x, y) ≤ lim inf

k
sup
n
L̄nt (ω, xk, yk)

for any sequence xk, yk ∈ Qd such that xk → x and yk → y. Moreover, by the
definition of H and the continuity of D̃ξ

t (St(ω), ., .) for any ω ∈ Ω\H, we have
lim infk supn L̄

n
t (ω, xk, yk) = lim infk D̃

ξ
t (St(ω), xk, yk) = Dξ

t (St(ω), x, y) ∈ R.
We deduce that supn L̄

n
t (ω, x, y) ∈ R for any x, y ∈ Rd, and ω ∈ Ω \ H.

Moreover, supn L̄
n
t (ω, ., .) also convex as a supremum of convex functions, it

is also continuous. We then deduce by continuity that (3.8) holds for any
y ∈ Rd.

Now, we consider the second case where Ct(s, v
1
t ) ≥ Ct(s, v

2
t ) for any

v1
t , v

2
t ∈ Rd such that v1

t ≥Rd
+
v2
t . Similarly to the first case, we only need to

prove supn D̄
n
t (ω, x, y) = D̃ξ

t (St(ω), x, y) for all x, y and ω outside a negligible
set. By the definition of γ̃ξt and θ̃ξt , we can show by induction an by Lemma
3.11 that the mappings y 7→ θ̃ξt (s, y) and y 7→ γ̃ξt (s, y) are decreasing with
respect to Rd

+.

Recall the definition of N(x, y), we also denote H := ∪y∈QdN(x, y) ∪M
and claim that for any ω ∈ Ω \ H, supn γ̃

ξ
t+1(bnt+1(ω), y) = θ̃ξt (St(ω), y), for

all y ∈ Rd. Indeed, fix some y ∈ Rd and a sequence (yk)k≥1 in Qd such that
yk → y and yk ≥Rd

+
y. By lower semicontinuity and the discussion above, we

have for any ω ∈ Ω \H:

θ̃ξt (St(ω), y) ≤ lim inf
k

θ̃ξt (St(ω), yk) ≤ θ̃ξt (St(ω), y), and

sup
n
γ̃ξt+1(bnt+1(ω), y) ≤ lim inf

k
sup
n
γ̃ξt+1(bnt+1(ω), yk) ≤ sup

n
γ̃ξt+1(bnt+1(ω), y).

Then, we have

θ̃ξt (St(ω), y) = lim inf
k

θ̃ξt (St(ω), yk),

sup
n
γ̃ξt+1(bnt+1(ω), y) = lim inf

k
sup
n
γ̃ξt+1(bnt+1(ω), yk).
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Moreover, by the definition ofH, we have supn γ̃
ξ
t+1(bnt+1(ω), yk) = θ̃ξt (St(ω), yk)

for any ω ∈ Ω \H. We then deduce that supn γ̃
ξ
t+1(bnt+1(ω), y) = θ̃ξt (St(ω), y)

for any ω ∈ Ω \H. At last, by the definition of D̃ξ
t and D̄n

t , we conclude that
supn D̄

n
t (ω, x, y) = D̃ξ

t (St(ω), x, y) for any x, y and ω ∈ Ω \H.

In the Proof of Theorem 3.10, we have used the following result:

Lemma 3.11. Let f : Rk → R be a function such that f that is non increas-
ing with respect to the partial order ≥Rk

+
. Consider cl(f) the lower semicon-

tinuous regularization of f . Then, cl(f) is non increasing w.r.t. the partial
order ≥Rk

+
.

Proof. From [26, Lemma 1.7], we have the following representation of the
l.s.c. closure:

cl(f)(x) = lim inf
y→x

f(x) =
{
α ∈ R : ∃(xn)n≥1, xn → x, lim

n
f(xn) = α

}
.

Consider x1, x2 ∈ Rd such that x1 ≥Rd
+
x2 and a sequence (xn)n≥1 such that

xn → x2 and f(xn)→ cl(f)(x2) as n→∞. Observe that xn + x1 − x2 → x1

as n → ∞. We then have f(xn + x1 − x2) ≤ f(xn) by our hypothesis. We
deduce that

cl(f)(x1) ≤ lim inf
n

f(xn + x1 − x2) ≤ lim
n
f(xn) = cl(f)(x2).

Definition 3.12. We say that a set-valued mapping Kt : Rk
+ × Rd � Rd

is a reachability set at time t ≤ T for the super-hedging problem if Kt has
compact set values and satisfies:

inf
y∈Rd

D̃ξ
t (St(ω), x, y) = inf

y∈Kt(St(ω),x)
D̃ξ
t (St(ω), x, y), a.s..

Moreover, we suppose that Kt(s, x) is upper hemicontinuous in (s, x), see [1,
Definition 17.2].

Remark 3.13. By [22, Theorem 4.14], under SAIP, the determining set
Kt(s, x) is constructed for s = St(ω) as a closed ball B(0, rt(s, x) + 1), where
rt(s, x) is an u.s.c. function. We shall see later in the model with one risky
asset how to characterize Kt(s, x) explicitely for every (s, x) ∈ R×R such
that Kt(s, x) is compact for all (s, x) and upper hemicontinuous. Moreover,
By [1, Lemma 17.29], the upper hemicontinuity of K implies that

γ̃ξt (s, vt−1) := inf
vt∈Rd

D̃ξ
t (s, vt−1, vt). (3.9)
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Theorem 3.14. Suppose that SAIP holds and Ct(s, v
1
t ) ≥ Ct(s, v

2
t ) for any

v1
t , v

2
t ∈ Rd such that v1 ≥Rd

+
v2. Then, we have:

lim
n→∞

inf
y∈Kt(St(ω),x)

D̄n
t (ω, x, y) = inf

y∈Kt(St(ω),x)
D̃ξ
t (St(ω), x, y), ∀x, y, a.s.

(3.10)

Moreover, for each fixed xt ∈ L0(Rd,Ft) such that the random set Kt(St, xt)
is Ft-measurable, there exists a sequence (ŷnt+1)n≥1 of L0(Rd,Ft+1) such that
ŷnt+1 ∈ arg minKt(St,xt)(D̄

n
t (ω, xt, .)) a.s. and ŷnt+1 → ŷ0

t+1 ∈ L0(Rd,Ft+1) along

a random Ft+1-measurable subsequence where ŷ0
t+1 ∈ arg min(D̃ξ

t (St, xt, .)).

In the case where Ct(s, y) is convex in y, the same conclusion holds if
we replace D̄n

t (ω, x, y) by D̄n
t (ω, x, y) ∨

(
−Ct(St(ω), (0, x(2)))

)
. Moreover, in

that case, if Kt(St, xt) is also convex, for fixed xt ∈ L0(Rd,Ft) such that the
random set Kt(St, xt) is Ft-measurable, ŷnt = E(ŷnt+1|Ft) ∈ Kt(St, xt) a.s.

and converges a.s. to ŷ0
t = E(ŷ0

t+1|Ft) ∈ arg min(D̃ξ
t (St, xt, .)).

Proof. We prove the claim in the first case, the second case is deduced simi-
larly using Theorem 3.10.

Consider the negligible set H in the proof of Theorem 3.10 such that
D̄n
t (ω, x, y) ≤ D̃ξ

t (ω, x, y), for all x, y and for any ω ∈ Ω \H and n ≥ 1. We
then have:

lim
n→∞

inf
y∈Kt(St(ω),x)

D̄n
t (ω, x, y) ≤ inf

y∈Kt(St(ω),x)
D̃ξ
t (St(ω), x, y), ∀x, (3.11)

for any ω ∈ Ω \ H. We now establish the reversed inequality. Since each
D̄n
t is an F -normal integrand, then by [26, Theorem 13.37], we deduce that

infy∈Kt(St(ω),x) D̄
n
t (ω, x, y) is almost surely attained at some ŷnt (ω, x). In other

words, we have ŷnt (ω, x) ∈ arg minKt(St(ω),x)(D̄
n
t (ω, x, .)) for any ω outside a

negligible set N such that H ⊂ N .

Since Kt(s, x) is compact, for any ω ∈ Ω \ N and x ∈ Rd, there is a
random subsequence {ŷnk

t (ω, x), k ≥ 1} of {ŷnt (ω, x), n ≥ 1} converging to

some ŷ0
t (ω, x) ∈ Kt(St(ω), x). Since D̄n

t (ω, ., .)
epi−→ D̃ξ

t (St(.), ., .) a.s.(ω) by
Theorem 3.10, we deduce by [26, Proposition 7.2] that:

lim inf
k→∞

D̄k
t (ω, x, ŷ

k
t (ω, x)) ≥ D̃ξ

t (St(ω), x, ŷ0
t (ω, x)) (3.12)
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for any ω ∈ Ω \N . As D̃ξ
t (St(ω), x, ŷ0

t (ω, x)) ≥ infy∈Kt(St(ω),x) D̃
ξ
t (St(ω), x, y),

we deduce that for any ω ∈ Ω \N :

lim inf
k→∞

D̄k
t (ω, x, ŷ

k
t (ω, x)) ≥ inf

y∈Kt(St(ω),x)
D̃ξ
t (St(ω), x, y). (3.13)

We deduce from (3.11) and (3.13) and, finally (3.12), that

lim inf
k→∞

D̄k
t (ω, x, ŷ

k
t (ω, x)) = inf

y∈Kt(St(ω),x)
D̃ξ
t (St(ω), x, y) = D̃ξ

t (St(ω), x, ŷ0
t (ω, x))

We then deduce that ŷ0
t (ω, x) ∈ arg minKt(St(ω),x)(D̃

ξ
t (St(ω), x, .)) for any

ω ∈ Ω\N , i.e. (3.10) holds. Using the definition of the reachability set-valued
mapping Kt, we conclude that ŷ0

t (ω, x) ∈ arg min(D̃ξ
t (St(ω), x, .)) outside a

negligeable set.

Recall that infy∈Kt(St(ω),xt) D̄
n
t (ω, xt, y) is Ft+1-measurable, see [22]. There-

fore, by a measurable selection argument, we may deduce the existence of
ŷnt+1 ∈ L0(Rd,Ft+1) such that D̄n

t (ω, xt, ŷ
n
t+1) = infy∈Kt(St(ω),xt) D̄

n
t (ω, xt, y)

and ŷnt+1 ∈ Kt(St, xt) a.s.. By [20, Lemma 2.1.2], we may suppose that
ŷnt+1 ∈ Kt(St, xt) is convergent for some random subsequence towards a
Ft+1-measurable limit ŷ0

t+1 ∈ Kt(St, xt). Moreover, by the first step, we have

ŷ0
t+1 ∈ arg minKt(St,xt)(D̃

ξ
t (St, xt, .)).

If Kt(St, xt) is Ft-measurable, consider a Castaing representation (zmt )m≥1

of Kt(St, xt). The generalized conditional expectation E(ŷnt+1|Ft) exists as
ŷnt+1 ∈ Kt(St, xt) is Ft-bounded. Note that ŷnt+1 may be approximated by a
sequence of Ft+1-measurable random variables in the set {zmt : m ≥ 1}. We
deduce that E(ŷnt+1|Ft) ∈ Kt(St, xt) if Kt(St, xt) is convex. It is clear that
E(ŷnt+1|Ft) converges to E(ŷ0

t+1|Ft) ∈ Kt(St, xt).

When the cost function is convex, D̄n
t (ω, xt, y) is convex. Using the Jensen

inequality for conditional expectations, we get that

D̃ξ
t (St, xt, E(ŷ0

t+1|Ft)) ≤ E
(
D̃ξ
t (St, xt, ŷ

0
t+1)|Ft

)
,

≤ E

(
inf
y∈Rd

D̃ξ
t (St, xt, y)|Ft

)
,

≤ inf
y∈Rd

D̃ξ
t (St, xt, y).

The last inequality holds since infy∈Rd D̃ξ
t (St, xt, y) is Ft-measurable. This

implies that E(ŷ0
t+1|Ft) ∈ arg min(D̃ξ

t (St, xt, .)).
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3.2. Multi-period framework

In this section, we consider the multi-period setting t = 0, · · · , T . Our goal is
to determine the infimum super-hedging cost of ξ := g(ST ) = (g1(ST ), g(2)(ST ))
at time 0, where g : Rk

+ → Rd
+ is a deterministic continuous function. To do

so, we apply the dynamic programming principle of Proposition 2.1 to recur-
sively compute γξt (Vt−1) for t = 0, · · · , T . Moreover, since γξ0(0) = γ̃ξ0(S0, 0)
under the weak no-arbitrage condition we suppose, it is then sufficient to
compute γ̃0(S0, V0) for V0 = 0. We work under the following assumption:

Assumption 4. For each t, suppose that there is a reachability set-valued
mapping Kt : Rk

+ × Rd � Rd such that Kt(s, vt−1) is a compact upper
hemicontinuous set-valued mapping, i.e.

inf
y∈Rd

D̃ξ
t (s, x, y) = inf

y∈Kt(s,x)
D̃ξ
t (s, x, y), a.s..

For simplicity, we consider the model where the price process satisfies

suppFt
(St+1) = {atSt : at ∈ Θ} , t ≤ T − 1,

such that P [St+1 = atSt|Ft] > 0 a.s. for all at ∈ Θ, where Θ = {ant , n ≥ 1}
is a deterministic sequence of positive numbers. Consider a sequence of ran-
dom variables {bit, i ∈ Jt, t = 0, · · · , T} in Rk×T generated by the following
procedure:

1) bi0 = S0 for all i ∈ J0 = N \ {0}.

2) For given t ≥ 0, we denote F̃t = σ(bku : k ∈ Ju, u ≤ t) where (bku)k∈Ju
are the random variables constructed at time t. Then, for time t + 1, and
for each i ∈ Jt, we generate a sequence of i.i.d. random variables αjt+1, j ≥
1, independent of Ft such that αjt+1 ∈ L0(Θ,Ft+1) for each j. Moreover,

suppFt
αjt+1 = Θ. We then define for each i ∈ Jt and j ≥ 1, bi,jt+1 = αjt+1b

i
t.

Then, Jt+1 = {(i, j) : i ∈ Jt, j ≥ 1}.

To compute γ̃ξ0(S0, 0), we approximate γ̃ξt (b
i
t, vt−1) by the randomization

method considered in the last section that we extend to the multi-period
setting.

We denote n1 = (n1
u)u=1,··· ,T a generic element in NT and, for t = 1, · · · , T ,

we define nt = (ntu)u=t,··· ,T ∈ NT−t+1. If bit ∈ {αkt b
j
t−1; j ∈ Jt−1, k ≥ 1}, i ∈ Jt,
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we set:

θ̂n
T

T−1(biT−1, vT−1) := max
m≤nT

T

γ̃ξT (αmT b
i
T−1, vT−1),

θ̂n
t+1

t (bit, vt) := max
m≤nt+1

t+1

γ̂n
t+2

t+1 (αmt+1b
i
t, vt), nt+2 = (nt+1

u )u=t+2,··· ,T , t ≤ T − 1,

D̂nt+1

t (bit, vt−1, vt) := θ̂n
t+1

t (bit, vt) + Ct(b
i
t, (0, v

(2)
t − v

(2)
t−1)), t ≤ T − 1,

γ̂n
t+1

t (bit, vt−1) := inf
vt∈Kt(bit,vt−1)

D̂nt+1

t (bit, vt−1, vt), t ≤ T − 1.

Note that by assumption

γ̃ξT (s, vT−1) := g1(s) + CT (s, (0, g2(s)− v(2)
T−1)).

Therefore, γ̃ξT is l.s.c. SinceKt is an upper hemicontinuous compact set-valued
mapping by assumption, see [22, Corollary 5.14 and Proof of Theorem 4.15],
and D̂

nt+1

t is l.s.c. by induction, γ̂
nt+1

t (bit, vt−1) is l.s.c. in bit and vt−1 by [1,
Lemma 17.29].

The following theorem is our main contribution of this section. We use the
convention that n1 →∞, n1 ∈ NT , if and only if n1

i →∞,∀i = 1, · · · , T .

Theorem 3.15. [Limit theorem to approximate the infimum super-hedging
price] Suppose that Assumption 4 holds and suppose that Ct satisfies Ct(s, v

1
t ) ≥

Ct(s, v
2
t ) whenever v1 ≥Rd

+
v2
t . Then:

lim
n1→∞

γ̂n
1

0 (S0, 0) = γ̃ξ0(S0, 0), a.s..

Proof. By Remark 3.13, Assumption 4 implies that

γ̃ξ0(S0, 0) = inf
v1∈K0(S0,0)

D̃ξ
0(S0, 0, v1)

where K0(S0, 0) is a compact set-valued mapping. Moreover, since γ̃ξt+1(., vt)
is l.s.c. hence Borel, Theorem 3.14 applies when we replace St by each random
variable bit ∈

{
αkt b

j
t−1; j ∈ Jt−1, k ≥ 1

}
. Precisely, in accordance with (3.7),

we shall consider:

D̄
nt+1
t+1

t (bit, vt−1, vt) = sup
n≤ns

t+1

γ̃ξt+1(αnt b
i
t, vt) + Ct(α

n
t b
i
t, (0, v

(2)
t − v

(2)
t−1)), t ≤ T − 1,

γ̄
nt+1
t+1

t (bit, vt−1) := inf
vt∈Kt(bit,vt−1)

D̄
nt+1
t+1

t (bit, vt−1, vt), t ≤ T − 1,

sup
nt+1
t+1

γ̄
nt+1
t+1

t (bit, vt−1) = γ̃ξt (b
i
t, vt−1), t ≤ T − 1, by Theorem 3.14. (3.14)
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We now prove by induction that limn1→∞ γ̂
n1

0 (S0, 0) = γ̃ξ0(S0, 0) a.s. Observe
that, at time T−1, nT =: nT ∈ N and γ̂n

T

T−1(biT−1, vT−1) and γ̄n
T

T−1(biT−1, vT−1)
coincide. So, by Theorem 3.14, we have

lim
nT→∞

γ̂n
T

T−1(biT−1, vT−2) = lim
nT→∞

γ̄n
T

T−1(biT−1, vT−2) = γ̃ξT−1(biT−1, vT−2)

Now, we suppose that supnt+2∈NT−t−1 γ̂n
t+2

t+1 (bit+1, vt) = γ̃ξt+1(bit+1, vt) for any

bit+1 ∈ {αkt+1b
j
t ; j ∈ Jt, k ≥ 1}. We have by definition:

D̂nt+1

t (bit, (0, v
(2)
t − v

(2)
t−1)) = θ̂n

t+1

t (bit, vt) + Ct(b
i
t, (0, v

(2)
t − v

(2)
t−1))

= max
m≤nt+1

t+1

γ̂n
t+2

t+1 (αmt b
i
t, vt) + Ct(b

i
t, (0, v

(2)
t − v

(2)
t−1)),

nt+2 = (nt+1
u )u=t+2,··· ,T .

Consider the directed set of all nt+1 ∈ NT−t endowed with the partial order
nt+1 ≥mt+1 if and only if nt+1

i ≥mt+1
i for all t+1 ≤ i ≤ T . By construction

and by induction, it is easy to check that (D̂n
t )n∈N [t+1,T ] is increasing, i.e.

D̄n
t ≥ D̄m

t whenever n ≥ m. Also, we may show by induction that D̂n
t (bit, .)

is l.s.c. for all n. By Lemma 3.16 that allows us to exchange the supremum
and infimum in the following first equality, plus the induction hypothesis, we
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deduce that

sup
nt+1

γ̂
nt+1

t (bit, vt−1) = sup
nt+1

inf
vt∈Kt(bit,vt−1)

D̂nt+1

t (bit, vt−1, vt)

= inf
vt∈Kt(bit,vt−1)

sup
nt+1

D̂nt+1

t (bit, vt−1, vt)

= inf
vt∈Kt(bit,vt−1)

sup
nt+1
t+1∈N

sup
nt+2

D̂nt+1

t (bit, vt−1, vt)

= inf
vt∈Kt(bit,vt−1)

sup
nt+1
t+1∈N

sup
nt+2

(
max
m≤nt+1

t+1

γ̂n
t+2

t+1 (αmt+1b
i
t, vt)

+ Ct(b
i
t, (0, v

(2)
t − v

(2)
t−1))

)
= inf

vt∈Kt(bit,vt−1)
sup

nt+1
t+1∈N

max
m≤nt+1

t+1

(
sup
nt+2

γ̂n
t+2

t+1 (αmt+1b
i
t, vt)

+ Ct(b
i
t, (0, v

(2)
t − v

(2)
t−1))

)
= inf

vt∈Kt(bit,vt−1)
sup

nt+1
t+1∈N

max
m≤nt+1

t+1

(
γ̃ξt+1(αmt+1b

i
t, vt)

+ Ct(b
i
t, (0, v

(2)
t − v

(2)
t−1))

)
= inf

vt∈Kt(bit,vt−1)
D̃ξ
t (b

i
t, , vt−1, vt) = γ̃ξt (b

i
t, vt−1).

To deduce the last two equalities, we use the definition of θ̃ξt (b
i
t, , vt−1, vt)

and D̃ξ
t (b

i
t, , vt−1, vt), see (3.6) but also (3.9) in Remark 3.13. The conclusion

follows by induction.

In the proof above, we have used the following lemma:

Lemma 3.16 (Dini-Cartan). Consider a family of l.s.c. functions (fn)n∈I ,
fn : Rd → R such that for every finite set J ⊂ I, there is n0 ∈ I with
supj∈J fj ≤ fn0. Consider a compact set G, then the following holds:

sup
n

inf
x∈G

fn(x) = inf
x∈G

sup
n
fn(x).

Proof. By considering an increasing homeomorphism from [−∞,+∞] onto
[0, 1], we then restrict ourselves to the case supn fn is bounded. It is clear that
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supn infx∈G fn(x) ≤ infx∈G supn fn(x) so that the inequality holds if the sec-
ond term is−∞. For the reverse inequality, consider any a < infx∈G supn fn(x).
For all x ∈ G, we have a < supn fn(x). Then, there exists some k = kx
such that a < fk(x). Note that the set Ok := {x : a < fk(x)} is open
since fk is l.s.c. By compactness argument, we deduce a finite covering of
G by some Oki , j = 1, · · · , N . By our hypothesis, there exists n0 such
that a ≤ fki(x) ≤ fn0(x), for all x ∈ G and i = 1, · · · , N hence we have
a ≤ infx∈G fn0(x) ≤ supn infx∈G fn(x).

Lemma 3.17. For all t , for all j ∈ Jt+1, consider bjt+1 = αkt+1b
i
t where i ∈ Jt

and k ≥ 1. Then, bjt+1 ∈ {ant bit, n ≥ 1} a.s. and P [bjt+1 = ant b
i
t|Ft] > 0 a.s.

Moreover, {bjt+1, j ∈ Jt+1} are Ft-i.i.d.

Proof. For all n ≥ 1, we have almost surely :

P
[
bjt+1 = ant b

i
t|Ft

]
= P

[
αkt+1b

i
t = ant b

i
t|Ft

]
≥ P

[
αkt+1 = ant |Ft

]
> 0.

The last statement follows directly from Lemma 3.3 as (αjt+1)j≥1 are Ft-i.i.d.
by assumption.

4. Model with one risky asset and piecewise linear costs

As we may observe in the previous section, the reachability set-valued map-
ping plays an important role in propagating the lower semicontinuity which,
in turn, propagates the convergence property. We consider in this section a
special case of convex cost functions and provide explicit expressions for the
minimal super-hedging costs. In particular, under SAIP condition, we obtain
an explicit expression of the reachability set Kt(s, vt−1) when the payoff is of
linear growth, i.e. ξ = (ξ1, ξ2) ≤R2

+
(aST + b, c) for some a, b, c ∈ R+.

We suppose the the market consists of one risk-free asset and one risky
asset denoted by (St)0≤t≤T . We impose the following assumption for the con-
ditional support of the price and cost processes.

Assumption 5. The price process satisfies St+1 ∈ {ant St, n ≥ 1} where
the sequence (ant )n≥1 is deterministic and satisfies a1

t = minn a
n
t = kdt ≥ 0,

a2
t = maxn a

n
t = kut ∈ R+, where kdt , k

u
t are deterministic. The cost process Ct

is given by Ct(St, (x, vt)) = x + StC̃t(v
2
t−1) for some deterministic piecewise

linear function C̃t : R→ R.
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We recall the AEP condition in [22]

Definition 4.1. We say that the financial market satisfies the Absence of
Early Profit condition (AEP) if, at any time t ≤ T , and for all Vt ∈ L0(Rd,Ft),
γ0
t (Vt) > −∞ a.s..

By Lemma 4.11 in [22], AIP implies AEP if the cost function Ct is either
sub-additive or super-additive. Moreover, by Theorem 4.5 in [22], AEP im-
plies that γ̃ξt (St, .) > −∞ a.s. This property will be used in the proof of the
following result.

Proposition 4.2. Suppose that Condition AEP and Assumption 5 hold.
Then the minimal hedging cost of the payoff ξ = (mST +G,K), m,G,K ∈ R,
is given by γ̃ξt (St, vt−1) = G+Stht(v

2
t−1), where ht : R→ R is a deterministic

piecewise linear function.

Moreover, D̃t(St, vt, vt−1) = Sth̃t(vt, vt−1) for some deterministic piecewise
linear function h̃t : R×R→ R.

Proof. We first show by induction that, if γ̃ξt+1(St+1, vt) = St+1f̃t+1(v2
t ) where

f̃t+1 : R→ R is a piecewise linear function, then γ̃ξt (St, vt−1) = Stf̃t(v
2
t−1) for

some piecewise linear function f̃t : R→ R. To do so, observe that:

θ̃ξt (St, vt) = sup
s∈{ant St,n≥1}

(
sf̃t+1(v2

t )
)

= max
{
kdt Stf̃t+1(v2

t ), k
u
t Stf̃t+1(v2

t )
}

= St max
{
kdt f̃t+1(v2

t ), k
u
t f̃t+1(v2

t )
}
.

Since f̃t+1 is piecewise linear function by the hypothesis, we deduce that
g̃t(v

2
t ) := max{kdt f̃t+1(v2

t ), k
u
t f̃t+1(v2

t )} is also piecewise linear by [26, Propo-
sition 3.55]. Therefore,

γ̃ξt (St, vt−1) = inf
v2∈R

D̃ξ
t (St, vt−1, vt) = inf

v2∈R

(
θ̃ξt (St, vt) + Ct(St, v

2
t − v2

t−1)
)

= St inf
v2t∈R

(
g̃t(v

2
t ) + C̃t(v

2
t − v2

t−1)
)
.

By [26, Proposition 3.55], we also deduce that g̃t(v
2
t ) + C̃t(v

2
t − v2

t−1) is a
piecewise linear function in (v2

t , v
2
t−1). Moreover, under AEP, we know that

γ̃ξt (St, vt−1) > −∞ a.s.. Therefore, by [26, Proposition 3.55],

f̃t(v
2
t−1) := inf

v2∈R

(
g̃t(v

2
t ) + C̃t(v

2
t − v2

t−1)
)
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is a piecewise linear function in v2
t−1.

If the payoff is ξ = (mST + G,K), then γ̃ξT (ST , vT−1) = G + ST f̃T (v2
T−1)

where f̃T (v2
T1

) := m+C̃T (K−v2
T−1) is a piecewise linear function by assump-

tion on CT . We then argue by induction as previously done to deduce that
γξt−1(St−1, vt−2) = G+ St−1f̃t−1(v2

t−2) for some piecewise linear function f̃t−1.

At last, since Dξ
t (St, vt, vt−1) = θ̃t(St, vt) + Ct(St, (0, v

(2)
t − v

(2)
t−1)), the con-

clusion on D̃t follows.

The following is our main result of this section. It states the existence of
the reachability set under SAIP.

Proposition 4.3. Suppose that the payoff ξ = (g1(ST ), g2(ST )) satisfies
g1(ST ) ≤ aST + b and g2(ST ) ≤ c for some a, b, c ∈ R+. We also sup-
pose that Ct(s, v

1) ≥ Ct(s, v
2) whenever v1 ≥R2

+
v2 and suppose that Ct(s, .)

is subadditive and 1-homogeneous.
Under the no-arbitrage condition SAIP, the reachability set Kt(s, vt−1) is

defined for every (s, vt−1) ∈ R×R and is explicitly given by:

Kt(s, vt−1) = B̄t(0, rt(s, vt−1) + 1)

where rt(s, vt−1) = sft(vt−1)/gt(s) and ft, gt are deterministic piecewise linear
functions such that gt(s) > 0 for all s > 0.

Proof. We define ξ̃ := (aST + b, c) so that ξ ≤R2
+
ξ̃. We show by induction

that D̃0
t (s, vt−1, vt) ≤ D̃ξ

t (s, vt−1, vt) ≤ D̃ξ̃
t (s, vt−1, vt). By the proof of [22,

Theorem 4.15], we get that

Kt(s, vt−1) ⊆
{
vt : D̃ξ

t (s, vt−1, vt) ≤ D̃ξ̃
t (s, vt−1, 0)

}
Moreover, by sub-additivity and 1-homogeneity.

D̃0
t (s, vt−1, vt) = Ct(s, (0, v

2
t − v

(2)
t−1)) + θ̃0

t (s, vt) ≥ −Ct(s, (0, v
2
t−1)) + D̃0

t (s, 0, vt)

D̃0
t (s, 0, vt) ≥ |vt|D̃0

t (s, 0, vt/|vt|) ≥ |vt| min
z∈{−1,1}

D̃0
t (s, 0, z), ∀ |vt| ≥ 1.

We deduce thatKt(St, vt−1) ⊆ B̄(0, rt(St, vt−1)+1), where the radius rt(St, vt−1)
is given by

rt(St, vt−1) :=
D̃ξ̃
t (St, vt−1, 0) + Ct(St, (0, v

2
t−1))

minz∈{−1,1} D̃
0
t (St, 0, z)

=:
Stft(v

2
t−1)

gt(St)
.
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Note that by Proposition 4.2, ft : R→ R and gt : R→ R are deterministic
piecewise linear functions. Moreover, we have gt(St) = St infz∈{−1,1} at(z) for
some deterministic piecewise linear function at. Since SAIP holds, we deduce
that infz∈{−1,1} at(z) > 0. We then define gt(s) := s infz∈{−1,1} at(z) > 0 for
all s > 0. The conclusion follows.

5. Examples

In this section, we consider two classical examples. The first one corresponds
to the market with proportional transaction cost and the second one is with
fixed cost. We provide the explicit expression of the reachability set-valued
mapping Kt for the Put option. Then, as a by-product, the minimal super-
hedging cost for Put option is computed.

For a sake of simplicity, we consider the binomial market model, i.e. the
price process satisfies suppFt

St+1 =
{
kdt St, k

u
t St
}

, where kdt , k
u
t ∈ R+.

5.1. Market model with proportional transaction costs

We consider a particular case of section 4 where

Ct(St, v) = v1 + (1 + εt)Stv
21v2≥0 + (1− εt)Stv21v2≤0. (5.15)

for some deterministic coefficient εt ∈ R+. By a direct computation, see
Appendix, we obtain the following

Proposition 5.1. If vt−1 ∈ R2, the following holds:

θ̃0
t−1(St−1, v) = −(1− εt)kdt−1St−1v

21v2≥0 − (1 + εt)k
u
t−1St−1v

21v2≤0

D̃0
t−1(St−1, 0, v) = ((1 + εt−1)St−1 − (1− εt)kdt−1St−1)v21v2≥0

+ ((1− εt−1)St−1 − (1 + εt)k
u
t−1St−1)v21v2≤0

Moreover, AIPt−1 holds if and only if:

kdt−1 ≤
1 + εt−1

1− εt
and kut−1 ≥

1− εt−1

1 + εt
. (5.16)

Moreover, SAIPt−1 holds if and only if the above inequalities are strict. If
AIPt−1 holds, we then deduce that:

inf
v2∈{−1,1}

D̃0
t−1(St−1, 0, v) = St−1 min

{
(1 + εt−1)− (1− εt)kdt−1,

(1 + εt)k
u
t−1 − (1− εt−1)

}
.
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Proof. Recall that AIPt−1 holds if and only if D̃0
t−1(St−1, 0, v) ≥ 0 for any

v ∈ Rd which is equivalent to (5.16). Moreover, suppose that SAIPt−1 holds.

If kdt−1 =
1 + εt−1

1− εt
, D0

t−1(St−1, 0, v) = 0 for any v2 > 0, i.e. SAIPt−1 fails.

Similarly, we get that kut−1 > (1 − εt−1)/(1 + εt). At last, suppose that the
inequalities in (5.16) are strict. Since St−1 > 0 a.s.,

inf
v2∈{−1,1}

D̃0
t−1(St−1, 0, v) > 0, a.s.

so that SAIPt−1 holds by [22, Theorem 4.15].

We apply the result above at time T and we proceed by induction, see
Appendix, to deduce the following result at time T − 2.

Proposition 5.2. Assume that 1 + εT−1 ≤ (1 + εT )kuT−1 and 1 − εT−1 ≥
(1− εT )kdT−1, we have:

θ̃0
T−2(ST−2, z) = −(1 + εT−1)kdT−2ST−2z

21z2≥0 − (1− εT )kdT−1k
u
T−2ST−2z

21z2≤0,

D̃0
T−2(ST−2, 0, z) =

(
(1 + εT−2)ST−2 − (1 + εT−1)kdT−2ST−2)

)
z21z2≥0

+
(
(1− εT−2)ST−2 − (1− εT )kdT−1k

u
T−2ST−2

)
z21z2≤0.

and AIPT−2 holds if and only if:

kdT−2 ≤
1 + εT−2

1 + εT−1

and kuT−2 ≥
1− εT−2

(1− εT )kdT−1

.

Moreover, SAIPT−2 holds if and only if the above inequalities are strict. More-
over, under SAIPT−2, we have:

inf
v2∈{−1,1}

D̃0
T−2(ST−2, 0, v) = ST−2 min

{
((1 + εT−2)− (1− εT−1)kdT−2),

−((1− εT−2)− (1 + εT )kdT−1k
u
T−2)

}
.

The assumptions of Proposition 5.2 are chosen for a sake of simplification.
The computations for t < T − 2 are similar. In particular, for a Put option
with payoff (K−ST )+, K > 0, we obtain a simple formula for the reachability
set.

Lemma 5.3. Suppose that SAIP holds and ξ = (g(ST ), 0) where g is a
continuous function bounded from above by a constant M ∈ R+. Then, there
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exists a reachability set Kt(s, vt−1) = B̄t(0, rt(s, vt−1) + 1), t ≤ T − 1, closed
ball of radius rt(s, vt−1) := λt(s, vt−1)/it(s) where the functions

it(s) := inf
v2∈{−1,1}

D̃0
t (s, 0, v),

λt(s, vt−1) := Ct(s, (0, v
2
t−1)) +M + Ct(s, (0,−v2

t−1)),

are explicitely given by Proposition 5.1 and Proposition 5.2. In particular, we
have it(s) > 0 for all s > 0.

We illustrate the results above by a numerical example. We consider the
put option payoff g(ST ) := (K − ST )+ at time T = 2. We suppose that the
proportional cost coefficients ε1 = ε2 = 0.02. We assume that SAIP condition
holds and choose kd2 = 0.9, ku2 = 1.1, kd1 = 0.9, ku1 = 1.2. The price function
at time t = 0 is presented in Figure 1.

Fig 1: Price of Put option

We also visualize the ratio of put option to asset price S0
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Fig 2: Ratio Put option/Asset Price

5.2. Market model with fixed cost

In this section, we consider a financial market model in presence of both
proportional and fixed costs modeled by the following liquidation and cost
functions:

 Lt(St, vt) := v1
t + (v2

t (1− εt)St − ct)+1vt>0 + (v2
t (1 + εt)St − ct)1vt<0

Ct(St, vt) := − Lt(St,−vt).

for some deterministic constant ct > 0 representing the fixed cost we need to
pay to obtain a non-null position.

In this model, the cost function does not satisfy the condition property
that Ct(St, λz) ≥ λCt(St, z) for any λ ≥ 1. Then, the propagation of lower
semicontinuity is not guaranteed if we only assume the SAIP condition on
the market defined by this cost function. In [22], we have introduced the
horizon cost function defined as follows:

C∞t (s, y) := lim inf
α→∞

Ct(s, αy)

α
. (5.17)

Definition 5.4. We say that the robust no-arbitrage condition RSAIP holds
at time t if the SAIP condition holds at time t for the enlarged model defined
by C∞t . We say that RSAIP holds if it holds at any time.

In [22], we proved the following theorem analogous to Theorem 5.5:
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Theorem 5.5. Suppose that the condition RSAIP holds. Then, we have
γξt (St, Vt) = γ̃ξt (St, Vt) a.s., θξt (St, Vt) = θ̃ξt (St, Vt) a.s. and, also, we have
Dξ
t (St, Vt−1, Vt) = D̃ξ

t (St, Vt−1, Vt) a.s. for any Vt−1, Vt ∈ L0(Rd,Ft), where
θ̃ξt , D̃

ξ
t are given by (3.6).

As the horizon cost function coincides with the cost function (5.15) with-
out fixed costs, the results stated in Propositions 5.16 and 5.2 allows us to
characterize the reachability set-valued mapping Kt for this market. In par-
ticular, since Ct ≤ C∞t + ct, by a straightforward computation, we deduce a
simple formula of Kt for the Put option:

Lemma 5.6. Suppose that ξ = (g(ST ), 0) where g is a continuous function
bounded from above by M ∈ R+. Then, a reachability set Kt(s, vt−1) is ex-
plicitly given at any time t ≤ T − 1 by Kt(s, vt−1) = B̄t(0, rt(s, vt−1) + 1),
closed ball of radius rt(s, vt−1) := λt(s, vt−1)/it(s) where

it(s) := inf
v2∈{−1,1}

D0,∞
t (s, 0, v),

λt(s, vt−1) := C∞t (s, (0, v2
t−1)) +M + C∞t (s, (0,−v2

t−1)) +
T∑
s=t

cs,

and D0,∞
t is given in the model without fixed cost given by Proposition 5.1 or

Proposition 5.2. In particular, we have it(s) > 0 for all s > 0.

As a numerical example, we also consider the put option payoff (K−ST )+

at time T = 2. We consider the binomial tree model as previously. In the
case where the conditional support suppFt

St is countable, we can use the
randomized method established in section 3.

We use the same parameters as in Section 5.1 and we consider fixed costs
c1 = c2 = 0.8. The price function is illustrated in Figure 3.
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Fig 3: Price of put option with fixed costs.

We also visualize the ratio of put price to asset price S0

Fig 4: Ratio price of put to asset price with fixed costs.

We also compare the price of put option with and without fixed costs.
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Fig 5: Price difference between two cases

6. Limit theorem for convex markets

In the literature, there is few results providing limit theorems for financial
market models with transaction costs, see [12] and [2], but also [21] and [17]
without transaction costs. In this section, we consider a sequence of markets
defined by convex cost functions {Cn

t (St, x), n ≥ 1} such that Cn
t (St, x) ↓

Ct(St, x) as n→∞ for some convex function Ct. We associate to each Cn
t a

dynamic programming scheme deduced by our general analysis, see [22]:

γξ,nT (ST , VT−1) := g1(ST ) + Cn
T (ST , (0, g

(2)(ST )− VT−1)),

θξ,nt (St, vt) := ess supFt
γξ,nt+1(St+1, Vt),

Dξ,n
t (St, Vt−1, Vt) := θξ,nt (St, Vt) + Cn

t (St, (0, V
(2)
t − V (2)

t−1)),

γξ,nt (St, Vt−1) := ess infFt

Vt∈L0(Rd,Ft)

Dξ,n
t (St, Vt−1, Vt).

Assumption 6. We suppose that suppFt
St+1 = φt(St) = conv{φ1

t (St), ...φ
J
t (St)}

where φjt : Rd → Rd, j ≤ J , are piecewise linear mappings in the sense of
Definition 7.3.
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We define γ̃ξ,nt : Rd ×Rd → R recursively as follows:

γ̃ξ,nT (s, vT−1) := γξ,nT (s, vT−1),

θ̃ξ,nT−1(s, vT−1) := max
j≤J

γ̃ξ,nT (φjT−1(s), vt−1),

D̃ξ,n
t (s, vt−1, vt) := θ̃ξt (s, vt) + Cn

t (s, v
(2)
t − v

(2)
t−1),

γ̃ξ,nt (s, vt−1) := cl

(
inf
vt∈Rd

D̃ξ,n
t (s, vt−1, vt)

)
.

Assumption 7. Suppose that for any t ≤ T−1, infvt∈Sd−1(0,1) D̃
0
t (s, 0, vt) > 0

for all s ∈ Rk
+, so that there is a upper hemicontinuous reachability set-valued

mapping Kt(s, vt−1) for the super-hedging problem in the market defined by
Ct. Moreover, we suppose that Kt is an universal reachability set in the
sense that it satisfies for all n ≥ 1 and (s, vt−1):

γ̃ξ,nt (s, vt−1) = inf
vt∈Kt(s,vt−1)

D̃ξ,n
t (s, vt−1, vt).

Remark 6.1. Consider the case where C, Cn and St satisfy the assumptions
specified in section 4. Since C ≤ Cn for all n ≥ 1 by assumption, we deduce
that infvt∈Sd−1(0,1) D̃

0
t (s, 0, vt) > 0 implies infvt∈Sd−1(0,1) D̃

0,n
t (s, 0, vt) > 0 for

all n. By the proof of Proposition 4.3, it is sufficient to suppose that SAIP
holds for the market defined by C. If we suppose that Ct(s, vt),C

n
t (s, vt) are

bounded above by |ht(s, vt)| for some continuous function ht, by the same ar-
gument as in Lemma 5.21 in [22], we deduce that the quantities D̃0

t (s, vt−1, 0)
and D̃0,n

t (s, vt−1, 0) are bounded above by a continuous function ĥt(s, vt−1).
Hence, an universal reachability set exits as Kt(s, vt−1) = B̄(0, rt(s, vt−1))
where

rt(s, vt−1) =
ĥt(s, vt−1) + |ht(s, vt−1)|
infvt∈Sd−1(0,1) D̃

0
t (s, 0, vt)

.

Since rt is u.s.c., we deduce by Lemma 5.12 in [22] that Kt is upper hemi-
continuous.

Theorem 6.2. Suppose that the functions φjt : Rk
+ → Rk

+, j ≤ J satisfy As-
sumption 6. Suppose that Assumption 7 holds. Then, for any t ≤ T − 1 and
for any vt−1 ∈ Rd, limn→∞ γ̃

ξ,n
t (s, vt−1) = γ̃ξt (s, vt−1). Moreover, SAIP condi-

tion holds for the markets defined by Cn and limn→∞ γ
ξ,n
t (St, Vt) = γξt (St, Vt)

a.s. as n→∞ for any Vt ∈ L0(Rd,Ft) and t ≤ T .
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Proof. We first observe that γ̃ξ,nt is convex in (s, vt−1) for any n. We now prove

that D̃ξ,n
t (s, vt−1, .)

epi−→ D̃ξ
t (s, vt−1, .). Indeed, by the definition of γ̃ξ,nT we have

that γ̃ξ,nT (s, .) ↓ γ̃ξT (s, .). Since γ̃ξT (s, .) is convex and takes values in R, it is

continuous. We deduce by [26, Proposition 7.4(c)] that γ̃ξ,nT (s, .)
epi−→ γ̃ξT (s, .).

Moreover, by convexity and by assumption, we get that

θ̃ξ,nT−1(s, vT−1) = max
j≤J

γ̃ξ,nT (φjT−1(s), vt−1),

θ̃ξT−1(s, vT−1) = max
j≤J

γ̃ξT (φj(s), vt−1).

Under Assumption 6 holds, the mapping (s, vt−1) 7→ (φj(s), vt−1) is piecewise

linear in the sense of Definition 7.3. Since, γ̃ξ,nT is convex, we deduce by
[26, Exercies 2.20] that γ̃ξ,nT (φj(.), .) is jointly convex. Moreover, since we

have limn→∞ γ̃
ξ,n
T (φj(s), .)

epi
= γ̃ξT (φj(s), .), for any j ≤ J , we deduce by [26,

Proposition 7.48] that:

θ̃ξ,nT−1(s, .) = max
j≤J

γ̃ξ,nT (φj(s), .)
epi−→ max

j∈J
γ̃ξT (φj(s), .) = θ̃ξT−1(s, .), n→∞.

Since Cn
T−1(s, .) ↓ CT−1(s, .) and CT−1(s, .) is continuous, we deduce by the

Dini theorem that the convergence is uniform on any compact subsetK of Rd.
By [26, Theomrem 7.14], we deduce that Cn

T−1(s, .) converges continuously
to CT−1(s, .) in the sense that Cn

T−1(s, xn) → CT−1(s, x) whenever xn → x.
We then deduce by [26, Theorem 7.46] that

D̃ξ,n
T−1(s, vT−2, .)

epi−→ D̃ξ,n
T−1(s, vT−2, .), n→∞.

Suppose that limn→∞ D̃
ξ,n
t+1(s, vt, .)

epi
= D̃ξ,n

t+1(s, vt, .) and, by induction, let

us show that limn→∞ D̃
ξ,n
t (s, vt−1, .)

epi
= D̃ξ,n

t (s, vt−1, .). Since Kt+1(s, .) is com-
pact, we deduce that γ̃ξ,nt+1(s, .) ↓ γ̃ξt+1(s, .). Since γ̃ξt+1(s, .) is convex and takes
real values, it is also continuous. We deduce by [26, Proposition 7.4] that

limn→∞ γ̃
ξ,n
t+1(s, .)

epi
= γ̃ξt+1(s, .). As in the case t = T − 1, we deduce by induc-

tion that limn→∞ D̃
ξ,n
t (s, vt−1, .)

epi
= D̃ξ

t (s, vt−1, .).

At last, since infvt∈S(0,1) D̃
0
t (s, 0, vt) > 0, SAIP holds for the market defined

by Ct, see [22, Theorem 4.16]. By Theorem 5.5, we have γ̃ξt (St, Vt) = γξt (St, Vt)
a.s. for any Vt ∈ L0(Rd,Ft). Moreover, since D̃0,n

t (s, 0, vt) ≥ D̃0
t (s, 0, vt), we

deduce that SAIP also holds for market defined by Cn
t and, similarly, we

have γ̃ξ,nt (St, Vt) = γξ,nt (St, Vt) a.s. for any Vt ∈ L0(Rd,Ft). The conclusion
follows.
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7. Appendix

By [26, Theorem 14.37], we have:

Proposition 7.1. If f is an Ft-normal integrand, infy∈Rd f(ω, y) is Ft-
measurable and {(ω, x) ∈ Ω ×Rd : f(ω, x) = infy∈Rd f(ω, y)} ∈ Ft ⊗ B(Rd)
is a measurable closed set.

We now recall a result from [3] which characterizes a conditional essential
supremum as a pointwise supremum on a random set. Let H and F be two
complete sub-σ-algebras of FT such that H ⊆ F . The conditional support
of X ∈ L0(Rd,F) with respect to H is the smallest H-graph measurable
random set suppHX containing the singleton {X} a.s., see [3].

Proposition 7.2. Let h : Ω×Rk → R be a H⊗B(Rk)-measurable function
which is l.s.c. in x. Then, for all X ∈ L0(Rk,F),

ess supH h(X) = sup
x∈suppHX

h(x) a.s.

7.1. Piecewise linear cost function

We recall from [26] the definiton of piecewise linear function:

Definition 7.3. A mapping F : D → Rm defined on a set D ∈ Rn is
piecewise linear on D if D is the union of finitely many polyhedral sets (Pi)i∈J
such that, for all x ∈ Pi, F (x) = Aix+Bi, for some matrix Ai ∈ Rm×n and
Bi ∈ Rm.

A function f : Rn → R̄ is piecewise linear if it is a real-valued piecewise
linear function on its domain domf = {x : f(x) ∈ R}.

7.2. Complement to Section 4

Recall that the model is defined by one risk-free asset and one risky asset
denoted by S. The cost function is given by

Ct(St, v) = v1 + StC̃t(v
2), (7.18)

where C̃t : R→ R is a piecewise linear function.
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By Proposition 7.2, we have:

θ0
T−1(ST−1, v) := ess supFT−1

CT (ST , (0,−v2)) = sup
s∈suppFT−1

ST

CT (s, (0,−v2))

= sup
s∈suppFT−1

ST

(
−(1 + εT )sv21v2≤0 − (1− εT )sv21v2≥0

)
= sup

s∈[kdT−1ST−1,k
u
T−1ST−1]

(
−(1 + εT )sv21v2≤0 − (1− εT )sv21v2≥0

)
= max

{
− (1 + εT )kdT−1ST−1v

21v2≤0 − (1− εT )kdT−1ST−1v
21v2≥0,

− (1 + εT )kuT−1ST−1v
21v2≤0 − (1− εT )kuT−1ST−1v

21v2≥0

}
= −(1− εT )kdT−1ST−1v

21v2≥0 − (1 + εT )kuT−1ST−1v
21v2≤0.

and

CT−1(ST−1, (0, v
2 − z2)) = (1 + εT−1)ST−1v

21v2−z2≥0 + (1− εT−1)ST−1v
21v2−z2≤0

−(1 + εT−1)ST−1z
21v2−z2≥0 + (1− εT−1)ST−1z

21v2−z2≤0.

We then have:

D0
T−1(ST−1, 0, v) = θ0

T−1(ST−1, v) + CT−1(ST−1, (0, v
2))

= ((1 + εT−1)ST−1 − (1− εT )kdT−1ST−1)v21v2≥0

+ ((1− εT−1)ST−1 − (1 + εT )kuT−1ST−1)v21v2≤0

More generally:

D0
T−1(ST−1, z, v) = θ0

T−1(ST−1, v) + CT−1(ST−1, (0, v − z))

= (1 + εT−1)ST−1v
21v2−z2≥0 + (1− εT−1)ST−1v

21v2−z2≤0

−(1 + εT−1)ST−1z
21v2−z2≥0 + (1− εT−1)ST−1z

21v2−z2≤0

−(1− εT )kdT−1ST−1v
21v2≥0 − (1 + εT )kuT−1ST−1v

21v2≤0.

In the following, we assume that 1 + εT−1 ≤ (1 + εT )kuT−1 and, also, that
1− εT−1 ≥ (1− εT )kdT−1. We shall use the usual convention that inf ∅ = ∞.
We get that:

γ0
T−1(z) = inf

v∈R2
D0
T−1(ST−1, z, v) = min

i=1,··· ,4
D0,i
T−1(ST−1, z, v),

where:

D0,1
T−1 = inf

v2:v2≥z2,v2≥0

(
(1 + εT−1)ST−1(v2 − z2)− (1− εT )kdT−1ST−1v

2
)

= −(1− εT )kdT−1ST−1z
21z2≤0 − (1 + εT−1)ST−1z

21z2≥0.
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D0,2
T−1 = inf

v2:v2≥z2,v2≤0

(
(1 + εT−1)ST−1(v2 − z2)− (1 + εT )kuT−1ST−1v

2
)

=∞1z2>0 − (1 + εT−1)ST−1z
21z2≤0.

D0,3
T−1 = inf

v2:v2≤z2,v2≥0

(
(1− εT−1)ST−1(v2 − z2)− (1− εT )kdT−1ST−1v

2
)

=∞1z2<0 − (1− εT−1)ST−1z
21z2≥0.

D0,4
T−1 = inf

v2:v2≤z2,v2≤0

(
(1− εT−1)ST−1(v2 − z2)− (1 + εT )kuT−1ST−1v

2
)

= −(1− εT−1)ST−1z
21z≥0 − (1 + εT )kuT−1ST−1z

21z2≤0.

We deduce that

γ0
T−1(ST−1, z) = inf

v∈R2
D0
T−1(ST−1, z, v)

= −(1 + εT−1)ST−1z
21z2≥0 − (1− εT )kdT−1ST−1z

21z2≤0.

We now compute D0
T−2(ST−1, 0, z). We have:

θ0
T−2(ST−2, z) = ess supFT−2

γ0
T−1(ST−1, z)

= sup
s∈[kdT−2ST−2,k

u
T−2ST−2]

γ0
T−1(s, z)

= sup
s∈[kdT−2ST−2,k

u
T−2ST−2]

(
−(1 + εT−1)sz21z2≥0 − (1− εT )kdT−1sz

21z2≤0

)
= −(1 + εT−1)kdT−2ST−2z

21z2≥0 − (1− εT )kdT−1k
u
T−2ST−2z

21z2≤0.

D0
T−2(ST−2, 0, z) = θ0

T−2(ST−2, z) + CT−2(ST−2, (0, z
2))

= −(1 + εT−1)kdT−2ST−2z
21z2≥0 − (1− εT )kdT−1k

u
T−2ST−2z

21z2≤0

+(1 + εT−2)ST−2z
21z2≥0 + (1− εT−2)ST−2z

21z2≤0

=
(
(1 + εT−2)ST−2 − (1 + εT−1)kdT−2ST−2)

)
z21z2≥0

+
(
(1− εT−2)ST−2 − (1− εT )kdT−1k

u
T−2ST−2

)
z21z2≤0.

We then get the following:

Proposition 7.4. AIP holds at time T −2 if and only if the following holds:

kdT−2 ≤
1 + εT−2

1 + εT−1

and kuT−2 ≥
1− εT−2

(1− εT )kdT−1

.
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