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Abstract: We propose numerical methods that provide estimations of
super-hedging prices of European claims in financial market models with
transaction costs. The transaction costs we consider are functions of the
traded volumes and prices. Contrarily to the usual models of the litera-
ture, the transaction costs are not necessary proportional to the traded
volumes, neither convex. The particular case of fixed cost is also consid-
ered. Limit theorem are established and allow to numerically compute
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1. Introduction

Computing the super-hedging prices of a European option in presence of
transaction costs is a difficult task. Indeed, the classical results of the litera-
ture focus on linear transaction costs and only dual characterizations of the
super-hedging prices are formulated, see the FTAP theorems (Fundamental
Theorem of Asset Pricing) by [14], [13], [20] among others. These results are
formulated under rather strong no-arbitrage conditions (see [15], [18]) and
the super-hedging prices are estimated through dual characterizations based
on the so-called consistent price systems, see [4], [10].

The interesting question is how to implement the FTAP theorem and de-
duce numerical estimation of the prices. Few attempts have been achieved in
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that direction, e.g. [27] in the case of a finite probability space. The general
case is difficult as we have first to identify the dual elements, i.e. the con-
sistent price systems, which are martingales evolving in the positive duals
of the solvency cones. The second step is to propose a numerical procedure
to evaluate the possible super-hedging prices. There is no such a numerical
method in the literature. Moreover, if the transaction costs are non linear,
there is a priori no dual elements characterizing the no-arbitrage condition.

The methods we develop in this paper are based on the recent paper [22]
where the super-hedging prices are characterized for a large class of transac-
tion cost models which are not necessary linear. Indeed, using a new approach
based on a weak no-arbitrage condition, mainly the prices of the non neg-
ative claims are supposed to be non negative, we prove that the infimum
prices of a European claim are solutions to a dynamic programming problem
it is possible to solve backwardly, at least in discrete-time. However, in [22],
the results are merely theoretical. The authors do not provide algorithms
to compute the super-hedging costs in practice. In this paper, we address
this problem. To be precise, we consider financial markets with transaction
costs defined by a cost process (Ct)o<t<r depending on traded volumes and
a process (S¢)o<t<r that includes the asset prices. We shall consider the case
of countably infinite ¢-conditional supports for S;.; where an exact charac-
terization of the super-hedging costs is given. The randomized procedure we
propose is based on the simulation of conditionally identically distributed
random variables which share the same conditional support as the price pro-
cess (St)o<t<r. We formulate a limit theorem, see Theorem 3.15, that proves
the efficiency of our method.

The paper is organized as follows. In Section 2, we recall the market model
studied in [22] and the dynamic programming theorem. In Section 3, we de-
scribe the numerical scheme and the main convergence theorems. We present
in Section 4 the special case of a model with one risky asset and a piecewise
cost process (Cy)o<i<r. In Section 5, we also give the exact solution of the
super-hedging cost in the models with proportional costs and with and with-
out fixed cost. Finally, in Section 6, we prove a limit theorem for a sequence
of financial markets defined by convex cost processes.



2. The model

Let ¢ € L°(R?, Fr) be a contingent claim. Our goal is to characterize the
set of all self-financing portfolio processes (V;)Z__, such that V = &. Recall
that a portfolio process is by definition (see [22]) a stochastic process (Vi)
where V_; € Re; is the initial endowment expressed in cash that we may
convert immediately into V, € R? at time ¢ = 0. By definition, we suppose
that

AV, =V, -V, € -Gy, a.s.,, t=0,---,T,

where, for every t < T, G; is the random set of all solvent positions.

Our general model is defined by a set-valued process (G;)L, adapted to
the filtration (F;)L,. Precisely, we suppose that for all t < T, Gy is Fi-
measurable in the sense of the graph Graph(G;) = {(w,z) : = € Gi(w)} that
belongs to F; x B(R?), where B(R?) is the Borel g-algebra on R and d > 1
is the number of assets.

We suppose that G (w) is closed for every w € Q and G(w)+R% C Gy(w),
for all ¢ < T. The cost value process C = (C;)I_, associated to G is defined
as:

Ciz) =inf{la € R: ae;—2 € G} =minfa € R: ae;—2€ Gy}, z¢€R%

We suppose that the right hand side in the definition above is non empty a.s.
and —e; does not belong to G a.s. where e; = (1,0,---,0) € R% Moreover,
by assumption, Cy(2)e; — 2z € G, a.s. for all z € R% Note that Cy(2) is the
minimal amount of cash one needs to get the financial position z € R? at
time ¢. In particular, we suppose that C;(0) = 0.

If we define the liquidation value process L;(z) = —C;(—z2), we get that
G, = {z € RY: Liz) > 0} and, as G; is supposed to be closed a.s.,
L¢(2) is upper semicontinuous (u.s.c.) in z, see [24], or equivalently C;(z) is
lower semicontinuous (l.s.c.) in z. Naturally, C;(z) = C;(S;, z) depends on the
available quantities and prices for the risky assets, described by an exogenous
vector-valued JF;-measurable random variable S; of R}, m > d, and on the
quantities z € R? to be traded. Here, we suppose that m > d as an asset
may be described by several prices and quantities offered by the market, e.g.
bid and ask prices, or several pair of bid and ask prices of an order book and
the associated quantities offered by the market.

Some examples of models are given in [22]. In the following, we are inter-
ested in the infimum cost one needs to super-hedge &, i.e. the infimum value
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of the initial capitals V_; € R among the portfolios (V;)[__, super-replicating
§.
1,2

In the following, we use the notation z = (2!, 2%, ..., 2%) € R% and we denote
2@ = (22, ..., 2%) € R%!. Recall that the F;-measurable conditional essential
supremum of a family of random variables is the smallest JF;-measurable
random variable that dominates the family with respect to the natural order
between [—o00, oo]-valued random variables, i.e. X <Y if P(X <Y) =1, see
20, Section 5.3.1].

2.1. The one step hedging problem between timet — 1 and t

Recall that V;_; >q, Vi by the definition of portfolio process. Then, the
hedging problem V; = £ is equivalent at time ¢ — 1 to:

L(Via =6 >0 <=V, > —L(0.V%),
= V', > esssupy, | (61 —L((0, %) - 5(2)))> ,
=V Zesssupg,, (€14 Cl(0,62 - V),
=V > FL (),

where

Ffoly) = esssupg_, (€ + Ci((0,6% —y))). (2.1)

By virtue of [22, Proposition 5.7], we may suppose that F°_, (w, ) is jointly
Fi_1 x B(R%!)-measurable, a.s. l.s.c. (lower semi-continuous) as a function
of y and convex in y if Cy(s,y) is convex in y. As F;_; is supposed to be com-
plete, we conclude that F°_, is an F,_;-normal integrand, see [26][Theorem
Corollary 14.34].

2.2. The multi-step hedging problem

We denote by P;(€) the set of all portfolio processes starting at time ¢ < T
that replicates £ at the terminal date 7"

R(&) = {(Vo),: V, e L%R% F,), AV, € =G, Vs >t +1,Vp = ¢}
4



The set of replicating prices of ¢ at time ¢ is
Pu&) = {Vi = (VL VP) s (V)L € R}
We define the the infimum replicating cost by:

ci(&) :=essinfx {Cy(Vh), Vi € Py(§)}.

By Section 2.1, we know that Vr_; € Pr_(§) if and only if
Vi, > esssupg, | (f + Cp(0,6@ :,(,2)1)> a.s.

Similarly, Vi_s € Ry_5(€) if and only if there exists V2, € LO(RI !, Fr_,)
such that

Vi, > ess SUpr, (ess SUpz, <§ + Cp(0,6® — ( )> + Cr-1(0, VT 1 V’_Z(“Q—)Q)) :

By the tower property satisfied by the conditional essential supremum, we
deduce that Vy_y € Rr_o(€) if and only if there is V,\”, € LO(R4, Fr_y)
such that

V:ﬁ—2 > ess supg, , (f + Cr(0, 5 T 1) + Cr1(0, VIEZ)l VISQJZ)> .

Recursively, we get that V; € P,(€) if and only if, for some Vi@ e Lo (R F),
s=t+1,---,T — 1, and with VT(z) = £ we have

T
V! > ess supy, <§1 + Z Cs(0, V. — Vﬁ%)) :
s=t+1

In the following, for u < T — 1, &,_1 € L°(R%, F,_1), and £ € LO(RY, Fr),
we define the sets:

M7 (601, €) o= {67} x IZILORT, ) % {€@))

of all families (V?)H+L -, such that VO =, 1, VP € ORI, F,) for all
s=u,--,T—1and V2 = @ We set IIT(€) := N7T(0,£) = NT(¢,_1,€)
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when £ = 0. When u = T, we set L (ér4,€) = {fg,?ll}x{f(z)}. Therefore,
the infimum replicating cost at time 0 is given by

T
co(€) = ess inf g, ess Supz, (51 + Z C,(0, Vsz _ V52_1>)

VZEIlg (€) s=0

For 0 <t < T and V;_; € L°(R%, F,), we define *(V;_;) as:

T
i) = esintn s, (€4 00V V) @2

V@elf (Vio1.6) s=t

Note that fyf (Vi—1) is the infimum cost to replicate the payoff £ when
starting from the initial position (0, Vf%) at time ¢. Observe that 7% (V;_;)
does not depend on the first component V;* | of V;. Moreover,

(V) = € 4 Cp(0,6@ — V2.

As Gp + Ri C G, we also observe that yé(VT_l) > WO(Vry) if € €
LO(RZ, Fr). At last, observe that co(&) = v5(0).

We recall the following result from [22]:

Proposition 2.1 (Dynamic Programming Principle). Forany0 <t <T—1
and Vi_y € L°(R?, F,_1), we have

yf(Vt_l) = essinfr, esssupg (Ct((), Vt(g) - ‘/;(_2%) + VfH(Vt)) ) (2.3)
V:eLO(R4, Fy)

Assumption 1. The payoff £ is hedgeable, i.e. there exists a portfolio process
(VET_, such that & = V3.

The dynamic programming principle (2.3) allows to get 'yf(l/;_l) from the
cost function C; and from vf 1. In the paper [22], we have shown that ¢

is L.s.c. for any ¢ and convex, or piecewise linear, if fyf 1 satisfies the same
properties.

As the term C,(0, A ‘/;(_2%) in (2.3) is F;_1-measurable, we consider the
conditional supremum

05 (V;) = ess supg, 7541 (V)
6



to compute the essential supremum of (2.3). In the following, we shall use
the following notations:

DE(Viy, Vi) = Co((0, V) = V) + 65(W), (2.4)
DE(Ss, Vie1, Vi) = Cu(S, (0, V2 — VB + 65(S1, ). (2.5)

The second notation is used when we stress the dependence on S;. Observe
that 77 (Vi—1) = ess infz, Df(Vi_y, Vi).
V:eLO(R4, Fy)

In order to numerically compute the minimal costs, we need to impose
the finiteness of 7%(V,_1), i.e. v+ (Vi_1) > —0o0 a.s., at any time ¢ and for all
Vi1 € L°(R%, F,_1). This is why, we consider the following condition, see
22]:

Definition 2.2. We say that the financial market satisfies the Absence of
Early Profit condition (AEP) if, at any timet < T, and for all V; € L°(R%, F),
YW (Vi) > —00 a.s..

3. Numerical schemes

In the following, we suppose the following assumptions on the cost process C.
For any t < T', the cost function C; is a lower-semi continuous Borel function
defined on R¥ x R? such that

Ci(s,0) =0, Vs € R,

Ci(s,z+ Aer) = Cy(s,z) + A, A€ R, 2 € R, s € RY (cashinvariance),
Cr(s,xe) > Cp(s, 1), V1,29 s.b. 29 — 21 € Ri (Cris increasingw.r.t.Ri).
Note that Cr is increasing w.r.t. Ri is equivalent to G + Ri C Gr. More-

over, for some a > 0, we say that C, is a- super homogeneous if the following
property holds:

Ci(s, \x) > ACy(s,x),VA > a, s € R’i, r € R%

3.1. The one period model

In this section, we consider two complete sub o-algebras F; and F;;; such
that F; C Fiy1 C F and an adapted price process (Ss)s—t 41 satisfying the
following assumption.
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Assumption 2. Suppose that there is a family of F;-measurable random
variables (o)")m>1 such that Sie € {of* © m > 1} a.s. and suppose that
P(Siy1 = a*|F) > 0 a.s. for all m > 1. Moreover, we suppose that there
exists continuous functions on R™, that we still denote by o} with an abuse
of notation, such that aj* = aj*(S;).

In [22], we have shown the following:
Lemma 3.1. Suppose that Assumption 2 holds. Then, for any Borel function
f:RY—= R, we have

ess sups, f(Sin) = sup f(af"), as.

Definition 3.2. The random variables {bi,,,i > 1}, bi; € LO(R*, Fii1),
are said independent and identically distributed conditionally to F; (for short
Fi-i.i.d.) if, for all finite set J C N, and Borel sets B, B;,j € J:

Pbi,, € BIF] = P[b,, € BIF], as. Vi,j > 1,
P Lﬂ {bi;l € B;} |~7:t] = HP [bi+1 € Bj|]:t] , a.8..
= jeJ

Lemma 3.3. Consider a family of Fy-i.i.d. random variables bj_,, i > 1 and
0, € LO(R™ F,). Let fi :REXR™ =R, j=1,---,n ben > 1 measurable
functions such that E [| f7(b},,,0,)||F:] < 0o a.s. (resp. f7 is non negative),
for all j < n. Then, for any finite set J C N of cardinality n, we have:

E [ff(b) 1, 00)|F) = E [f¥(bl,1, 00| F] , as., i, 4,k > 1,

Hfj(bgﬂ,ét)‘]i] = HE [fj(biﬂ,@t)!ft] , a.S..

jeJ jed

E

Proof. We prove the result by induction on n. Suppose that f/ =1 p, where
D; = B;x Aj and B; € B(R¥), A; € B(R™). Then, the claim holds by defini-
tion of the Fi-i.i.d. random variables for all n > 1 and the F;-measurability of
0;. By the monotone class argument, this holds for any D; € B(R*)@B(R™) if
n = 1.If n > 1, we expand the product in the second claim and we use the in-
duction hypothesis. Then, we repeat the arguments for D, € B(R*) @ B(R™)
and so on. By linearity, and the induction argument after having expanding
the product, we also deduce that the claim holds when f7 = ), czloi
8



and for any ¢, € R,C} € B(R*) ® B(R™),h > 1. By standard increasing
approximations, we conclude in the case where f/ > 0. Otherwise, we write
7= ()" = (f7)". In particular, we get that

E Ufj(bzzf-&-het)H‘Ft} =FK [|f](bi+178t)||'/—_-t] < 00, a.s.
in the case where E [|f7(b},,0,)||F:] < oc. O

Lemma 3.4. Consider a Borel function f : R¥ — R and a family of F-
1.1.d. random wariables (bﬁl)mzl with values in R¥ and F,-measurable.
Suppose that there exists Fy-measurable random variables (of )n>1 such that
bty € {a,n>1} a.s. and P(b], = of|F) > 0 a.s. for all n,m > 1.

Let us define 0, := sup,,~; f(af") = ess supz, f(Si41) (by Lemma 3.1) and
0;" := max;<, f(b},,). The following holds:

0" — 6, a.s. as m — oo.

In particular, sup,, 0" = 0; a.s.

Proof. We may suppose w.l.o.g. that 6, < oo. Indeed, we may consider
g(0;) and the sequence (g(0;"))m>1 where g is a bounded strictly increas-
ing continuous function in the contrary case. By Lemma 3.1, we get that
ess supz, f(bl 1) = sup,,>; f(a)") = 6, as. For any € > 0, we deduce by
assumption that -

P[Qt — 9:” > E’ft] = P[@t — I:Lri%r}z(f<bi+1) > E|ft]
= P[0, — f(biﬂ) > €,Vi < m|F]

m
= F Hl{gt_f(b§+1)>e}‘.7:t] , &.S..
i=1

By Lemma 3.3, we deduce that
Pl — 0" > €| F] = P[0, — f(bl,y) > €| F]™
= Pless supy, f(bl,,) — f(b1) > clFI™, aus.

We claim that Pless supz, f(bj,;)— f(bj1) > €|F] < 1 a.s. Indeed, assume
on the contrary that Pless supyz, f(b;,;) — f(b1) > €|/F] = 1 on some non
null set A; € F;. In other words, we have

E [l{ess sup gz, f(btl+1)>f(b%+l)+5}}ﬂ:| 1At = ]-At‘
9



Taking the expectation, we deduce that:

E 1{ess Supr, f(bt1+1)>f(bt1+1)+6}1[\t:| =F {1At]

We then deduce that 1 sup, f(btl+1)>f(btl+1)+e}1/\t = 1, a.s. We now define
0, := ess supx, f(br1)laova, + (ess supg, f(bh) —€)1a,. Observe that 6, is F;-
measurable and 0, > f(b;, ) a.s. However, 0, < ess supz, f(b;,,) on the non

null set A;, in contradiction with the definition of the conditional essential
supremum. Therefore,

lim P[0 — 0" > ¢|F] =0, as.

m— o0

Finally, by the dominated convergence theorem, we have

Wllgréo PO, — 0" > €] = nll_IgOE [E[L{g,—or>ey | F]]
= E [W{ggo E[l{ez—0r>e}|ft]}
= 0.

Hence 0} increasingly tends to 6, in probability, i.e. sup,, ;" = 0, a.s.. [

Assumption 3. The payoff function & is of the form & = g(Sr), where
g € R’i is continuous. Moreover, £ is hedgeable, i.e. there exists a portfolio
process (VET__ | such that € = V.

u=

We recall here two weak no-arbitrage conditions introduced in [22]:

Definition 3.5. We say that the condition AIP holds at time t if the minimal
cost ¢;(0) = 72(0) of the European zero claim & = 0 is 0 at time t < T. We
say that AIP holds if AIP holds at any time.

The following condition is more technical.

Definition 3.6. We say that the condition SAIP (Strong AIP condition)
holds at time t if AIP holds at time t and, for any Z; € L°(R, F;), we have
DY(S;,0, Z;) = 0 if and only if Zt@) =0 a.s.. We say that SAIP holds if SAIP

holds at any time.

The condition SAIP states that the minimal cost of the zero payoff is 0 at
time ¢ and this minimal cost is only attained by the zero strategy V; = 0,
see [22]. This is intuitively clear as soon as any non null transaction implies

positive costs.
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We now introduce the sequence of functions which is defined recursively
as follows:

F5(s,0r 1) = €+ Cr(s, (0,6® — o ), w4, € R s € R,
étg(savt) = SUP7t+1(O‘t (s),w), t<T =1, v € Rd’

DS(s, vir,v0) = 05(s,0) + Cals, (0 — v2))),

A5 (s,v-1) = cl ( inf D (s,vtl,vt)) : (3.6)
UtER
Here, the notation cl(f) designates the l.s.c. regularization of f. In this
paper, we will impose later in the sequel a condition under which we have
75(& Up—1) = inf,,cRa Df(sa Vi1, Vt).-

The introduction of the functions above is motivated by the following result
proved in [22].

Theorem 3.7. Suppose that either A[P holds (md Cy(s,.) is convez for
ﬁxed s or SAIP holds. Then, we have ; (St,‘/;) =9 (St,Vt) a.s. and, also,
0 (S, Vi) = 9 (S, Vi) a.s. and D (St,Vt 1, Vi) = D? (S, Vi1, Vi) for any
Vi, Vi € LO(Rd,]:t). Moreover, 3%(s,v) is Ls.c. on Rk x R? and convex
in v when Cy(s,.) is conve.

Recall that the family of F;-measurable random variables (o (S))n>1 is
defined in Assumption 2. We now consider an F;-i.i.d. sample of random
variables {b;_,,i > 1} that satisfies P[b;,, = o}(S;)|F] > 0 a.s. foralln > 1
and by, ; € {7 (S;),n > 1} a.s. Now, let us define the (random) functions

Di(s,x,y) = 35(s,),

Di(s,x,y) = Ci(s,(0,y® —2®)) + 35, (s,p),

Di(w,x,y) = Di(s,z,y)

D) = e D). ,0). 7

Since ifﬂ(s, x) is L.s.c. in s, it is Borel in s for fixed z. Then, by Lemma 3.4,
we deduce that:
nh_{go I?<ax7t+1(bt+1(w> y) = SUP%H(O‘?(SI‘/(W)); y) = éf(St(w), y), a.s.
In particular, lim, o D (w,x,y) = Df(St(w), x,y). We now investigate the
S

) t
question whether inf,cgs Dj'(w,z,y) converge a.s.(w) to inf,cga Df(w,x,y)
11



as n — 00. To do so, we first recall the definition of epi-convergence, see [25,
Chapter 3] or [26, Chapter 7]. In the following, the notation B(z, ) designates
the closed ball of R?, where d > 1 depends on the context, centered a point
z € R4 and of radius r > 0.

Definition 3.8. Let f, : R¥ — R, n > 1, be a sequence of functions.
The epi-limit inferior li. f, and epi-limit superior ls.f, of (fn)n>1 are
defined as:

lie[(fn)n>1](w) == supliminf inf  f,(v),

k>1 100 veB(u,1/k)

Ise|( fr)n>1](w) := sup lim su inf (V).
[(fa)n=1](u) up n_}()opveB(u’l/k)f( )

The sequence (fn)n>1 is said to be epi-convergent at point u if

lie[(f)nz1](w) = 18e[(fn)nz1] (u).

We also introduce the definition of almost sure epi-convergence for random
functions.

Definition 3.9. If (f,)n>1, is a sequence of functions f, : @ x R¥ — R such
that f,, is F; @ B(RY)-measurable for each n, we say that f, epi-converges to
f almost surely (notation f, 2f a.s.) if, for any w outside a P-null set,
and for all w: lie[(fn(w, ))nz1](w) = Ise[(fu(w, ) )nz1](u) = f(w, u).
Theorem 3.10. Suppose that AIP holds and Cy(s,y) is convezr in y. We
then have D} (w, .,.) V (=Ci(Si(w), (0,2?))) L DS (W), ., a.s.(w), as
n — o0o.

Suppose that SAIP holds and, for any t, Cy(s,v}) > Cy(s,v?) if v} >Rd V2.
Then, D (w, .,.) LN D (Sy(w), .,.) a.s..
Proof. We first consider the case where AIP holds and Cy(s,y) is convex in
y. Let us define Lf(w,x,y) = D} (w,x,y) V (—Ct(St(w), (0,1(2)))). Observe
that Lj(w, r,y) is Ls.c. in (z,y) as a maximum of two Ls.c. functions. As the

sequence (L}),>1 is also non decreasing, we deduce by [26, Proposition 7.4],
that for any w:

116[<E?(w7 K ')n21>](x7 y) - lse[(f/?(c‘)’ K ')nzl)]('r’ y) = S?Lp L:tl(wa Z, y)'

12



We now prove that there exists a negligible set H such that for any w € Q\ H
and z,y € R? x R? the following holds:

sup Lf'(w, ,y) = Df (w, z,y). (3.8)

By assumption on (Cy);so, we get by induction that 65(V;) > 69(V;) a.s. for
any V; € LO(RY, F,). We deduce that DS(Vi_q,V;) > —Cy(S,(w), (0, ;)
for any for any V;_1,V; € L°(R% F,). Indeed, under AIP, D?(0,V;) > 0 a.s.
hence

D (Vier, Vi) = 65(Vi) + Cu(Sy, (0, ;2 = V)
> 05(V,) + Co(Sh, (0, V2)) = Co(Sy, (0, V,2)), (by subadditivity)
> 09(V) + Ci(S, (0, V7)) = Co(Sh, (0, ;%))
> DY(0,V;) — Co(Sh, (0, ;%) = —Ci(S:, (0, V;)), aus

for any V;_1,V; € LY(R%, F).

We now deduce that D} (S;(w), z,y) > —C, (Si(w), (0,2@)) for every z,y
a.s.(w). Indeed, suppose on the contrary that the F;-measurable set

Fi(w) = {(2,5) € R x RY: DE(Si(w), 2,) < —Cy (Su(w), (0,2)) }

is non-empty on the non-null set G; = {w: ['y(w) # 0}. We then deduce
a measurable selection (V;_1,V;) € L°(RY, F) x L°(R% F;) such that we
have D(Sy, Vi, Viei) < —Cy(Sy, (0, \71‘/(72%)) on G; and we extend to the whole
space by putting V,_; = 0 = V; on the complementary set Q \ G;. Moreover,
by Theorem 5.5, we then deduce that Df(V;,z) < —Cy(Sy, (0, \_/t(_?) on the
non-null set GGy, which is a contradiction.

Similarly, under AEP and Assumption 3, we have that DS Vi, Vi) € R
a.s. for any V;_1,V; € LY(RY, .7-}) see [22]. Then by a measurable selection
argument, using the fact that D (Vie, Vi) = (St, Vi—1,V;) a.s., we deduce
that D$(S,(w),z,y) € R for any z,y, for any w outside a neghglble set.

By Lemma 3.4, L (w,z,y) — D5(Sy(w),z,y) V (—Cy(Si(w), (0,2)) as
n — oo for any w outside a negligible set N (z, y). Moreover, by the discussion
above, we deduce a negligible set M such that for any w € Q\ M, we
have DS (Sy(w), z,y) > —Cy(Si(w), (0,2?)) and D (Sy(w), z,y) € R for any
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z,y. We set H := UyeqaN(z,y) UM, we claim that for any w € Q\ H,
sup,, L'w, z,y) = [Df(St(w),a:, y) for all z,y € R%. Indeed, by the definition
of H, we deduce that (3.8) holds for any y € Q?. Now, since Df(S(w), .,.) is
convex and takes values in R, it is continuous for any w € Q\ H. Moreover,
we claim that sup,, L?(w,r,y) < oo for any z,y € R? and w € Q\ H. Indeed,
by lower semicontinuity, we have:

sup L} (w0, x,y) < liminf sup L} (w0, 7, )

n n

for any sequence x, y, € Q¢ such that x;, — x and y;, — y. Moreover, by the
definition of H and the continuity of D (S(w), .,.) for any w € Q\ H, we have
lim infy sup,, L (w, 3, i) = liminf, D5 (S,(w), 24, yi) = D (Si(w), z,y) € R.
We deduce that sup, L?(w,z,y) € R for any 7,y € RY and w € Q\ H.
Moreover, sup,, L?(w, .,.) also convex as a supremum of convex functions, it
is also continuous. We then deduce by continuity that (3.8) holds for any
y € R4,

Now, we consider the second case where Cy(s,v}) > Cy(s,v?) for any
v,v; € R? such that v; >gs vf. Similarly to the first case, we only need to
prove sup,, DI'(w, z,y) = D*(Sy(w), z, ) for all z, y and w outside a negligible
set. By the definition of ﬁf and éf, we can show by induction an by Lemma
3.11 that the mappings y — 65(s,y) and y — 3°(s,y) are decreasing with
respect to Ri.

Recall the definition of N(z,y), we also denote H := UycqaN(z,y) U M
and claim that for any w € Q\ H, sup, 35, , (0%, (w), y) = 05(S;(w), ), for
all y € R% Indeed, fix some y € R? and a sequence (yz)r>1 in Q% such that
yr — y and yg ZRi y. By lower semicontinuity and the discussion above, we

have for any w € Q\ H:
0; (Si(w),y) < lim inf 0 (Si(w), yk) < 65 (Se(w), y), and
sup T (b (@), y) < lim inf sup Frar (01 (@), ) < Sup Trar (07 (@), 9)-
Then, we have
0 (Se(w),y) = lim inf 0; (S1(w), yr),

Sup’?fﬂ(b?_,_l(w),y) = 1imkinf511p’~7§+1(b?+1(w>»yk)-
14



Moreover, by the definition of H, we have sup,, 75,1 (07,1 (w), y) = 05 (Si(w), i)

for any w € Q\ H. We then deduce that sup, ifﬂ(bg‘“(w), y) = 65(Si(w), y)

for any w € Q\ H. At last, by the definition of Df and D?, we conclude that

sup,, D (w, z,y) = D5(Sy(w), x,y) for any =,y and w € Q\ H. O
In the Proof of Theorem 3.10, we have used the following result:

Lemma 3.11. Let f : R¥ — R be a function such that f that is non increas-
ing with respect to the partial order ZRE - Consider cl(f) the lower semicon-

tinuous reqularization of f. Then, cl(f) is non increasing w.r.t. the partial
order ZRE -

Proof. From [26, Lemma 1.7], we have the following representation of the
l.s.c. closure:

c(f)(z) = li];rl_)iilff(x) = {a ER: I(zn)ns1, Tn — J:,lign flz,) = a} .

Consider z!, 2> € R? such that o' >gs 2? and a sequence (2, )n>1 such that
z, — z* and f(z,) — cl(f)(z?) as n — oo. Observe that z, + z' — 2% — x!
as n — oo. We then have f(x, + 2! — 2?) < f(x,) by our hypothesis. We
deduce that

c(f)(zh) < limninff(:vn +at -2 < lirrln f(z,) = cl(f)(2?).
[

Definition 3.12. We say that a set-valued mapping K; : Ri x R? - R4
1s a reachability set at time t < T for the super-hedging problem if K; has
compact set values and satisfies:

inf D(S,(w LT, Y) = inf D5(Sy(w ,T,Y), a.8..
it i (Si(w), @,y) e b i (S(w), 2, y)

Moreover, we suppose that K;(s,x) is upper hemicontinuous in (s, x), see [1,
Definition 17.2].

Remark 3.13. By [22, Theorem 4.14J, under SAIP, the determining set
K,(s, ) is constructed for s = Sy(w) as a closed ball B(0,7(s, )+ 1), where
ri(s, ) is an w.s.c. function. We shall see later in the model with one risky
asset how to characterize Ky(s,z) explicitely for every (s,z) € R x R such
that Ki(s,x) is compact for all (s,z) and upper hemicontinuous. Moreover,
By [1, Lemma 17.29], the upper hemicontinuity of K implies that

’yf(s,vt_l) = inf ﬁf(s,vt_l,vt). (3.9)
'Uf,ERd



Theorem 3.14. Suppose that SAIP holds and Cy(s,v}) > Cy(s,v?) for any
v}, v? € RY such that v! 2R v%. Then, we have:

lim inf DMw,z,y) = inf D5 (S (w ,T,Y),  Vr,y, a.s.
n—00 y€ K¢ (St(w),) t( y) yEK (St (w),x) t( t( ) y) Yy
(3.10)

Moreover, for each fized v, € L°(R%, F;) such that the random set K;(S;, x;)
is Fy-measurable, there exists a sequence (4, )n>1 of L*(R?, Fiy1) such that
Uiy, € arg minKt(SMt)(Df(w,a:t, ) a.s. and gy — G € L°(RY, Fyy1) along

a random Fyyq-measurable subsequence where gy, | € arg min(Df(Sy, 24, .)).

In the case where Cy(s,y) is conver in y, the same conclusion holds if
we replace D (w,x,y) by DM w,x,y) V (—Ct(St(w), (O,x@)))). Moreover, in
that case, if Ki(Ss, ;) is also convez, for fized x; € L°(RY, F;) such that the
random set K,(Sy, x;) is Fi-measurable, g7 = E(97|F:) € Ki(Si, ) a.s.
and converges a.s. to ) = E(40,,|F;) € argmin(D5 (S}, z;, .)).

Proof. We prove the claim in the first case, the second case is deduced simi-
larly using Theorem 3.10.

_ Consider the negligible set H in the proof of Theorem 3.10 such that
D'w, z,y) < Dt (w, z,y), for all 2,y and for any w € Q\ H and n > 1. We
then have:

lim inf D} w,z,y) < inf DS(S. (w ), Va, 311
L ki D@0 S T g D15, 00) (3.11)

for any w € Q\ H. We now establish the reversed inequality. Since each
Dr is an F-normal integrand, then by [26, Theorem 13.37], we deduce that
inf, e, (5, (w),.2) Di (W, x, y) is almost surely attained at some §7'(w, z). In other
words, we have §;'(w,z) € arg ming, (s, ). (Df'(w, z,.)) for any w outside a
negligible set N such that H C N.

Since K,(s,r) is compact, for any w € @\ N and = € RY, there is a
random subsequence {g,*(w,x),k > 1} of {J*(w,z),n > 1} converging to

some §2(w,z) € Ki(S¢(w),z). Since DMw, .,.) <P, D{(S,(.),.,.) as.(w) by
Theorem 3.10, we deduce by [26, Proposition 7.2] that:

li;n inf DF(w, z, §F (w, 2)) > D5(Si(w), z, 30 (w, x)) (3.12)
—00
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for any w € Q\ N. As D5(S,(w), z,
we deduce that for any w € Q\ N:

lim inf D* A > inf DS . 3.13
im in t(w,x,yt(ww))_yeKigt(w)vx) i (St(w), z,y) (3.13)

We deduce from (3.11) and (3.13) and, finally (3.12), that

liminf DF(w, 2, 9 (w, z)) = inf  Df(Sy(w),z,y) = D5(Sy(w), x, 30 (w, z))
k—00 YEK(St(w),x)

Ow, ) > infyek,(s,(w).0) Di (St (W), 2, 1),

We then deduce that gf(w,z) € argming, g, ), ( $(Sy(w), z,.)) for any

w € Q\ N, ie. (3.10) holds. Using the definition of the reachablhty set-valued
mapping K;, we conclude that §9(w,z) € arg min(Df(St(w),x, .)) outside a
negligeable set.

Recall that infyer, (s, w)e) Dff (w, T4, y) is Frrr-measurable, see [22]. There-
fore, by a measurable selection argument, we may deduce the existence of
g € LO(RY, Fryr) such that Dw, ¢, §1q) = infyer, (s, (w)m) D (W, T4, y)
and 97, € Ki(S;x¢) as.. By [20, Lemma 2.1.2], we may suppose that
Ut € Ki(Si,x4) is convergent for some random subsequence towards a
Fiy1-measurable limit 97, € K;(S, ;). Moreover, by the first step, we have
9001 € argming, (g, . (D5 (S, 4, ).

If K;(St, x¢) is Fr-measurable, consider a Castaing representation (2}");,>1
of K¢(S;,z;). The generalized conditional expectation E(g;,|F;) exists as
U1 € Ky (Si, x¢) is Fi-bounded. Note that g7, ; may be approximated by a
sequence of F;;j-measurable random variables in the set {z]" : m > 1}. We
deduce that E(97,,|F:) € Ki(Si, x¢) if Ki(Sy, x¢) is convex. It is clear that
E(yp.|F:) converges to E(47, | F:) € Ki(Sy, x4).

When the cost function is convex, DI'(w, z;,%) is convex. Using the Jensen
inequality for conditional expectations, we get that

D (St 2, BGEAlF)) < B (DSt i)l F) |

< FE ( inf DS (S, x4, )|]:t> )

yeR?

< inf DS(Sy, x4, y).

yeRd
The last inequality holds since inf,cga DE(S,, 21, y) is Fi-measurable. This
implies that E(§?,|F;) € argmin(D; (S, 24, .)).

O
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3.2. Multi-period framework

In this section, we consider the multi-period setting ¢t =0, --- ,T". Our goal is
to determine the infimum super-hedging cost of ¢ := g(S7) = (¢'(S7), 9®(Sr))
at time 0, where g : RE — R% is a deterministic continuous function. To do
so, we apply the dynamic programming principle of Proposition 2.1 to recur-
sively compute 75 (V;_y) for t = 0,--- ,T. Moreover, since 75(0) = 35(So,0)
under the weak no-arbitrage condition we suppose, it is then sufficient to
compute (S, Vp) for Vo = 0. We work under the following assumption:

Assumption 4. For each t, suppose that there is a reachability set-valued
mapping Ky : R’i x RY — RY such that Ky(s,vs_1) is a compact upper
hemicontinuous set-valued mapping, i.e.

inf D¢ s,x,y) = inf DS S,2,Y), a.s..
JeR4 H Y) YKo (o.z) i Y)

For simplicity, we consider the model where the price process satisfies
suppg, (Sit1) = {aSy: a, € ©}, t <T —1,

such that P[S;11 = a;Si|Fi] > 0 a.s. for all a; € ©, where © = {a},n > 1}
is a deterministic sequence of positive numbers. Consider a sequence of ran-
dom variables {b¢,i € J;, t = 0,---, T} in R¥T generated by the following
procedure:

1) b, = Sy for all i € J, = N\ {0}.

2) For given t > 0, we denote F, = o(bf : k € J,,u < t) where (0¥)c,
are the random variables constructed at time ¢. Then, for time ¢ 4+ 1, and
for each i € J;, we generate a sequence of i.i.d. random variables a{ s J 2
1, independent of F; such that of,, € L%(©,F;;,) for each j. Moreover,
SUppz, oz{H = O. We then define for each i € J, and j > 1, bi’il = agﬂbé.
Then, Ji1 ={(4,j): 1 € J;, 5 > 1}.

To compute 5/5 (Sp,0), we approximate :yf(bf;,vt_l) by the randomization
method considered in the last section that we extend to the multi-period
setting.

We denote n' = (n}),—1,... r a generic element in N” and, fort =1,--- | T,
we define n = (n!,) ;.. 7 € NI T 0l € {afb]_1; 5 € Jio1, k> 1},i € J,,

18



we set:

gn” i ._ ~& ( mypi
T-1 (01, vr1) 1= max V(a7 bp_q, vr-1),
m<nqp
Anttl g4 L ~ntt2 m i t+2 41
et (btavt) = ma;X17t+1 (C“t+lbtavt)> n - (nu )U=t+2,---,T7 t<T-1,
mgntil

ﬁ?ﬁ—l (bf‘,v V-1, Ut) = é?H—l (bfh Ut) + Ct(bz‘v (07 U7§2) - Uzgi)1>>7 t<T— L,
A Bhoe) = b DY (v, v), < T - L
v €K (b,ve—1)

Note that by assumption
Fi(s, vr-1) = g'(s) + Ors, (0.9°(s) = v5)).

Therefore, '7% is I.s.c. Since K is an upper hemicontinuous compact set-valued
mapping by assumption, see [22, Corollary 5.14 and Proof of Theorem 4.15],
and D;"*" is Ls.c. by induction, 4, (bi,v;_1) is Ls.c. in b and v;_; by [1,

Lemma 17.29].

The following theorem is our main contribution of this section. We use the
convention that n! — oo, n' € N7 if and only if n} — co,Vi=1,--- ,T.

Theorem 3.15. [Limit theorem to approximate the infimum super-hedging
price] Suppose that Assumption 4 holds and suppose that C; satisfies Cy(s, v}) >
Ci(s, v}) whenever v' >ga vi. Then:

lim fAY(I)ll(SO?O) = ;yg(smo)a a.s..

nl—oco
Proof. By Remark 3.13, Assumption 4 implies that
:Yg(‘Sb; O) = inf DS(SO, O, ’U1>

v1€K0(50,0)

where K((Sp,0) is a compact set-valued mapping. Moreover, since ’yf ()
is I.s.c. hence Borel, Theorem 3.14 applies when we replace .S; by each random
variable b} € {oszz,l; j € Ji—1,k > 1}. Precisely, in accordance with (3.7),
we shall consider:

t (t;vt—lavt> = sup 7t+1(at t7vt)+ +(ag t?( y Uy Ut71)>7 = )

n<ni,,
nttl . _pttl ;i
3 (b, vr) = inf D, (b, v, ), t <T =1,
vt €Kt (b}, ve—1)
attl )
sup Y, ' (b}, vi-1) = 35 (b}, vy1), t < T — 1, by Theorem 3.14. (3.14)

t+1
Ny

19



We now prove by induction that limyi_,. 42 (So, 0) = 75(S0,0) a.s. Observe
that, at time 7—1, nT = nT € N and 48", (b, vp_1) and 2 | (b, vp_1)
coincide. So, by Theorem 3.14, we have

;im 7;:(13}_1,1@_2) = %im 7§“i1(b§r’—1avT—2) = ﬁé—l(biT—th—?)
n' —oo n+ —o00

e P
Now, we suppose that supyeroenr—i-1 Y1 (bip1,0e) = Yipq(biy 1, ve) for any

bi, € {ozfﬂb{; j € Jiy, k> 1}. We have by definition:

Ant+1i 2 2 "nt+1i i 2 2
DR (0,087 — o)) = 627 (b, vp) + Colbl, (0,08 — 02)))

~ntt? i i 2 2
= Iﬂaﬁ(_l Vi1 (a;nbt’ Ut) + Ct<bt7 (07 fUlE ) - ’Ulgf)1>)’

mSng g

l’lt—"_2 = (nu )u:t+2,~~-,T-

Consider the directed set of all n'*! € N7~! endowed with the partial order
n'*t! > m**! if and only if ni™* > m/™! for all t+1 < i < T. By construction
and by induction, it is easy to check that (Df)ne Nlt+1.7] 1S increasing, i.e.
D? > D™ whenever n > m. Also, we may show by induction that DP(b¢,.)
is L.s.c. for all n. By Lemma 3.16 that allows us to exchange the supremum

and infimum in the following first equality, plus the induction hypothesis, we
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deduce that

t+1 ;
(

sup 4, t“(bi, Vy_1) = Sup inf Dn by, V1, vt)

nt+1 nt+1 v €Ky (blvp_1)

= inf sup Dn (bi7 Vi1, V)

v €K (b vi—1) pt+1

T
= inf sup sup Di (b}, ve—1, v¢)

v €Ky (btvi—1) n'tlen nt+2

. ntt2
= inf Sup sup | max 71;-;-1 (at+1bt» vt)
’UtEKt(b%,’Utfl) nii}eN nt+2 m<n

- Cub (0,02 —v%))

_ G i
= inf sup max Sup Vi1 at—i-lbt’ Ut)
ve €Kt (b, ve—1) t“eN m<nt+1 ni+2

+Ct(bi7(0,1}§ _Ut 1 ))

= inf Sup ~max +1 (aff1bp,vr)
’UtEKt(b%,’Utfl) t+1€Nm<nt+1

+ Cy(b, (0,0 — o))

= lnf th( ty s Ut— lvvt) tg(biavt—l)-

v €Ky (bl ve—1)

To deduce the last two equalities, we use the definition of éf (b, vp_1,v4)
and D5 (b, , v,_1,vy), see (3.6) but also (3.9) in Remark 3.13. The conclusion
follows by induction. O]

In the proof above, we have used the following lemma:

Lemma 3.16 (Dini-Cartan). Consider a family of l.s.c. functions (fu)ner,
fo : RT — R such that for every finite set J C I, there is ng € I with
supje fi < fno- Consider a compact set G, then the following holds:

f = inf :
sup inf fa(@) inf sup fal2)
Proof. By considering an increasing homeomorphism from [—oo, 400] onto

0, 1], we then restrict ourselves to the case sup,, f,, is bounded. It is clear that
21



sup,, infeq fn(z) < inf,eq sup, fn(z) so that the inequality holds if the sec-
ond term is —oo. For the reverse inequality, consider any a < inf,cq sup,, fn(2).
For all z € G, we have a < sup,, f.(z). Then, there exists some k = k,
such that a < fy(x). Note that the set Oy := {x : a < fi(z)} is open
since fj is L.s.c. By compactness argument, we deduce a finite covering of
G by some Oy, 7 = 1,---,N. By our hypothesis, there exists ny such
that a < fi,(z) < fo,(z), for all x € G and ¢ = 1,--- | N hence we have

a < infyeq fu, () < sup, infreq fu(x). O

Lemma 3.17. For allt , for all j € Jy11, consider b{H = af b} wherei € J,
and k > 1. Then, b, € {ajibj,n > 1} a.s. and Plb/, = apbj|F] > 0 as.
Moreover, {b,1,j € Ji11} are Fy-i.i.d.

Proof. For all n > 1, we have almost surely :
P b, = albj|F] = P [af, b} = a}bi|F] > P o}, = a}'|F] > 0.

The last statement follows directly from Lemma 3.3 as (af, );»1 are Fi-i.i.d.
by assumption.

[]

4. Model with one risky asset and piecewise linear costs

As we may observe in the previous section, the reachability set-valued map-
ping plays an important role in propagating the lower semicontinuity which,
in turn, propagates the convergence property. We consider in this section a
special case of convex cost functions and provide explicit expressions for the
minimal super-hedging costs. In particular, under SAIP condition, we obtain
an explicit expression of the reachability set K;(s, v;_1) when the payoff is of
linear growth, i.e. £ = (£, €?) <mz (aST +b,c) for some a,b,c € Ry.

We suppose the the market consists of one risk-free asset and one risky
asset denoted by (S¢)o<t<r. We impose the following assumption for the con-
ditional support of the price and cost processes.

Assumption 5. The price process satisfies Siv1 € {a}Sy,n > 1} where
the sequence (al'),>1 is deterministic and satisfies a} = min, a? = k¢ > 0,
a? = max, a = k € R, where k&, k* are deterministic. The cost process Cy
is given by Cy(Sy, (z,1;)) = x + S,Cy(v?_ ) for some deterministic piecewise
linear function Cy : R — R.
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We recall the AEP condition in [22]

Definition 4.1. We say that the financial market satisfies the Absence of
Early Profit condition (AEP) if, at any timet < T, and for all V; € L°(RY, F),
W(V,) > —00 a.s..

By Lemma 4.11 in [22], AIP implies AEP if the cost function C; is either
sub-additive or super-additive. Moreover, by Theorem 4.5 in [22], AEP im-
plies that 45(S;,.) > —oco a.s. This property will be used in the proof of the
following result.

Proposition 4.2. Suppose that Condition AEP and Assumption 5 hold.
Then the minimal hedging cost of the payoff ¢ = (mSr+G,K), m,G, K € R,
is given by A% (Sy, vi_1) = G+ Sihy(v2_ ), where hy : R — R is a deterministic
piecewise linear function.

Moreover, Dy(Sy, vy, vi—1) = Sihi(vi, vi—1) for some deterministic piecewise

linear function h; : R x R — R.

Proof. We first show by induction that, if &fﬂ(StH, vy) = Stﬂftﬂ(vf) where
fie1 : R — R is a piecewise linear function, then 55 (S, v_1) = Sy fy(v2_,) for
some piecewise linear function f; : R — R. To do so, observe that:

éf(St, v) = Sup (Sﬁﬂ(vf)) = max {kfstft+l(vt2)a kfstfwl(vf)}

se{alS¢,n>1}

= Spmax {kfﬁ+1(ﬂt2)> kfftﬂ(vf)} :

Since fii is piecewise linear function by the hypothesis, we deduce that
Gi(v?) := max{kZfi11(v?), k¥ fri1(v?)} is also piecewise linear by [26, Propo-
sition 3.55]. Therefore,

Y5 (Styve1) = inf D§(Sp, vp_1,0;) = inf
i (St; ve-1) UlgéR 7 (St V-1, v¢) vIQIéR

=50t (d(0f) + Culef —of0))

(8555, v0) + Cu(S., 07 —070))

By [26, Proposition 3.55], we also deduce that §,(v?) + Cy(v? — v? ) is a
piecewise linear function in (vZ,v? ;). Moreover, under AEP, we know that
&f(St,vt_l) > —o0 a.s.. Therefore, by [26, Proposition 3.55],

i) = inf (@0d) + Gl —o2)))
23



is a piecewise linear function in v? ;.

If the payoff is & = (mSr + G, K), then &%(ST,UT,l) =G+ STfT(v%_l)
where fT(v%l) = m+Cp(K —v2_,) is a piecewise linear function by assump-
tion on Cr. We then argue by induction as previously done to deduce that
”yf_l(St,l, v9) =G+ St,lft,l(vf_Q) for some piecewise linear function f;_;.

At last, since DE(Sy, vy, v_1) = 0,(Ss, v) + Co(Se, (0,02 — v))), the con-
clusion on [)t follows. O

The following is our main result of this section. It states the existence of
the reachability set under SAIP.

Proposition 4.3. Suppose that the payoff & = (g*(St), g*(Sr)) satisfies
g'(St) < aSr + b and ¢*(St) < ¢ for some a,b,c € Ry. We also sup-
pose that Cy(s,v') > Cy(s, v?) whenever v >ge v* and suppose that Cy(s, )
15 subadditive and 1-homogeneous.

Under the no-arbitrage condition SAIP, the reachability set Ki(s,vi—1) is
defined for every (s,v,_1) € R x R and is explicitly given by:

Ki(s,v-1) = Bt(O,Tt(S, V) + 1)

where ri(s,v—1) = sfi(vi—1)/g:(8) and fy, g are deterministic piecewise linear
functions such that g,(s) > 0 for all s > 0.
Proof. We define € := (aSy + b, ¢) so that & <mrz ¢. We show by induction
that D?(s,vt,l,vt) < Df(s,vt,l,vt) < f)f(s,vt,l,vt). By the proof of [22,
Theorem 4.15], we get that

Kt(S,Utfl) - {Ut : Ef(‘gavtflavt) < Dtg(savtflao)}
Moreover, by sub-additivity and 1-homogeneity.

Dy (s, 01, 00) = Culs, (0, 0F = vi2)) + 8(5,00) = =Cu(s, (0, 0121)) + D5, 0, )
DP(5,0,v;) > |ve|D(s5,0,v¢/|v4]) > |vg] r{ni{ll} D%(s,0,2), ¥ v > 1.
ze1—1,

We deduce that K;(S;,v;—1) € B(0,7,(S;, v_1)+1), where the radius 7;(Sy, v;_1)
is given by

Df(‘s’tv Ut—1, 0) + Ct(st7 (07 UtQ—I)) _. Stft(th—I)
minze{_m} D?(St, 0, Z) gt(St)
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Note that by Proposition 4.2, f; : R — R and ¢; : R — R are deterministic
piecewise linear functions. Moreover, we have g,(S) = S¢inf.cq_1,13 a;(2) for
some deterministic piecewise linear function a;. Since SAIP holds, we deduce
that inf.ci_113 a:(2) > 0. We then define g;(s) := sinf,c;_11) a;(2) > 0 for
all s > 0. The conclusion follows. O

5. Examples

In this section, we consider two classical examples. The first one corresponds
to the market with proportional transaction cost and the second one is with
fixed cost. We provide the explicit expression of the reachability set-valued
mapping K; for the Put option. Then, as a by-product, the minimal super-
hedging cost for Put option is computed.

For a sake of simplicity, we consider the binomial market model, i.e. the
price process satisfies suppz, Siy1 = {kat, k;‘St}, where kd, k' € R

5.1. Market model with proportional transaction costs

We consider a particular case of section 4 where
Ct(St, U) = Ul + (]. + Et)StU211)220 + (]. — Et)StU21v2§0- (515)

for some deterministic coefficient ¢, € R,. By a direct computation, see
Appendix, we obtain the following

Proposition 5.1. If v,_; € R2, the following holds:
07_1(Si-1,0) = —(1 = ek Si 10 Lieso — (14 @)k Si 10 Lie<g
DY (Si-1,0,v) = (1 4+ €-1)Si1 — (1 — ek 1S 1)v* Lo
+ (1= &-1)Sim1 — (L+ ek 1 Si—1)v° 1,29
Moreover, AIP,_1 holds if and only if:

1 _ 1—¢€_
+ el and k' | > € L
1—¢ 14+ ¢

Moreover, SAIP, 1 holds if and only if the above inequalities are strict. If
AIP;_1 holds, we then deduce that:

inf DY (S,_1,0,v) = S;_; min {A+e1)— (1 —e)kly,

v2e{-1,1}
(L+e)kiy — (1 =€)}

k| < (5.16)
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Proof. Recall that AIP,_; holds if and only if DY |(S;_1,0,v) > 0 for any

v € R? which is equivalent to (5.16). Moreover, suppose that SAIP;_; holds.

1 _
If ki | = 1+ “ L DY ((Si_1,0,v) = 0 for any v* > 0, i.e. SAIP,_; fails.

t
Similarly, we get that k" ; > (1 — €,-1)/(1 + €). At last, suppose that the
inequalities in (5.16) are strict. Since S;_; > 0 a.s.,

inf DY (S,_1,0,v) >0, a.s.

v2e{-1,1}

so that SAIP;_; holds by [22, Theorem 4.15]. O

We apply the result above at time 7" and we proceed by induction, see
Appendix, to deduce the following result at time 7" — 2.

Proposition 5.2. Assume that 1 +ep_y < (1 +ep)k¥_, and 1 —ep_y >
(1 —ep)k?_,, we have:

§9‘72(ST*27 Z) = _(1 + 6Tfl)k%l’f2ST*2Z21z220 - (1 - €T>k§l’flk%—2ST72221z2§0;
DY 5(Sr-2,0,2) = (14 er—2)Sr—2 — (14 ep_1)k§_5S7_2)) 2* 1,25
+ ((1 - ET_Q)ST_Q - (1 — ET)k?gw_lk‘%_QST_2> Z2lz2§0.

and AIP7_5 holds if and only if:

I+ero I —ers
B < ——== agnd k%, > ————
=2 = 1 + €ET_1 =2 = (1 — ET)I{?%_l

Moreover, SAIP1_5 holds if and only if the above inequalities are strict. More-
over, under SAIPr_o, we have:

v2€i{rif1 1} D%—Q(ST*% Oa U) = ST*2 min {((1 + 6T*2) - (1 a eTfl)k%_z%
—((1 = er) = (1 + er)kf_1 k¢ ) }.

The assumptions of Proposition 5.2 are chosen for a sake of simplification.
The computations for ¢ < T'— 2 are similar. In particular, for a Put option
with payoff (K —S7)", K > 0, we obtain a simple formula for the reachability
set.

Lemma 5.3. Suppose that SAIP holds and & = (g(St),0) where g is a
continuous function bounded from above by a constant M € R,. Then, there
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exists a reachability set K(s,v,_1) = By(0,7,(s,v,_1) + 1), t <T — 1, closed
ball of radius r(s,vi—1) = M(8,v4-1)/i:(s) where the functions

ir(s) == inf DY(s,0,v),

v2e{-1,1}

)‘t(sa vtfl) = Ct(57 (07 ,Utzfl)) + M + Ct(57 (07 _U?fl))a

are explicitely given by Proposition 5.1 and Proposition 5.2. In particular, we
have i.(s) > 0 for all s > 0.

We illustrate the results above by a numerical example. We consider the
put option payoff ¢(St) := (K — Sy)* at time T' = 2. We suppose that the
proportional cost coefficients €; = €5 = 0.02. We assume that SAIP condition
holds and choose k§ = 0.9, k% = 1.1, k% = 0.9, k% = 1.2. The price function
at time ¢ = 0 is presented in Figure 1.

25 1

20 1
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price Put

10 1

%0 % 100 105 110 115
50

Fig 1: Price of Put option

We also visualize the ratio of put option to asset price Sy
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Ratio (price put)/(asset price) with proprortional cost
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Fig 2: Ratio Put option/Asset Price

5.2. Market model with fized cost

In this section, we consider a financial market model in presence of both
proportional and fixed costs modeled by the following liquidation and cost
functions:

Li(S,v0) := v} + (07 (1 — &) S — ¢)  1ys0 + (07 (1 + €) Sy — ¢) Lu,<0
Ct(Stavt) = _Lt(Sta —Ut)-

for some deterministic constant ¢; > 0 representing the fixed cost we need to
pay to obtain a non-null position.

In this model, the cost function does not satisfy the condition property
that C.(St, Az) > ACi(St, z) for any A > 1. Then, the propagation of lower
semicontinuity is not guaranteed if we only assume the SAIP condition on
the market defined by this cost function. In [22], we have introduced the
horizon cost function defined as follows:

Ci°(s,y) := liminf M. (5.17)
a—00 6]
Definition 5.4. We say that the robust no-arbitrage condition RSAIP holds
at time t if the SAIP condition holds at time t for the enlarged model defined
by C°. We say that RSAIP holds if it holds at any time.

In [22], we proved the following theorem analogous to Theorem 5.5:
28



Theorem 5.5. Suppose that the condition RSAIP holds. Then, we have
(S, Vi) = A5(Si, Vi) a.s., 65(S., V) = 65(S,, Vi) a.s. and, also, we have
Df(St,V}_l,Vt) = Df(St,Vt_l,Vt) a.s. for any Vi_1,V; € LY(RY, F,), where
0%, D5 are given by (3.6).

As the horizon cost function coincides with the cost function (5.15) with-
out fixed costs, the results stated in Propositions 5.16 and 5.2 allows us to
characterize the reachability set-valued mapping K; for this market. In par-
ticular, since C; < C{° 4 ¢, by a straightforward computation, we deduce a
simple formula of K; for the Put option:

Lemma 5.6. Suppose that & = (g(Sr),0) where g is a continuous function
bounded from above by M € Ry. Then, a reachability set K;(s,v;_1) is ex-
plicitly given at any time t < T — 1 by K;(s,v,_1) = By(0,7,(s,v:_1) + 1),
closed ball of radius ri(s,vi_1) := A\(S,v4-1)/i:(s) where

ir(s) == inf DP>(s,0,0),

v2e{-1,1}

T
A, vi1) = C(s, (0,071)) + M + C(s, (0, —v7,)) + Y e,
s=t

and D?’oo is given in the model without fixed cost given by Proposition 5.1 or
Proposition 5.2. In particular, we have i,(s) > 0 for all s > 0.

As a numerical example, we also consider the put option payoff (K — Sp)*
at time T" = 2. We consider the binomial tree model as previously. In the
case where the conditional support suppgz,S; is countable, we can use the
randomized method established in section 3.

We use the same parameters as in Section 5.1 and we consider fixed costs
¢1 = ¢o = 0.8. The price function is illustrated in Figure 3.
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price Put

Fig 3: Price of put option with fixed costs.

We also visualize the ratio of put price to asset price S
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Fig 4: Ratio price of put to asset price with fixed costs.

We also compare the price of put option with and without fixed costs.
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Fig 5: Price difference between two cases

6. Limit theorem for convex markets

In the literature, there is few results providing limit theorems for financial
market models with transaction costs, see [12] and [2], but also [21] and [17]
without transaction costs. In this section, we consider a sequence of markets
defined by convex cost functions {C}'(S;,z),n > 1} such that CP (S, x) |
Ci(St, x) as n — oo for some convex function C;. We associate to each C} a
dynamic programming scheme deduced by our general analysis, see [22]:

(ST7VT 1) == (ST) + C3(Sr, (0, g 2)(ST) Vr-1)),

Qf”(St, vp) = ess supz, 75 (S, Vi),

Dﬁ’"wt,vt 1 Va) = 657 (S, Vi) + CR (S, (0, V) — V),
) =

F(Sp Vier) i= essinfr, DF™ (S, Viet, Vi)
V€LV (R4, Fy)

Assumption 6. We suppose that suppz, Sy41 = ¢+(Si) = conv{d; (S;), ...¢7 (Se)}
where ¢ : RT — RY, j < J, are piecewise linear mappings in the sense of
Definition 7.5.
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We define 77" : R? x R? — R recursively as follows:

A (s, uro1) = 5" (s, vr1),

é%ﬁl(S,UTfl) = I?ff’ﬁ% %71(5)77}#1)7
Df’n(sa Vg1, V) 1= éf(57 ) + Ci (s, vt@) - Uﬁ)l)’

75’"(3,1},5_1) =cl < inf Df’n(savt—hw)) -

UtERd

Assumption 7. Suppose that for anyt < T—1, inf, cga-1(9 1) DY(s,0,v¢) >0
forall s € R’f;, so that there is a upper hemicontinuous reachability set-valued
mapping Ky(s,vi_1) for the super-hedging problem in the market defined by
Ci. Moreover, we suppose that Ky is an universal reachability set in the
sense that it satisfies for alln > 1 and (s,v,_1):

(s vm1) = inf  DS"(s,vi_1, vy).

v €Kt (s,0¢-1)
Remark 6.1. Consider the case where C, C™ and S; satisfy the assumptions
specified in section 4. Since C < C™ for all n > 1 by assumption, we deduce
that inf,,cga-1(01) DY(s,0,v¢) > 0 implies inf,,cgd-1¢0,1) D?’"(S,O,Ut) > 0 for
all n. By the proof of Proposition 4.3, it is sufficient to suppose that SAIP
holds for the market defined by C. If we suppose that Ci(s,v:), C}(s,v:) are
bounded above by |h(s,v;)| for some continuous function hy, by the same ar-
gument as in Lemma 5.21 in [22], we deduce that the quantities D?(s,v,_1,0)
and ﬁ?”(s,vt,l,O) are bounded above by a continuous function ﬁt(s,vt,l).
Hence, an universal reachability set exits as Ki(s,v;_1) = B(0,7¢(s,v:_1))
where

ht(37vt—1) + |ht(3>Ut—1)|

re(s, V1) = _ .
t( ' 1) infvtesd—l(o,l) D?(Sa 0, vt)

Since ry is u.s.c., we deduce by Lemma 5.12 in [22] that K, is upper hemi-
continuous.

Theorem 6.2. Suppose that the functions ¢! : R: — RY, j < J satisfy As-
sumption 6. Suppose that Assumption 7 holds. Then, for anyt <T — 1 and
for any v;_1 € R, lim,,_ o0 if’"(s, Vi) = if(s, vi_1). Moreover, SAIP condi-
tion holds for the markets defined by C" and lim,,_, 'yf’"(St, Vi) = ’yf(St, Vi)
a.s. asn — oo for any V; € LO(RY, F) and t < T.
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Proof. We first observe that ’yf’" is convex in (s, v;_1) for any n. We now prove
that DS (s,v_1,.) = D5(s,v_1,.). Indeed, by the definition of 55" we have
that 55" (s,.) L 75(s,.). Since 45.(s,.) is convex and takes values in R, it is
continuous. We deduce by [26, Proposition 7.4(c)] that 75" (s,.) = 45(s, ).
Moreover, by convexity and by assumption, we get that

é%ﬁl(saval) = r?g}ﬁ%n< %171<8)7/Ut71)7
Oroa(svra) = maxFi(0;(s), ven).

Under Assumption 6 holds, the mapping (s, v—1) — (¢;(s), v,—1) is piecewise
linear in the sense of Definition 7.3. Since, ’y%n is convex, we deduce by
26, Exercies 2.20] that 45" (¢,(.),.) is jointly convex. Moreover, since we

have lim, o0 77" (9;(s),.) = E4 3(¢;(s),.), for any j < J, we deduce by [26,
Proposition 7.48] that:

égﬁl(sv ) = maxﬁ/’%n(qﬁj(s% ) ﬂ max:yg‘(qu(s)’ ) = ég’—l(sa ')7 n — o0.
J<J jeJ

Since C%_,(s,.) | Cr_1(s,.) and Cr_4(s,.) is continuous, we deduce by the
Dini theorem that the convergence is uniform on any compact subset K of R%.
By [26, Theomrem 7.14], we deduce that C}_,(s,.) converges continuously
to Cr_1(s,.) in the sense that C}_;(s,2") — Cr_i(s,x) whenever 2" — z.
We then deduce by [26, Theorem 7.46] that

DS™ (s, vp—g,.) 2 i DS (s,v7_3,.), n — 00.

Suppose that lim,,_. Dfﬁ(s,vt, ) E4 f)ffl (s,v¢,.) and, by induction, let

us show that lim,, Df’ (s,v-1, ) £ D& (s, w41, .). Since K,41(s, .) is com-
pact, we deduce that 7574 (s,.) J 35,1 (s, ). Since 3%, (s, .) is convex and takes
real values, it is also continuous. We deduce by [26, Proposition 7.4] that

lirnn%oo :)/f—ﬁ<S> ) £ ;?tg-i-l( i
tion that lim, e D" (s,v1,.) = D5(s,v,1,.).

At last, since inf,,es0,1) DY(s,0,v;) > 0, SATP holds for the market defined
by Ct, see [22, Theorem 4.16]. By Theorem 5.5, we have 75 (.S, Vi) = (S, V)
a.s. for any V; € L°(R?, F;). Moreover, since D{""(s,0,v,) > D%(s,0,v;), we
deduce that SAIP also holds for market defined by C} and, similarly, we
have :yf’”(St,Vt) = 'yf’"(St,Vt) a.s. for any V; € L°(RY, F;). The conclusion
follows. o
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7. Appendix

By [26, Theorem 14.37], we have:
Proposition 7.1. If f is an Fi-normal integrand, inf,cgpa f(w,y) is Fi-
measurable and {(w,z) € A x R?: f(w,z) = inf,cra f(w,y)} € F; ® B(RY)
1s a measurable closed set.

We now recall a result from [3] which characterizes a conditional essential
supremum as a pointwise supremum on a random set. Let H and F be two
complete sub-o-algebras of Fr such that H C F. The conditional support

of X € L°(R4, F) with respect to H is the smallest H-graph measurable
random set suppy X containing the singleton {X} a.s., see [3].

Proposition 7.2. Let h: Q x R* — R be a H ® B(R¥)-measurable function
which is l.s.c. in x. Then, for all X € L°(RF, F),

esssupy h(X) = sup h(z) a.s.

TEsuppy X

7.1. Piecewise linear cost function

We recall from [26] the definiton of piecewise linear function:

Definition 7.3. A mapping F : D — R™ defined on a set D € R" is
piecewise linear on D if D is the union of finitely many polyhedral sets (P;);cs
such that, for all x € P;, F(x) = Ajxz + B;, for some matriz A; € R™" and
B, e R™.

A function f : R® = R is piecewise linear if it is a real-valued piecewise
linear function on its domain domf = {z: f(z) € R}.

7.2. Complement to Section 4

Recall that the model is defined by one risk-free asset and one risky asset
denoted by S. The cost function is given by

Ct(St7 'U) = Ul + St@t(v2), (718)

where C; : R — R is a piecewise linear function.
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By Proposition 7.2, we have:
07_1(Sr—1,v) :=esssupz,_ Cr(St, (0, —v%)) = sup Cr(s, (0, —v?))

SESUPPr,. | ST

= sup (—(1 +e7) 507 Ly2<g — (1 — eT)sv21v2>0)
sesupp]_-TilsT a -

= sup (—(1 + er)sv* e — (1 — ET)SU211,220)
Se[k%ilsqﬂ,l,k%ils'r,l]

=max { — (1 + ep)kf_1 Sr_10* L2y — (1 — )k Sr_1v° 1,250,
— (L4 ep)k}_ 1 Sr—1v*L2<o — (1 — ep)kf_ Sr_1v7 L2 }
= —(1 — ep)k4_ 1 Sr_1v* 1250 — (1 + )k Sr_10* 1240
and
Cro1(Sr-1,(0,0* = 2%)) = (14 ep_1)Sr_10’ L2250 + (1 — €7-1)Sp_10* Lo 29
—(L4 e7—1)Sr—12"1y2_s250 + (1 — er—1)Sr_12% L2 2.
We then have:
Dy_1(Sr-1,0,v) = 07_,(Sr-1,v) + Cr-1(Sr-1, (0,07))
= (14 e7—1)Sr—1 — (1 — er)k§_ Sr—1)v* L2
+((1 = er1)Sr—1 — (1 + er)kf_; Sr-1)v* 1,20
More generally:
DY (Sr_1,z,v) = 609 (Sp_1,v) + Cr_1(Sr_1,(0,v — 2))
= (1+er_1)Sr—1v’L2_250 + (1 — e7-1)Sr_10° 125240
—(1+ ep-1)Sr-12°Ly2_s250 + (1 — €p_1)Sr_12° 122249
—(1 = er)kF_1Sr-10°Ly250 — (1 + er)kf_y Sr10 L2 o
In the following, we assume that 1 + ey < (14 ep)k¥_, and, also, that

1—er_1 > (1 —ep)kd ;. We shall use the usual convention that inf () = oo.
We get that:

/y%—l(’z) - ll'lf D%—I(ST—h 2 U) - min D%il(ST—h Z, U))
UERz 2:1’...’4

where:

D%il = inf ((]. + ET_l)ST_l(?}Q — 22) — (1 — eT)k%_IST_IUQ)

v2:w2>22 02>0
= —(1 - €T)]f%,1ST71221z2§0 — (1 —+ ET,1>ST,1221Z220.
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D = inf  ((14ep_1)Sr—1(v® — 2%) — (1 + er)k¥_ Sp_10?)

v2:02>22 12<0
= 00l,250 — (1 =+ 6T71>ST71221,Z2§0'
0,3 .
DT—l = v2:v2érzl£7v220 ((1 — ET_1>ST_1(U2 — 22) — (1 — GT)I{?%_IST_1U2)
= OOlz2<0 — (]_ - 6T—1>ST—1Z21,3220-

DY = inf (1= er1)Sroa(0® = 2%) = (1 + ep)kih_, Sr_10%)

v2:02<22 02<0
= —(1—er_1)Sr-12*Ls50 — (1 + ep)kf_1Sr-12°12<0.
We deduce that
V%fl(ST—laz) = inf Dgul(ST—laZﬂ])
veER?2
=—(1+ €T—1)ST—1221Z220 -(1- GT)k%_lsT—1321z2§0-

We now compute DY ,(Sr_1,0,2z). We have:

00_o(Sr-22) = o5 5ups, 101 (Sr1,2)

= sup Vr-1(8,2)
Se[k%_QST_Q,kqu«_QST_Q}
— 2 d 2
- Sup (= + er1)sz”1250 — (1 — ex)kf_152°1.2<0)

Se[k%_st_z,kqu«_QST_g}

== —(1 + ET—l)kg“_QST—2Z21z220 — (]_ — ET)k%_lk%_QST—2z21z2§0'

D%_Q(ST_Q, 0, Z) = 98«_2(ST_2, Z) + CT_Q(ST_Q, (O, 2’2))
= —(L+er_1)k$ 5Sr 021,250 — (1 — ep)kG_ kY 5 Sr 0271200
+(1+ er_2)Sr_22"1,250 + (1 — €7_2)Sr_22"1,2
= ((1+er—2)Sr—2 — (1 + er_1)k§_557-2)) 2°1.250
+((1 = er—2)Sr—2 — (1 — ex)k§_ K} _5Sr_2) 2°1,2<.
We then get the following:
Proposition 7.4. AIP holds at time T — 2 if and only if the following holds:

1+er_s 1 —ers
— " and k¥ > — = .
B L
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